高中数学基本不等式综合测试题(附答案)-最新教学文档
- 格式:doc
- 大小:14.51 KB
- 文档页数:3
不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。
2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。
3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。
4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。
5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。
#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。
题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。
题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。
题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。
第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A.2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mA m n=+(m 、n 为互不相等的正实数),242B x x =-+-,则A 与B 的大小关系是( )A .A B>B .A B≥C .A B<D .A B≤【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a ,b ,c 满足22c b a a-=+-,2222c b a a a+=++,且0a >,则a ,b ,c 的大小关系是( )A .b c a>>B .c b a>>C .a c b>>D .c a b>>【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B.C.D .a b+【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A.2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x +取最小值时x 的取值为( )A .1B .1±C .2D .2±2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .13.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .24.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .85.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或36.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为28.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.10.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是.四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y+的最小值.13.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【答案】B【解析】由均值不等式的条件“一正、二定,三相等”,即均值不等式成立的前提条件是各项均为正数,所以不等式()1222x y x y-+≥-成立的前提条件为20x y ->,即2x y >.故选:B.【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【答案】A【解析】A 选项,2642a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当8a b ==时等号成立,A 选项正确.B 选项,当a<0时,40a a+<,所以B 选项错误.C 选项,当0,0a b ><时,()20,02a b ab +<≥,所以C 选项错误.D 选项,当0,0a b <<时,0a b +<,a b +≥不成立,所以D 选项错误. 故选:A【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A .2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【答案】BCD【解析】对于A ,当,a b 为负数时不成立,故A 错误,对于B ,()()22222()0a b a b a b +-+=-≥,则()()2222a b a b +≥+,故B 正确,对于C ,0ab >,则,b aa b 都为正数,2b a a b +≥,当且仅当b a ab=,即a b =时等号成立,故C 正确,对于D ,111224b a a b ab a b ab a b ⎛⎫⎛⎫++=+++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =和b aa b=同时成立,即1a b ==±时等号成立,故D 正确,故选:BCD 【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>【答案】AC【解析】由题意可知AB AC BC a b =+=+,2a bOA OB OD +===,因为90CBD CAD ADC ∠=-∠=∠ ,90ACD DCB ∠=∠= ,则Rt Rt ACD DCB ∽ ,所以,CD ACBC CD= ,即2CD AC BC ab =⋅=,所以CD =在Rt OCD △中,OD CD >,即)0,02a ba b +>>当OD AB ⊥时,O 、C 点重合,a b =,此时)0,02a ba b +=>>,则)0,02a ba b +≥>>,所以A 正确;对于C 选项,在Rt OCD △中,CE OD ⊥,则90DCE CDE DOC ∠=-∠=∠ ,又因为90DEC DCO ∠=∠= ,所以,Rt Rt DEC DCO ∽ ,可得CD DE DO CD=,即2CD DE OD =⋅,所以222112CD ab ab DE a b OD a b a b====+++,由于CD DE >111a b >+,当a b =时,CD DE =111a b=+,()20,011a ba b>>+,所以C正确;由于22a b+在该图中没有相应的线段与之对应,故BD中的不等式无法通过这种几何方法来证明,故选:AC.考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mAm n=+(m、n为互不相等的正实数),242B x x=-+-,则A与B的大小关系是()A.A B>B.A B≥C.A B<D.A B≤【答案】A【解析】m、n为互不相等的正实数,则m nn m≠,所以2n mAm n=+>=,2242(2)22B x x x=-+-=--+≤,=2x时,max2B=,所以A B>.故选:A.【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a,b,c满足22c b aa-=+-,2222c b a aa+=++,且0a>,则a,b,c的大小关系是()A.b c a>>B.c b a>>C.a c b>>D.c a b>>【答案】B【解析】因为0a>,由基本不等式得22220c b aa-=+-≥=>,故c b>,因为2222c b a aa+=++,22c b aa-=+-,两式相减得,2222222222a a a aabaa++-=-+++=,故2112a ab+=+,所以220141151216ab aa a⎛⎫-⎪-+-+⎝=⎭=>,故b a>,所以c b a>>.故选:B【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B .C .D .a b+【答案】ABC【解析】由于170,139a b <<<<,则a b ¹,故a b +>222a b +>,则不可能是最大值,B ,C 符合题意;由于22221132)2()()428(a b a b a b ++=--+--,当170,139a b <<<<时,221112()2(0448a -<-=,22111()(1224b -<-=,故221131132((0428848a b -+--<+-=,即222a b a b +<+,故222a b +不可能是最大值,A 符合题意,故选:ABC【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A .2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+【答案】ABD【解析】对于选项A ,因为0a b >>,则20>,所以2a b+A 正确;因为0a b >>,所以0a b +>,0ab >,又2a b +>,得到01<<故22ab a ba b +<<+,所以选项B 和D 正确,对于选项C ,取2,1a b ==,满足0a b >>,但243322ab a ba b +=<=+,所以C 错误,故选:ABD.考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【答案】B【解析】()32x x -()213234x x ⎡⎤≤⨯+-=⎣⎦,当且仅当2x x =-,即1x =取得等号,满足题意.故选:B.【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【答案】A【解析】因为100x >>,故()10x x +-≥5,当且仅当5x =时,等号成立,所以2253≥-=-.故选:A.【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【答案】C【解析】因为()2222228T a b a b ab =++++≥++=,当且仅当1a b ==时取等号,所以T 的最小值为8.故选:C.【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【答案】B【解析】由正数x ,y 满足44x y +=,得111111419(4)()(5)5)4444y x x y x y x y x y +=++=++≥=,当且仅当4y x x y =,即23x =,43y =时取等号,所以11x y +的最小值为94.故选:B【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19【答案】C【解析】因为a b ab +=且0a >,0b >,所以111a b+=,则()1192722799101016b a ab a b a a b b a b a b a b a b ⎛⎫-+=-++=+=++=++≥+= ⎪⎝⎭,当且仅当9111b aa ba b ⎧=⎪⎪⎨⎪+=⎪⎩时,即当4a =,43b =时,等号成立.因此,27ab a b -+的最小值是16.故选:C.考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【答案】(1)证明见解析;(2)证明见解析【解析】(1)0,0,1a b a b >>+= ,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭,当且仅当ba a b=,即12a b ==时等号成立.(2)0,0,1a b a b >>+= ,12212212()1111a b a b b a ab b a ab +⎛⎫⎛⎫∴++=+++=+++⎪⎪⎝⎭⎝⎭21223434111()a b b a a b a b a b ⎛⎫=++++=++=+++ ⎪⎝⎭3434134888b a b a a b a b =++++=++≥+=+当且仅当34b a ba =时,即3,4ab ==-时等号成立.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【答案】(1)证明见解析;(2)证明见解析【解析】(1)因为1a b +=,所以()222212a b a b ab ab +=+-=-,因为0a >,0b >,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以11121242ab -≥-⨯=,即2212a b +≥,故22221a b +≥;(2)因为1a b +=,所以()1919910b aa b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为0a >,0b >,所以0b a>,90a b >,所以96b a a b +≥,当且仅当9b a a b =,即334b a ==时,等号成立,则91016b aa b ++≥,即1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【答案】证明见解析【解析】∵a ,b ,c 均为正数,∴()()()0a b b c c a +++++≥>,当且仅当a b b c a c +=+=+,即a b c ==时,等号成立.1110a b b c a c ++≥>+++,当且仅当111a b b c a c==+++,即a b c ==时,等号成立.∴()11129a b c a b b c a c ⎛⎫++++≥= ⎪+++⎝⎭,故()11192a b c a b b c a c ⎛⎫++++≥ ⎪+++⎝⎭,当且仅当a b c ==时,等号成立.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)由222()()()a b c a b b c a c ++=+++++≥++,当且仅当a b c ==时等号成立,即a b c ++≥.(2)由11111()(3)22a b c a b c a b c b c a c a ba b c a b c a a b b c c++++++++=⋅++=⋅++++++119(3(3222)222≥++=⋅+++=,当且仅当23a b c ===时等号成立,则11192a b c ++≥,得证.(3)由222222()()()()(2)()ax by bx ay ab x y xy a b ab xy xy a b ++=+++≥++2()xy a b xy =+=,当且仅当x y =时等号成立,不等式得证.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【答案】Dm ≥恒成立,即5m +≥恒成立.又559≥+=,当且仅当a b =时取等号.故实数m 的最大值为9.故选:D【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【答案】A【解析】由410x mxy +-≥,则41828912222x x x x y m xy xy xy y x++++≤===+()9111991542222222221x y x y y x y x ⎛⎛⎫⎛⎫++==+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当922x y y x =,即12x =,32y =时,等号成立.故选:A.【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【答案】B【解析】9x y xy +=,故911x y +=,()91910x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭,0x >,0y >,故96x y y x +≥=,当且仅当9x y y x=,即12,4x y ==时取等号,故10616x y +≥+=,x y +最小值是16,由不等式a x y ≤+恒成立可得16a ≤.a 的取值范围是(],16-∞,故选:B.【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13【答案】ACD【解析】因为0x >,所以21113153x x x x x =≤=++++,当且仅当1x x=,即1x =时等号成立,由任意0x >,231xa x x ≤++恒成立, 所以15a ≥,符合条件有15,12,13,故A 、C 、D 对;11015<,故B 错;故选:ACD考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【答案】B【解析】如图,设AB x =,由矩形()ABCD AB AD >的周长为4,可知(2)AD x =-.设PC a =,则()DP x a =-.,90,APD CPB ADP CB P AD CB '''∠=∠∠=∠=︒= ,,Rt ADP Rt CB P AP PC a '∴∴== ≌.在Rt ADP 中,由勾股定理得222AD DP AP +=,即222(2)()x x a a -+-=,解得222x x a x-+=,所以22x DP x a x-=-=.所以ADP △的面积11222(2)322x S AD DP x x x x -⎛⎫=⋅=-⋅=-+ ⎪⎝⎭.所以33S ≤-=-2x x =时,即当x =时,ADP △的面积最大,面积的最大值为3-B .【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【答案】当水池设计成底面边长为40m 的正方形时,总造价最低,为198400元.【解析】设池底的一边长为()m 0x x >,则另一边长为48001600m=m 3x x,总造价为y 元,则1600160016001003280160000480y x x x x ⎛⎫⎛⎫=⨯++⨯⨯⨯=+⨯+ ⎪ ⎪⎝⎭⎝⎭160000480198400≥+⨯=,当且仅当1600x x=,即40x =时,等号成立,所以当水池设计成底面边长为40m 的正方形时,总造价最低,最低为198400元.【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【答案】长为时总造价最低.【解析】设处理池的长和宽分别为x ,y ,高为h ,总造价为z ,则150xy =,(016,016)x y <≤<≤,(22)400224815080(8001296)120001200012000z x y h yh x y h =+⨯+⨯+⨯=++≥+=+,当且仅当8001296x y =,又150xy =,即16x =<,16y 时取到等号,故长为时总造价最低.【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.【答案】当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .【解析】设()()m 0AB a a =>,上底()()m 0BC b b =>,分别过点,B C 作下底的垂线,垂足分别为,E F ,则BE ,2a AE DF ==,则下底22a aAD b a b =++=+,该等腰梯形的面积())22b a b S a b a ++==+=所以()2300a b a +=,则30022a b a =-,所用篱笆长为2l a b =+300222a a a =+-300322a a =+≥30=,当且仅当300322aa =,即()10m a =,()10mb =时取等号.所以,当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x+取最小值时x 的取值为( )A .1B .1±C .2D .2±【答案】B【解析】由题意可知,20x >,∴2212x x +≥=,当且仅当221x x =,即1x =±时,等号成立,即221x x+取最小值时x 的取值为1±.故选:B .2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .1【答案】B【解析】由题意1x y +=≥,解得14≤xy ,等号成立当且仅当12x y ==.故选:B.3.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .2【答案】C【解析】因为0x >,所以224y x x =+=≥,当且仅当22x x=,即1x =时等号成立,所以22y x x=+的最小值是4.故选:C.4.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .8【答案】C【解析】正数a ,b 满足41a b +=,则11114()2244444)(b a a b a b a a b b +=+=≥++++,当且仅当44b aa b =,即142a b ==时取等号,所以当11,82a b ==时,114a b +取得最小值4.故选:C5.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或3【答案】B【解析】由0x >,得244113x x x x x -+=+-≥=,当且仅当4x x =,即2x =时等号成立,所以24-+x x x的最小值为3.故选:B.6.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+【答案】D【解析】因为,AD a BD b ==,所以,22a b a b OF OC OD +-===,在Rt DOF △中,DF ==又CD AB ⊥,所以CD ===在Rt CDO △中,DE OC ⊥,故ED OC OD DC ⋅=⋅,得到22a bOD DC ED a b OC -⋅===+所以2abCE a b===+,所以CE DF ≤,即2ab a b +,故选:D.二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为2【答案】CD【解析】对于选项A ,当=1x -时,12x x+=-,故A 错误;对于选项B ,()()222211x x x x x -=-+=--+,所以()2x x -的最大值为1,故B错误;对于选项C,122222x x x x -+=+≥=,当且仅当122xx=,即0x =时,等号成立,故C 正确.对于选项D ,222277222222x x x x ++=+-≥=-++,当且仅当22722x x+=+,即22x =时,等号成立,故D 正确.故选:CD.8.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭【答案】ACD【解析】由,R a b ∈,则222a b ab +≥,得222a b ab +≥,A 正确;由,R a b ∈,取1,2a b =-=,则1202b a a b +=--<,故B 错误;由于,R a b ∈,则22()024a b a b ab +-⎛⎫-=-≤ ⎪⎝⎭,则2a b ab +⎛⎫≤ ⎪⎝⎭,故C 正确;由于2222()0224a b a ba b ++-⎛⎫-=-≤ ⎪⎝⎭,故D 正确,故选:ACD .三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.【答案】9【解析】由1x >,得10x ->,于是21616161119111x x x x x x x -+=+=-++≥=---,当且仅当1611x x -=-,即5x =时取等号,所以2161x x x -+-的最小值为9.故答案为:910.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.【答案】300【解析】购买x 台机器人的总成本为21()150600P x x x =++,则平均成本()150112600P x x x x =++≥+=,当且仅当150600x x=,即300x =时,平均成本最低为2万元.故答案为:300.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是 .【答案】1,2⎡⎫+∞⎪⎢⎣⎭【解析】若关于x 的不等式225x x a +≥-恒成立,则min 2(2)5x x a+≥-,因为x a >,故2222()2242x x a a a a x a x a +=-++≥=+--,当且仅当1x a =+时取等,故得425a +≥,解得12a ≥.故答案为:1,2⎡⎫+∞⎪⎢⎣⎭四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y +的最小值.【答案】(1)23;(2)2 ;(3)1+【解析】(1)2113434(43)(3)(43)[3323x x x x x x +--=⨯⨯-≤⨯=,当且仅当343x x =-,即2(0,1)3x =∈时取等号.故(43)x x -取得最大值43时,x 的值为23.(2)2222122311x x x x y x x +-++-+==--2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥+-.(1x >)当且仅当311x x -=-,即1(1,)x =∈+∞时取等号.故函数的最小值为2.(3)x ,R y +∈,()1311313112144y x x y x y x y x y ⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当y =,即)21x =,(23y =时取等号.∴13x y +的最小值为113.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数数学31,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.【答案】(1)3-;(2)(43-【解析】(1)由题意得:(22a b =+=2≤=6ab ≤-所以132S ab =≤-a b =时,等号成立,所以直角三角形ABC面积的最大值为3-;(2)因为a b +≤所以21a b =+≤)21≥=,所以(2243S a b =+≥-,当且仅当a b =时,等号成立,所以正方形ABDE 面积的最小值为(43-.。
高一数学基本不等式试题答案及解析1.下列各函数中,最小值为的是()A.B.,C.D.【答案】D【解析】A.可取时,的最小值不可能是2;B.,,当时,的最小值不可能是2;C.由,的最小值大于2;D.由,当且仅当即时等号成立,的最小值为2.故选D.【考点】均值不等式的应用.2.设且,则的最小值为________.【答案】4【解析】由,当且仅当时等号成立.故答案为4.【考点】均值不等式的应用.3.已知都是正实数,函数的图象过(0,1)点,则的最小值是()A.B.C.D.【答案】【解析】由于函数的图象过(0,1)点,,代入得.【考点】基本不等式的应用.4.当时,函数的最小值为 .【答案】6【解析】由于,所以函数【考点】基本不等式的应用.5.若直线始终平分圆的周长,则的最小值为 .【答案】【解析】由得,则圆心坐标为,∵直线平分圆的周长,即直线过圆心,∴,∴,当且仅当,即时取等号,∴的最小值为.【考点】1、直线与圆的位置关系;2、基本不等式.6.△ABC满足,∠BAC=30°,设M是△ABC内的一点(不在边界上),定义f(M)=(x,y,z),其中分别表示△MBC,△MCA,△MAB的面积,若,则的最小值为__________________【答案】18【解析】∵,∠BAC=30°,∴,∴=4,∴==1,由知,=,∴=1-=,∴= =≥=18.【考点】平面向量数量积;三角形面积公式;新概念理解;基本不等式7.若正数,满足,则的最小值是()A.B.C.5D.6【答案】C【解析】由已知得,所以时等号成立)。
【考点】基本不等式在求最值中的应用,注意一正二定三相等8.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】A【解析】∵,两边同除,得,要使不等式恒成立,则,,∴,∴k的最小值是1.【考点】基本不等式.9.设实数满足:,则取得最小值时,.【答案】121【解析】∵,∴,上述等号成立的条件依次为:,∴a=1,b=c=10,d=100,a+b+c+d=121.【考点】1、基本不等式;2、不等式的放缩.10.若两个正实数x,y满足+=1,并且2x+y>m恒成立,则实数m的取值范围是.【答案】【解析】因为且,所以,当且仅当即时取。
一、多选题1.(23-24高一下·山东济宁·阶段练习)已知正实数,x y 满足2x y xy +=,则()A .16xy ≥B .29x y +≥C .6x y +>D .1831x y+≥-2.(21-22高一下·全国·开学考试)下列不等式一定成立的是()A .()21lg lg 04x x x ⎛⎫+≥> ⎝⎭B .()lgeln 21lg x x x+>>C .()21012x x x ≥>D .()1121x x <∈R3.(23-24高一上·安徽芜湖·阶段练习)已知,a b 均为实数,则()222a b a b ab+++的可能值为()A .43B .34C .1D .24.(22-23高一下·陕西西安·阶段练习)若62,63a b ==,则下列不等关系正确的有()A2B .114a b+>C .2212a b +>D .14ab <5.(23-24高三下·河南·阶段练习)已知位于第一象限的点(),a b 在曲线1x y+=上,则()A .()()111a b --=-B .4ab ≥C .49a b +≤D .221223a b +≥6.(23-24高一下·云南·阶段练习)已知p q 、为函数()lg f x x t =-的两个不相同的零点,则下列式子一定正确的是()A .222p q +<B .228p q +>C .33log log 0p q ⋅<D .1pq =由图可知,当0t >时,直线设p q <,则01p q <<<,由由()lg 0f q q t =-=,可得lg 对于A 选项,222p q pq +>=对于B 选项,2222p q p ++>对于C 选项,33log log 1p <=对于D 选项,由上可知1pq =故选:CD.7.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22x y x =+B .2y =C .13y x x=-D .411y x x =-+【答案】ACD号取不到;因为函数-在上单调递增,所以3-≥2;因为x ≥1+=+-2≥4).故选8.(2024高三·全国·专题练习)(多选)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c .若b =1,且a 2-c 2=2,则下列结论正确的是()A .a <32B .tan A +3tanC =0C .角B 的最大值为3πD .△ABC 的外接圆面积的最小值为π9.(23-24高一下·重庆·阶段练习)如图所示,在ABC 中,4BC =,且M 点为BC 边的中点,则下列结论正确的有()A .设G 是AM 的中点,则0GA GB GC ++=C .若π3BAC ∠=,则AM 的最小值为D .若π6BAM ∠=,则AC 边的最小值为2【详解】对于B ,分别在ABM 和ACM △中由正弦定理可得sin sin sin sin AMB BAMAC CM AMC CAM ⎧=⎪⎪∠∠⎨⎪=⎪∠∠⎩,因为2πBM CM AMB AMC ==⎧⎨∠+∠=⎩,则sin sin AB CAMAC BAM ∠=∠,正确;对于C ,在ABC 中,由余弦定理可得2216b c bc +-=,所以22162b c bc bc +=+≥,则16bc ≤,当且仅当4b c ==时取等,又2AB AC AM +=,所以AM AM ===,当且仅当4b c ==时取等,故AM 最大值为对于D ,在ABM 中,由正弦定理可得242πsin 6R==,故ABM 的外接圆圆O 的半径为2R =,则点A 在优弧 BM上运动,则AC 的最小值为2OC R R -=-=-,正确.故选:BD10.(2024·贵州毕节·二模)已知252100a b ==,则下列式子中正确的有()A .211a b+=B .121a b+=C .8ab >D .29a b +>【答案】BCD 【分析】由指对互化得到25log 100a =,2log 100b =,进而结合对数运算性质和基本不等式的应用即可求解.【详解】11.(2024·江苏·一模)已知,x y ∈R ,且123x =,124y =,则()A .y x >B .1x y +>C .14xy <D <【答案】ACD 【分析】用对数表示x ,y ,利用对数函数的性质、对数的计算、基本不等式等即可逐项计算得到答案.【详解】12.(23-24高一下·安徽宿州·开学考试)若正实数,a b 满足1a b +=,则下列选项中正确的是()A .ab 有最大值14B .122a b->C .14a b+的最小值是10D【答案】AB 【分析】利用均值不等式和“1”的妙用判断ACD ,由12a b b -=-讨论b 的范围判断B 即可.【详解】选项A :因为,a b 为正实数,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,所以ab 有最大值14,A 说法正确;选项B :由1a b +=可得12a b b -=-,因为,a b 为正实数,所以01b <<,1121b -<-<,所以1212222a b b --<=<,B 说法正确;选项C :由题意可得()14144559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4a bb a =,即13a =,23b =时等号成立,所以14a b +的最小值是9,C 说法错误;选项D :由A 得212a b =++=+≤,误;故选:AB13.(23-24高一上·江苏连云港·期末)下列各函数中,最小值为2的是()A .2610y x x =-+B .3y x =-+C .1y xx=+D .2y =14.(23-24高三下·广东·阶段练习)若0a >,0b >,8a b +=,则下列不等式恒成立的是()A 4≤B 4+≥C .2232a b +≥D .1498a b +≥【详解】15.(23-24高一下·河南信阳·阶段练习)已知0x >,0y >,且24x y +=,则()A .ln ln ln2x y +≤B .248x y +<C .1294x y +≥D .324e e x x y-≥16.(23-24高一下·内蒙古鄂尔多斯·开学考试)下列函数中,最小值是4的有()A .()134x f x x=++B .()f x =C .()()31011f x x x x=+<<D .()f x =则()A .413x y +≥B .9xy ≤C .2218x y +≤D .1123x y +≥18.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则()A .22a b+≥B .112a b+≥C .22log log 1a b +≤D .222a b +≥19.(2024·河南信阳·一模)已知正数,m n满足322m n+=,则()A.12mn≥B.222m n+≥C.32m n+≥D.2,(0,),()2m nm n mnmn-∃∈+∞≥20.(23-24高一上·广东茂名·期中)下面命题正确的是()A .“1a >”是“11a<”的充分不必要条件B .命题“x ∃∈R ,使20x ax a ++<”是假命题,则实数a 的取值范围为04a ≤≤C .不等式21x>的解集是(),2-∞D .设a +∈R ,则24a a+的最小值为4.21.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是()A .11a ba b >++B .2ab a b +22.(23-24高一上·江苏无锡·阶段练习)已知0a b >>,则下列不等式可能成立,也可能不成立的是()A .22()(1)a b b +>+B .11b b a a ->-2223.(23-24高一上·浙江·期末)设正实数,a b满足2a b+=,则()A.11a b+的最小值为2B.1122a b a b+++的最大值为23C2D.3ab b-的最大值为1424.(23-24高三下·河北·阶段练习)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≥25.(22-23高一上·江苏宿迁·期中)已知3824a b ==,则a ,b 满足的关系是()A .111a b+=B .112a b+=C .()()22112a b -+-<D .()()22112a b -+->26.(23-24高一上·河北石家庄·期末)下列说法正确的是()A .若a b >,则22a b >B .44ππcos sin 882-=27.(23-24高一上·安徽马鞍山·期末)若,m n 均为正数,且满足22m n +=,则()A .mn的最大值为12B .11m n+的最小值为3+C .24m n +的最小值为4D .2mm n+的最小值为1+28.(23-24高三下·云南昆明·阶段练习)已知0a b >>,下列说法正确的是()A .11a b b a+>+B .2b a a b+>C .若0c >,则b b ca a c+<D .若c d >,则a c b d->-29.(23-24高三上·海南·期末)已知0,0a b >>,且4a b ab +-=,则()A .3a b +≥B .104ab <≤或94ab ≥C .221(1)(1)2a b -+-≤D .11413a b <+≤或114a b+≥30.(23-24高一上·浙江杭州·期中)已知0,0a b>>,且1a b+=,则()A.41ab>B.2728a b+≥C.41912a b+≥D2≤。
不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 .15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14.415.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。
高三数学基本不等式试题答案及解析1. [2014·兰州调研]设x、y、z>0,a=x+,b=y+,c=z+,则a、b、c三数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【答案】C【解析】假设a、b、c都小于2,则a+b+c<6.而事实上a+b+c=x++y++z+≥2+2+2=6与假设矛盾,∴a,b,c中至少有一个不小于2.2.若方程有实根,则实数的取值范围是___________.[【答案】【解析】原方程可变为:,【考点】方程及重要不等式.3.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出. (1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.4.在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m).【答案】20【解析】利用均值不等式解决应用问题。
设矩形高为y, 由三角形相似得:.5.设A、B、C、D是半径为2的球面上的四点,且满足,的最大值是 _______ .【答案】8【解析】由已知得,,当且仅当时等号成立,因此最大值为8.【考点】球的性质.6.设a、b、c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤;(2)≥1【答案】(1)见解析(2)见解析【解析】(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c.所以≥1.7.若,其中为虚数单位,则_________.【答案】【解析】,所以.【考点】复数基本运算.8.已知函数在时取得最小值,则____________.【答案】【解析】由题意得时取得最小值,所以.【考点】重要不等式.9.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式10.设均为正实数,且,则的最小值为____________.【答案】16【解析】由,化为,整理为,∵均为正实数,∴,∴,解得,即,当且仅当时取等号,∴的最小值为16,故答案为:16.【考点】基本不等式.11.若a、b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B.a+b≥2C.+>D.+≥2【答案】D【解析】对于选项A,a2+b2≥2ab,所以选项A错;对于选项B、C,虽然ab>0,只能说明a、b同号,若a、b都小于0时,选项B、C错;对选项D,∵ab>0,∴>0,>0,则+≥2.故选D.12.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值为() A.B.C.+D.+2【答案】C【解析】圆的标准方程为(x+1)2+(y-2)2=4,所以圆心坐标为(-1,2),半径为r=2.因为直线被圆截得的弦长为4,所以直线ax-by+2=0过圆心,所以-a-2b+2=0,即a+2b=2,所以+b=1,所以+=(+)(+b)=+1++≥+2=+.当且仅当=,a=b时取等号,所以+的最小值为+.故选C.13.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.14.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a+b≥2 B.>C.≥2D.a2+b2>2ab【答案】C【解析】因为ab>0,所以>0,>0,即≥2 =2,所以选C.15.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2,则的最大值为() A.B.1C.D.2【答案】B【解析】由a x=b y=3得=log3a,=log3b,所以=log3ab≤log3=log3=1.16.设a+b=2,b>0,则当a=________时,+取得最小值.【答案】-2【解析】因为+=+=++≥+2=+1≥-+1=,当且仅当=,a<0,即a=-2,b=4时取等号,故+取得最小值时,a=-2.17.已知函数f(x)=4x+ (x>0,a>0)在x=3时取得最小值,则a=________.【答案】36【解析】∵x>0,a>0,∴f(x)=4x+≥2=4 ,当且仅当4x=(x>0)即x=时f(x)取得最小值,由题意得=3,∴a=36.18.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*).则当每台机器运转______年时,年平均利润最大,最大值是______万元.【答案】58【解析】由题意知每台机器运转x年的年平均利润为=18-(x+),而x>0,故≤18-=8,当且仅当x=5时,年平均利润最大,最大值为8万元.19.设,若,则的最大值为()A.2B.3C.4D.【答案】B【解析】由得,,∴,又,∴,即,当且仅当,即时取等号,所以. 故.【考点】基本不等式.20.已知当取得最小值时,直线与曲线的交点个数为【答案】2【解析】∵,∴当且仅当,即时,取得最小值8,故曲线方程为时,方程化为;当时,方程化为,当时,方程化为,当时,无意义,由圆锥曲线可作出方程和直线与的图象,由图象可知,交点的个数为2.【考点】基本不等式,直线与圆锥曲线的位置关系.21.如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.【答案】当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.【解析】先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等式适用的三个条件.试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米,6分, 8分因为,所以,当且仅当,即时取等号 12分此时取得最大值,最大值为.答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.14分【考点】矩形的面积、基本不等式22.若,且,则下列不等式中,恒成立的是()A.B.C.D.【答案】C【解析】因为,则或,则排除与;由于恒成立,当且仅当时,取“=”,故错;由于,则,即,所以选.【考点】基本不等式.23.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.24.已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先令,得,再分类去绝对值解不等式;(Ⅱ)设,去绝对值得,根据原不等式解集为空集得,从而求得.试题解析:(Ⅰ)当时,不等式即为,若,则,,舍去;若,则,;若,则,.综上,不等式的解集为.(5分)(Ⅱ)设,则,,,,即的取值范围为.(10分)【考点】含绝对值不等式的解法.25.已知,且满足,则的最小值为【答案】【解析】∵,且满足,∴,=,当且仅当时,的最小值为。
高中不等式试题及答案1. 若不等式\(ax^2 + bx + c > 0\)的解集为\((-1, 2)\),则下列哪个选项是正确的?A. \(a < 0\)且\(b^2 - 4ac < 0\)B. \(a > 0\)且\(b^2 - 4ac > 0\)C. \(a < 0\)且\(b^2 - 4ac > 0\)D. \(a > 0\)且\(b^2 - 4ac < 0\)答案:C2. 如果\(x^2 - 5x + 6 < 0\),那么\(x\)的取值范围是?A. \(x < 2\)或\(x > 3\)B. \(2 < x < 3\)C. \(x < 3\)或\(x > 2\)D. \(3 < x < 2\)答案:B3. 已知\(a\)和\(b\)是正数,且\(a + b = 1\),求\(ab\)的最大值。
A. \(\frac{1}{4}\)B. \(\frac{1}{2}\)C. \(1\)D. \(\frac{1}{3}\)答案:A4. 若不等式\(|x - 1| < 2\)成立,求\(x\)的取值范围。
A. \(-1 < x < 3\)B. \(-2 < x < 2\)C. \(-1 < x < 1\)D. \(1 < x < 3\)答案:A5. 已知\(y = x^2 - 4x + 3\),求\(y\)的最小值。
A. \(-1\)B. \(0\)C. \(3\)D. \(4\)答案:A6. 若不等式\(\frac{x}{x - 1} > 0\)成立,求\(x\)的取值范围。
A. \(x < 0\)或\(x > 1\)B. \(x < 1\)或\(x > 0\)C. \(x < 1\)或\(x > 2\)D. \(x < 0\)或\(x > 2\)答案:A7. 已知不等式\(3x^2 - 6x + 2 > 0\),求\(x\)的取值范围。
基本不等式【习题1】已知实数且, 则的最小值是.【习题2】若实数且, 则的最小值是, 的最小值是.【习题3】已知满足方程, 当时, 则的最小值为_______.【习题4】已知为实数, 且, 则的最小值为_______.【习题5】已知, , 则的取值范围为 .【习题6】已知, , 则的最小值为.【习题7】若实数满足, 则的范围是.【习题8】的三边成等差, 且, 则的取值范围是.【习题9】已知二次不等式对任意实数恒成立, 则的最小值为___________【习题10】实数满足, 设, 则 .【习题11】非零向量夹角为, 且, 则的取值范围为.【习题12】已知, 且, 若总成立, 则正实数的取值范围是_______.【习题13】正实数满足, 则的最小值为 .【习题14】已知实数满足则的最小值为, 的最小值为.【习题15】已知直线(其中)与圆相交于、两点, 为坐标原点, 且, 则的最小值为 .【习题16】设, 满足, 则的最小值是______.【习题17】已知正实数 , 满足: , 则 的最大值是 .【习题18】已知正数 满足 , 则 的最小值为________.【习题19】已知 , , 且 , 则 的最小值是_______, 此时 _______.【习题20】已知 , 且 , 则 的最小值是 ; 的最大值是 .【习题21】已知实数 , 满足 , 且 , 则 的最小值是 ( )A. 33B. 26C. 25D. 21【习题22】若实数 满足 , 则 的最小值是 .【习题23】已知实数 , 满足: , 且 , 则 的取值范围是 .【习题24】实数 满足 , 则 的最小值是________.【习题25】已知实数 , 若 , 则 的值域为 .【习题26】设 为正实数, 则 的最小值为 .【习题27】若正数 满足 , 则 的最小值是 .【习题28】若存在正实数 , 使得 , 则实数 的最大值为_________.【习题29】若 , , 则 的最小值为___________.【习题30】已知正数 满足 , 则 的最大值为__________, 当且仅当___________.【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【习题32】已知 , 则 的取值范围为__________.【习题33】已知实数 满足 , 则 的最小值为________, 的最小值为_______.【习题34】已知实数 满足 , 则 的取值范围是________.【习题35】已知 , , 且满足 , 则 的最小值为________.【习题36】已知非负实数 满足 ,则 的最大值.....【习题37】若 , , 则 的最大值为_______.【习题38】设正实数, 则的最小值为()... A...... B...... C...... D.【习题39】已知均为正数, 且, , 则的最小值为_________.【习题40】设实数且满足, 则使不等式恒成立的的最大值为______.【习题41】若, 且, 则的取值范围是______.【习题42】已知正实数满足, 则的最小值为________.【习题43】已知实数满足, 则的取值范围是_________.【习题44】已知实数满足, 且, 则的最大值为___________.【习题45】若正数满足, 则的最小值为( )A. 1B. 6C. 9D. 16【习题46】若正实数满足, 且不等式恒成立, 则实数的取值范围是. 【习题47】已知为正实数, 若, 则的最小值为.【习题48】若正数满足, 则的最大值为_________.【习题49】若实数和满足,则的取值范围为__________________.【习题50】设, , 则的最小值是.基本不等式(答案)【习题1】已知实数 且 , 则 的最小值是 .【答案】1【习题2】若实数 且 , 则 的最小值是 , 的最小值是 .【答案】 ,【习题3】已知 满足方程 , 当 时, 则 的最小值为_______.【答案】8【习题4】已知 为实数, 且 , 则 的最小值为_______. 【答案】3322+【习题5】已知 , , 则 的取值范围为 . 【答案】]22,22[-【习题6】已知 , , 则 的最小值为 .【习题7】若实数 满足 , 则 的范围是 .【答案】]0,2[-【习题8】 的三边 成等差, 且 , 则 的取值范围是 . 【答案】]7,6(【习题9】已知 二次不等式 对任意实数 恒成立, 则 的最小值为___________【答案】8【习题10】实数 满足 , 设 , 则 . 【答案】85【习题11】非零向量 夹角为 , 且 , 则 的取值范围为 . 【答案】]3,1(【习题12】已知 , 且 , 若 总成立, 则正实数 的取值范围是_______.【答案】),1[+∞【习题13】正实数 满足 , 则 的最小值为 .【答案】36-【习题14】已知实数 满足 则 的最小值为 , 的最小值为 . 【答案】3627+;845【习题15】已知直线 (其中 )与圆 相交于 、 两点, 为坐标原点, 且 , 则 的最小值为 .【答案】2【习题16】设 , 满足 , 则 的最小值是______. 【答案】332-【习题17】已知正实数 , 满足: , 则 的最大值是 . 【答案】3332+【习题18】已知正数 满足 , 则 的最小值为________. 【答案】222-【习题19】已知 , , 且 , 则 的最小值是_______, 此时 _______. 【答案】212+;2【习题20】已知 , 且 , 则 的最小值是 ; 的最大值是. 【答案】16;413-【习题21】已知实数 , 满足 , 且 , 则 的最小值是 ( )A. 33B. 26C. 25D. 21【答案】C【习题22】若实数 满足 , 则 的最小值是 .【答案】2【习题23】已知实数 , 满足: , 且 , 则 的取值范围是 . 【答案】]23,12[-【习题24】实数 满足 , 则 的最小值是________. 【答案】224-【习题25】已知实数 , 若 , 则 的值域为 . 【答案】]716,0[【习题26】设 为正实数, 则 的最小值为 .【答案】222-【习题27】若正数 满足 , 则 的最小值是 .【答案】5【习题28】若存在正实数 , 使得 , 则实数 的最大值为_________. 【答案】51 【习题29】若 , , 则 的最小值为___________. 【答案】212- 【习题30】已知正数 满足 , 则 的最大值为__________, 当且仅当___________. 【答案】31;1=x 【习题31】已知,1,0=+>>b a b a 则b b a 214+-的最小值等于 . 【答案】9【习题32】已知 , 则 的取值范围为__________.【答案】)1,2[--【习题33】已知实数 满足 , 则 的最小值为________, 的最小值为_______.【答案】 , 1【习题34】已知实数 满足 , 则 的取值范围是________.【答案】]3,3[-【习题35】已知 , , 且满足 , 则 的最小值为________. 【答案】223+【习题36】已知非负实数 满足 , 则 的最大值..... 【答案】241+【习题37】若 , , 则 的最大值为_______. 【答案】51【习题38】设正实数 , 则 的最小值为( )... A...... B...... C...... D.【答案】A【习题39】已知 均为正数, 且 , , 则 的最小值为_________. 【答案】23【习题40】设实数 且满足 , 则使不等式 恒成立的 的最大值为______. 【答案】522+【习题41】若 , 且 , 则 的取值范围是______. 【答案】]4,34[ 【习题42】已知正实数 满足 , 则 的最小值为________.【答案】55【习题43】已知实数 满足 , 则 的取值范围是_________. 【答案】9[1,]8【习题44】已知实数 满足 , 且 , 则 的最大值为___________. 【答案】3097【习题45】若正数 满足 , 则 的最小值为( )A. 1B. 6C. 9D. 16【答案】B【习题46】若正实数 满足 , 且不等式 恒成立, 则实数 的取值范围是 .【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知 为正实数, 若 , 则 的最小值为 .【答案】222+【习题48】若正数 满足 , 则 的最大值为_________.【答案】432【习题49】若实数和满足,则的取值范围为__________________. 【答案】]2,1(【习题50】设, , 则的最小值是【答案】24。
高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
2.2 基本不等式(同步检测)一、选择题1.(多选)已知实数a ,b ,下列不等式一定正确的有( )A.a +b 2≥abB.a +1a ≥2C.|ab +ba|≥2 D.2(a 2+b 2)≥(a +b)22.(多选)下列条件可使b a +ab ≥2成立的是( )A .ab>0 B.ab<0C .a>0,b>0D.a<0,b<03.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2C.22D.44.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A.6.5 m B.6.8 m C.7 mD.7.2 m5.“ab <a 2+b 22”是“a >b >0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知x >0,y >0,且x +y +xy =3,则x +y 的最小值为( )A.2B.3C.22D.237.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )A .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一B .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一C .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一D .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一8.已知a>1,则a +12,a ,2a a +1三个数的大小顺序是( )A.a+12<a<2aa+1B.a<a+12<2aa+1C.2aa+1<a<a+12D.a<2aa+1≤a+129.若-4<x<1,则y=x2-2x+22x-2( )A.有最小值1B.有最大值1C.有最小值-1D.有最大值-1二、填空题10.已知x>3,则x+4x-3的最小值为________11.设x>0,则函数y=x+22x+1-32的最小值为________12.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是________m2.13.二十大报告中提到:“我国制造业规模稳居世界第一”.某公司为提高产能,购买一批新型设备,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则当每台机器运转______年时,年平均利润最大,最大值是______万元.三、解答题14.设a,b,c都是正数,求证:b+ca+c+ab+a+bc≥6.15.已知a,b,c都是正数,且abc=1,证明:1a+1b≥2c.16.已知正数x,y满足4x+y-xy+8=0.求:(1)xy的最小值;(2)x+y的最小值.参考答案及解析:一、选择题1.CD 解析:当a<0,b<0时,a+b2≥ab不成立;当a<0,时,a+1a≥2不成立;因为|a b+b a|=|a b|+|b a|≥2,故C正确;因为2(a2+b2)-(a+b)2=a2+b2-2ab=(a-b)2≥0,所以2(a2+b2)≥(a+b)2,故D正确.故选CD.2.ACD 解析:当且仅当ba=ab>0,即a,b同号时等号成立.故选ACD.3.C 解析:由ab=1a+2b≥22ab,得ab≥22,当且仅当1a=2b时取“=”.4.C 解析:设两直角边分别为a,b,直角三角形的框架的周长为l,则12ab=2,所以ab=4,l=a+b+a2+b2≥2ab+2ab=4+22≈6.828(m).因为要求够用且浪费最少,所以选7 m最合理.5.B 解析:∵a2+b2≥2ab,当且仅当a=b时,等号成立,∴ab<a2+b22⇒a≠b,a,b∈R,∴充分性不成立.∵a>b>0⇒a2+b2>2ab,∴必要性成立.故选B.6.A 解析:∵x+y+xy=3,∴y+1=4x+1,∴x+y=x+1+4x+1-2≥2(x+1)4x+1-2=2,当且仅当x+1=4x+1,即x=y=1时取等号.故选A.7.A 解析:由a+b≥2ab可知ab≤4,当且仅当a=b=2时等号成立,又cd≤(c+d2)2,故c+d≥4,当且仅当c=d=2时等号成立,∴c+d≥ab.故选A.8.C 解析:当a,b是正数时,2aba+b≤ab≤a+b2≤a2+b22,令b=1,得2aa+1≤a≤a+12.又a>1,即a≠b,故上式不能取等号,故选C.9.D 解析:y=x2-2x+22x-2=12[(x-1)+1x-1],又∵-4<x<1,∴x-1<0.∴-(x-1)>0.故y=-12[-(x-1)+1-(x-1)]≤-1.当且仅当x-1=1x-1,即x=0时等号成立.故选D.二、填空题10.答案:7解析:∵x>3,∴x-3>0,4x-3>0.∴x+4x-3=x-3+4x-3+3≥2(x-3)·4x-3+3=7,当且仅当x-3=4x-3,即x=5时,x+4x-3取得最小值7.11.答案:0 解析:y=x+22x+1-32=(x+12)+1x+12-2≥2(x+12)·1x+12-2=0,当且仅当x+1 2=1x+12,即x=12时等号成立.所以函数的最小值为0.12.答案:25 解析:设矩形的一边为x m,矩形场地的面积为y m2,则另一边为12×(20-2x)=(10-x)m,则y=x(10-x)≤[x+(10-x)2]2=25,当且仅当x=10-x,即x=5时,y取最大值25.13.答案:5,8 解析:每台机器运转x年的年平均利润为yx=18-(x+25x),且x>0,故y x≤18-225=8,当且仅当x=5时等号成立,此时年平均利润最大,最大值为8万元.三、解答题14.证明:因为a>0,b>0,c>0,所以ba+ab≥2,ca+ac≥2,cb+bc≥2,所以(b a+a b)+(c a+a c)+(c b+b c)≥6,当且仅当b a=a b,c a=a c,c b=b c,即a=b=c时,等号成立,所以b+ca+c+ab+a+bc≥6.15.证明:因为a,b,c都是正数,且abc=1,所以c=1 ab.所以1a+1b≥21ab=2c,当且仅当1a=1b,即a=b=1c时取等号.故1a+1b≥2c成立.16.解:(1)由题意知x,y为正数,xy-8=4x+y≥24xy=4xy,当且仅当4x=y,即x=1+3,y=4+43时等号成立,则(xy)2-4xy-8≥0,解得xy≥2+23或xy≤2-23(舍去),所以xy≥(2+23)2=16+83,即xy的最小值为16+83.(2)由题意知x,y为正数,4x-xy=-y-8,故x=y+8 y-4,因为x>0,y>0,所以y>4,则x+y=y+8y-4+y=y+12y-4+1=(y-4)+12y-4+5.因为y>4,y-4>0,12y-4>0,(y-4)+12y-4+5≥43+5,即x+y≥43+5,当且仅当y-4=12y-4,即y=4+23时等号成立.所以x+y的最小值为5+43.。
完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。
A。
最大值为 5,最小值为 1B。
最大值为 5,最小值为 $\frac{11}{2}$C。
最大值为 1,最小值为 $\frac{11}{2}$D。
最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。
A。
3B。
$\frac{7}{2}$C。
4D。
$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。
A。
$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。
$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。
$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。
$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。
A。
$(-1,+\infty)$B。
$(-\infty,-1)\cup (1,+\infty)$C。
$(-\infty,-1)\cup (1,+\infty)$D。
$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。
A。
2B。
$\frac{2}{3}$C。
4D。
$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。
A。
18B。
高中数学不等式综合测试题一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1<b <0,那么( ) A .2a ab ab >>B .2ab ab a >>C .2ab ab a >>D .2ab a ab >>2.“0>>b a ”是“222b a ab +<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .RB .φC .),(+∞a bD .(,)b a-∞(理)不等式b ax >的解集不可能...是( ) A .φB .RC .),(+∞ab D .),(ab--∞4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤<B .{|22}x x -<<C .{|13}x x -<<D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确...的是( ) A .11a b <B .2b ab < C .2>+b a a bD .||||||b a b a +>+(理)若011<<ba ,则下列结论不正确...的是( ) A .22b a <B .2b ab <C .2>+baa bD .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化8.下列各式中最小值是2的是( )A .y x +xyB .4522++x x C .tan x +cot xD .xx -+229.下列各组不等式中,同解的一组是( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{<a a B .}8|{>a a C .}8|{≥a a D .}8|{≤a a(理)函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在函数1mx y n n=--的图像上,其中mn >0,则nm 21+的最小值为( ) A .8 B .6 C .4 D .2 11.(文)已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是( ) A .{|20,2}x x x -<<>或 B .{|2,02}x x x <-<<或 C .}22|{>-<x x x 或D .{|20,02}x x x -<<<<或(理)已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式2(1)()0x f x -<的解集是( )A .{|10}x x -<<B .{|2,12}x x x <-<<或C .{|2112}x x x -<<<<或D .{|210,12}x x x x <--<<<<或或12.(文)已知不等式1()()25ax y xy++≥对任意正实数,x y 恒成立,则正实数a 的最小值为( ) A .16625B .16C .254D .18(理)已知不等式()()25x ay x y xy ++≥对任意正实数,x y 恒成立,则正实数a 的最小值为( )A .16625B .16C .254D .18二、填空题(每小题4分,共16分) 13.(文)若+∈R b a ,,则b a 11+与ba +1的大小关系是____________. (理)不等式|21|1x x --<的解集是_____________.14.函数121lg +-=x xy 的定义域是_____________. 15.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_____________吨.16.已知0()1,0x x f x x ≥⎧=⎨-<⎩,,则不等式3)2(≤+x f 的解集____________.三、解答题(共74分) 17. 解不等式122log 1815x x x ⎛⎫≤- ⎪-+⎝⎭18.解关于x 的不等式22x ax -+>--.20.(本小题满分12分)(文)对任意[1,1]x ∈-,函数a x a x x f 220)4()(2-+-+=的值恒大于零,求a 的取值范围.19.如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器.已知喷水器的喷水区域是半径为5m 的圆.问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?22.(本小题满分14分)已知函数b ax x x f ++=2)(.(1)若a =0,且对任意实数x ,都有a x x f +≥2)(,求b 的取值范围; (2)当]1,1[-∈x 时,)(x f 的最大值为M ,求证:1+≥b M ;(3)若)21,0(∈a ,求证:对于任意的]1,1[-∈x ,1|)(|≤x f 的充要条件是.142a b a -≤≤-参考答案一、 选择题 1、(文)C (理)C 2、A 3、(文)D (理)D 4、C 5、(文)C (理)C 6、(文)D (理)D 7、A 8、D 9、B10、(文)A (理)A11、(文)D (理)D 12、(文)B (理)B二、 填空题13、ba b a +>+111 14、{|02}x x <<15、)21,1(- 16、2017]3,(-∞三、 解答题18、解:原不等式等价于:21582≥+-x x x0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x 3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x∴原不等式的解集为]6,5()3,25[Y19、解:变形得:(4)02x a x -->-当(4-a )>2,即a <2时,24x x a <>-或 当(4-a )<2,即a >2时,42x a x <->或 当(4-a )=2,即a =2时,2x ≠综上所述:当a <2时,原不等式的解集为{|24}x x x a <>-或 当a ≥2时,原不等式的解集为{|42}x x a x <->或20、325≤a21、解:设花坛的长、宽分别为xm ,ym ,根据要求,矩形花坛应在喷水区域内,顶点应恰好位于喷水区域的边界.依题意得:25)2()4(22=+y x ,(0,0>>y x )问题转化为在0,0>>y x ,100422=+y x 的条件下,求xy S =的最大值. 法一:100)2(2222=+≤⋅⋅==y x y x xy S Θ,由y x=2和100422=+y x 及0,0>>y x 得:25,210==y x 100max =∴S法二:∵0,0>>y x ,100422=+y x , 41002x x xy S -==∴=10000)200(41)4100(2222+--=-⋅x x x∴当2002=x ,即210=x ,100max =S由100422=+y x 可解得:25=y .答:花坛的长为m 210,宽为m 25,两喷水器位于矩形分成的两个正方形的中心,则符合要求.21、解(1):由题得022≥++b x x 恒成立1044≥⇔≤-=∆⇔b b 对任意的R x ∈,0)()2(2≥-+-+a b x a x 0)(4)2(2≤---=∆⇔a b a)(1412R a b a b ∈≥⇔+≥⇔Θ∴),1[+∞∈b .(2)证明:∵,1)1(M b a f ≤++=,1)1(M b a f ≤+-=- ∴222+≥b M ,即1+≥b M .(3)证明:由210<<a 得,0241<-<-a∴)(x f 在]2,1[a --上是减函数,在]1,2[a-上是增函数.∴当1||≤x 时,)(x f 在2ax -=时取得最小值42a b -,在1=x 时取得最大值b a ++1.故对任意的]1,1[-∈x ,.1414111|)(|22a b a a b b a x f -≤≤-⇔⎪⎩⎪⎨⎧-≥-≤++⇔≤。
高一数学基本不等式试题答案及解析1.设且,则的最小值为________.【答案】4【解析】由,当且仅当时等号成立.故答案为4.【考点】均值不等式的应用.2.长为4,宽为3的矩形,当长增加,且宽减少时的面积最大,则此时=_______,最大面积=________.【答案】.【解析】由题意,得所得矩形面积;则,即当时,矩形面积有最大值.【考点】一元二次函数模型的应用.3.已知x,y均为正数且x+2y=xy,则().A.xy+有最小值4B.xy+有最小值3C.x+2y+有最小值11D.xy﹣7+有最小值11【答案】C【解析】由,得,由得,则(当且仅当,即时取等号),;令,则在上为增函数,,排除A,B;而选项D:;选项C:(当且仅当,即或时取等号;故选C.【考点】基本不等式.4.若,则下列不等式正确的是().A.B.C.D.【答案】C【解析】由基本不等式得,则;又,.【考点】基本不等式.5.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.6.设a>0,b>0,若是和的等比中项,则的最小值为()A.6B.C.8D.9【答案】A【解析】由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.【考点】重要不等式,等比中项7.(1)阅读理解:①对于任意正实数,只有当时,等号成立.②结论:在(均为正实数)中,若为定值,则,只有当时,有最小值.(2)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)①若,只有当__________时,有最小值__________.②若,只有当__________时,有最小值__________.(3)探索应用:学校要建一个面积为392的长方形游泳池,并且在四周要修建出宽为2m和4 m的小路(如图所示)。
问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值。
【答案】(2)①1 ,2:②3,10(3)游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【解析】(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理运用所给结论,可求面积的最值.(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理.当且仅当即取“=”.此时所以游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【考点】基本不等式在最值问题中的应用;进行简单的合情推理8.已知且若恒成立,则的范围是【答案】【解析】原式恒成立等价于,,所以解得.【考点】基本不等式求最值9.已知向量=(x,2),=(1,y),其中x>0,y>0.若•=4,则+的最小值为.【答案】【解析】因为所以当且仅当时取等号.【考点】基本不等式求最值10.现要用一段长为的篱笆围成一边靠墙的矩形菜园(如图所示),则围成的菜园最大面积是___________________.【答案】【解析】依题意可知,其中,由基本不等式可知即(当且仅当时等号成立),所以,所以围成的菜园最大面积是.【考点】基本不等式的应用.11.若x>0,则函数的最小值是________.【答案】2【解析】因为,x>0,所以,函数当且仅当时,函数取得最小值2.【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。
3.4 基本不等式一、选择题(共10小题;共50分)1. 设正实数a,b满足a+λb=2(其中λ为正常数).若ab的最大值为3,则λ=( )A. 3B. 32C. 23D. 132. 某生物生长过程中,在三个连续时段内的增长量都相等,在各时段内平均增长速度分别为v1,v2,v3,该生物在所讨论的整个时段内的平均增长速度为( )A. v1+v2+v33B.1v1+1v2+1v33C. √v1v2v33 D. 31v1+1v2+1v33. 若实数a,b满足a+b=2,则3a+3b的最小值是( )A. 18B. 6C. 2√3D. 2√344. 若a,b为实数,且a+b=2,则3a+3b的最小值是( )A. 18B. 6C. 2√3D. 2√345. 设0<a<b,a+b=1,则12,b,2ab,a2+b2中最大的是( )A. 12B. bC. 2abD. a2+b26. 已知正实数a,b满足1a +2b=√ab,则ab的最小值为( )A. √2B. 2C. 2√2D. 47. 制作一个面积为1m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(既够用又耗材量少)是( )A. 5.2mB. 5mC. 4.8mD. 4.6m8. 设正实数a,b,c满足a2−3ab+4b2−c=0,则当abc 取得最大值时,2a+1b−2c最大值为( )A. 0B. 1C. 94D. 39. 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A. 60件B. 80件C. 100件D. 120件10. 在下列各函数中,最小值等于2的函数是( )A. y=x+1x B. y=cosx+1cosx(0<x<π2)C. y=2√x2+2D. y=e x+4e x−2二、填空题(共5小题;共25分)11. 设a,b>0,a+b=5,则√a+1+√b+3的最大值为.12. 将一根长10米的铁丝围成一个矩形,当矩形的宽为米时,所围成矩形的面积最大.13. 给出下列不等式的证明过程:①若a,b∈R,则ba +ab≥2√ba⋅ab=2;②若x>0,则cosx+1cosx ≥2√cosx⋅1cosx=2;③若x<0,则x+4x ≤2√x⋅4x=4;④若a,b∈R,且ab<0,则ba +ab=−[(−ba)+(−ab)]≤−2√(−ba)⋅(−ab)=−2.其中证明过程错误的是(填序号).14. 已知x>0,y>−1,且x+y=1,则x2+3x +y2y+1最小值为.15. 一批货物随17列货车从A市以V千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于(V20)2千米,那么这批物资全部运到B市,最快需要小时(不计货车的车身长).三、解答题(共3小题;共39分)16. 已知0<x<13,求函数y=x(1−3x)的最大值.17. 回答下列问题:(1)已知x<3,求4x−3+x的最大值;(2)已知x,y是正实数,且x+y=4,求1x +3y的最小值.18. 某种汽车购车费用是10万元,每年使用的保险费、养路费、汽油费和约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.问这种汽车使用多少年报废最合算?(最佳报废时间也就是年平均费用最低的时间)答案第一部分 1. D【解析】由题意得 ab =1λ×a ×(λb )≤1λ×(a+λb 2)2=1λ,当且仅当 a =λb =1 时,等号成立,所以 1λ=3,即 λ=13. 2. D【解析】设三个连续时间段的时长分别为 t 1,t 2,t 3,依题意有 v 1t 1=v 2t 2=v 3t 3=l ,总的增长量为 3l ,则 t 1+t 2+t 3=l (1v 1+1v 2+1v 3).故该生物在所讨论的整个时段内的平均增长速度为3l t 1+t 2+t 3=31v 1+1v 2+1v 3.3. B 【解析】3a +3b ≥2√3a ⋅3b =2√3a+b =6,当且仅当 3a =3b ,即 a =b =1 时,3a +3b 取得最小值 6.4. B5. B【解析】取 a =14,b =34,得 b >a 2+b 2>12>2ab .6. C7. B8. B9. B 【解析】设平均每件产品的生产准备费用和仓储费用之和为 y ,则 y =800x+x 8≥2√800x⋅x 8=20,当且仅当 800x=x8,即 x =80 时取得最小值.10. D【解析】对于选项A :当 x <0 时,A 显然不满足条件; 选项B :y =cosx +1cosx≥2,当 cosx =1 时取等号,当 0<x <π2 时,cosx ≠1,B 显然不满足条件; 对于C :不能保证 √x 2+2=√x 2+2,故错;对于D :因为 e x >0,所以 e x +4e x −2≥2√e x ⋅4e x −2=2, 故只有D 满足条件. 第二部分 11. 3√2【解析】(√a +1+√b +3)2=a +b +4+2√a +1⋅√b +3≤9+2×(√a+1)2+(√b+3)22=9+a +b +4=18,所以 √a +1+√b +3≤3√2,当且仅当 a +1=b +3 且 a +b =5,即 a =72,b =32 时等号成立. 12. 5213. ①②③14. 2+√315. 8【解析】提示:物资全部运到B市需要的时间为:400V +16×(V20)2V=400V+V25≥2√400V⋅V25=8,当且仅当400V =V25,即V=100时,等号成立.第三部分16. 因为0<x<13,所以1−3x>0.y=x(1−3x)=13[3x⋅(1−3x)]≤13[3x+(1−3x)2]2=112.当且仅当3x=1−3x,即x=16时,取等号.所以当x=16时,函数取得最大值112.17. (1)因为x<3,所以x−3<0,所以4 x−3+x=4x−3+(x−3)+3=−[43−x+(3+x)]+3≤−2√43−x(3−x)+3 =−1.当且仅当43−x=3−x,即x=1时,等号成立,所以43−x+x的最大值为−1.(2)因为x,y是正实数,x+y=4,所以1 x +3y=(1x+3y)x+y4=14(4+yx+3xy)≥1+2√34=1+√32,当且仅当yx =3xy,即x=2(√3−1),y=2(3−√3)时等号成立.故1x +3y的最小值为1+√32.18. 由于"年维修费用第一年是0.2万元,以后逐年递增0.2万元",可知汽车每年维修费构成以0.2万元为首项,0.2万元为公差的等差数列,因此,汽车使用x年总维修费用为0.2+0.2x2⋅x万元.设汽车的年平均费用为y万元,则有y =10+0.9x +0.2+0.2x2⋅x x=1+10x +x 10≥1+2√10x ⋅x10=3当10x=x10,即 x =10(负值直接舍去)时取到等号,即当汽车使用 10 年报废,年平均费用 y 最小.答:这种汽车使用 10 年报废最合算.。
f(1) = 0,则不等式f(x)-f( -x) v 0x的解集为( ).25.当 0v x v n 时,函数 f(x) =1+ cos2x + 8sinX 的最小值为().2si n2xA . 2B . 2 3C . 4D . 4.36.若实数a , b 满足a + b = 2,则3a + 3b 的最小值是().A . 18B . 6C . 2 3D . 243x > 0x + 3y > 4,所表示的平面区域被直线 3x + y < 4部分,则k 的值是().8.直线x + 2y + 3= 0上的点P 在x — y = 1的上万,且 P 到直线2x + y — 6 = 0的距离为第三章不等式51 .已知x > -,则f(x)=2x — 4x + 5“ 有( 22x — 4A .最大值-B .最小值— 442.若 x > 0, y >0,则(x + $)2 + (y + —2y 27 A . 3B2、选择题 3.设a >0, b >0则下列不等式中不成立的是).C .最大值1D .最小值1)2的最小值是().C . 4D .-1 一A . a + bH --------- 》2 2Vab( ).1 1B . ( a + b)(+)》4a bC .2 2a b> a + b .ab4.已知奇函数 f (x )在(0,+s )上是增函数,且A . ( — 1 , 0) U (1,+^ )B . ( —s, — 1) U (0, 1)C . ( —s, — 1) U (1,+s )D . ( — 1 , 0) U (0, 1)4y = k x +分为面积相等的两37.若不等式组7 - 3 A-4 - 33 .5,则点P 的坐标是((x — y + 5)( x + y ) > 0 11.不等式组所表示的平面区域的面积是 _____________________ 0 < x < 3x + 2y — 3 < 0x + 3y — 3>0,若目标函数z = ax + y(a >0)仅在点(3, y — K 00)处取得最大值,则 a 的取值范围是 ______________________ .13. 若正数 a , b 满足ab = a + b + 3,贝U ab 的取值范围是 ________________________ . 14. ______________________________________________________________________设a , b 均为正的常数且 x > 0, y > 0, - + b = 1,则x + y 的最小值为 __________________________ .x y15. 函数y = log a (x + 3) — 1(a >0,且a ^ 1)的图象恒过定点 A ,若点A 在直线 mx + ny + 1 = 0上,其中mn >0,贝U - + -的最小值为 _______________________ .m n16 .某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分A • ( — 5, 1)B • ( —1, 5)C . ( — 7, 2)9.已知平面区域如图所示,z = mx + y (m > 0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为().207 B .20C .D .不存在110.当x > 1时,不等式X +门> a 恒成立,则实数a的取值范围是().A . ( —s, 2] 二、填空题B . [ 2,+s )C . [3 ,+s )D .(―汽 3]12 .设变量x , y 满足约束条件D • (2,— 7)率为P2,若P1 + P2为定值,则年平均增长的百分率p的最大值为__________________ .三、解答题217. 求函数y= x + 7x+1° &>_ i)的最小值.x + 118. 已知直线I经过点P(3, 2),且与x轴、y轴正半轴分别交于A, B两点,当△ AOB 面积最小时,求直线I的方程.19. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元•该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨•那么该企业可获得最大利润是多少?20. (1)已知x v 5,求函数y= 4x —1+一—的最大值;4 4x —5(2) 已知x, y€ R*(正实数集),且丄+ 9= 1,求x+ y的最小值;x y(3) 已知a> 0, b>0,且a2+ — = 1,求 a .1+ b2的最大值.21. D(x -2)2+1 = 1(X —2)+丄,解析:由已知 f (x ) = x?-4x +5 =2(x —2) 2 x — 25■/ x > , x — 2>0,2当且仅当x — 2=丄,即x = 3时取等号.x —22. C1 A解析:(x +丄)2 + ( y +丄)2 2y2x=x ^+ 2S + 厶 + + 2 + y 4y 23. D解析: 参考答案2x —41 12(x —2)+三》1 • 2(x - 2)x —2 = 1 ,1x 4x 2X 2+丄 + 4x 2y 2++ 4y1•/ x 2+ 出 > 24xx 2 厶=1,4x当且仅当x 2 =1 24x2x =鼻时取等号;2 1 2 1y +4?》2宀 4y 2= 1,y = —时取等号;2y > 0),当且仅当-=1, y 2= x 2时取等号.y x+ - + y> 1 + 1 + 2= 4,前三个不等式的等 y x同时成立时,原式取最小值,故当且仅当 x = y =' 时原式取最小值4.2方法一:特值法,如取a = 4, b = 1,代入各选项中的不等式,易判断只有方法二:可逐项使用均值不等式判断2 ab — = 2 . 2,不等式成立. 叫ab不成立.4. D解析:因为f( x)是奇函数,则f( — x) = — f(x),f( X )-f( - x) v 0 2f L x)v 0 xf(x) V 0,满足 x 与 f(x)异 Xx号的x 的集合为所求.因为f(x)在(0, +8)上是增函数,且 f(1) = 0,画出f(x)在 (0,+^ )的简图如图,再根据 f( x)是奇函数的性质得到 f(x)在 (—8, 0)的图象. 由f(x)的图象可知,当且仅当 x € ( — 1 , 0) U (0, 1)时,x 与f(x)异号.5. Cn ,解析:由 0 v x v,有 sinx > 0, cosx > 0.22 2 2.1+ cos2x + 8sin x 2cos x + 8sin x f(x)=sin 2x2sin xcosx1存在 x 使 tan x =,这时 f( x) min = 4.6. B解析:••• a + b = 2,故3a + 3b A 2・、3a3 = 2 3 b= 6,当且仅当a = b = 1时取等号.B :v a + b > 2 ab >0,> 2 >0,1 + 1 a bal相乘得(a + b)( 1aC :v a 2+ b 2= (a + b)22ab >(a + b)2— 2D :•/ a + b > 2 . ab aba 2b 22ab一 2abW ------ = 2、ab.ab ,即2abA .. ab a bcos x 4sin x sinx cosx当且仅当cosx sin x竺兰,即tan x = 1时,取“=”. cosx 2 cosx + 4sin xsin x cosx0v x v2 abA : a + b + ----- 》2J ab +vab故3a+ 3b的最小值是6.7. A解析:不等式组表示的平面区域为如图所示阴影部分△ABC .由x+3y=4 3x + y=44 得A(1 , 1),又B(0, 4) , C(0,—).3由于直线y= k x+ 4 4-过点C(0,-),设它与直线33x+ y= 4的交点为D ,1则由S A BCD = S A ABC,知25= k x - + 4, k =2 2 3D为AB的中点,即xD =2解析:设P点的坐标为(X o, y o),则•••点P坐标是(—5,1).9. B解析:当直线mx+ y = z与直线3—??k AC- -------------- ---- —5—1•• —m -——,即20 m= ±2010. D解析:由x+丄x—1 (x —1) +…y D - 7血+ 2y°+ 3—0 ,x0—y°—1v0, 2x0+ y06-35.x o= —5,解得y o=1...5AC平行时,线段丄+ 1,x—1■/ x> 1 ,• x—1 >0,则有(x—1) + AC上的每个点都是最优解.1x —1 + 1 - 3,、填空题 11. 24.解析:不等式(x — y + 5)( x + y) > 0可转化为两个 二元一次不等式组. (x — y + 5)( x + y) > 0O W x < 3这两个不等式组所对应的区域面积之和为所求. (第11题)第一个不等式组所对应的区域如图, 而第二个不等式组所对应的区域不存在.图中 A(3, 8) , B(3,— 3) , C(0, 5),阴影部分的面积为 3 (11+5)= 24. 2“ 112. a a> —2解析:若z = ax + y( a > 0)仅在点(3, 0)处取得最大 值,则直线z = ax + y 的倾斜角一定小于直线 x + 2y — 3 = 0的倾斜角,直线z = ax + y 的斜率就一定小于直线 x + 2y —3 = 0的斜率,可得:一a v — 1,即卩a > 1 .2 213. a b >9.解析:由于a ,b 均为正数,等式中含有ab 和a + b 这个特征,可以设想使用> . ab2 构造一个不等式.ab = a + b + 3> 2 . ab + 3,即a b > 2 ab + 3(当且仅当a = b 时等号成立), (,ab )2— 2 ab — 3> 0,(ab — 3)( . ab + 1) > 0, A ab > 3,即 a b > 9(当且仅当 a = b = 3 时等号成立). 14. (・ a + . b )2. 解析:由已知电,均为正数,x yx — y + 5> 0 x — y + 5< 0 x + y > 0 或 x + y < 0 0 W x < 3 0 W x < 3••• x +y = (x + y)( a + b ) = a + b + 电 + E >a + b + 2 叟 空=a + b + ^/ab , x y x y \ x y广ay bx15. 8.解析:因为y = log a x 的图象恒过定点(1, 0),故函数y = log a (x + 3) — 1的图象恒过定 点A( — 2,— 1),把点A 坐标代入直线方程得 m( — 2) + n( — 1) + 1 = 0,即2m + n = 1,而由mn > 0 知-m4m均为正, n解析:设该厂第一年的产值为 a ,由题意, a(1 + p)2= a(1+ p 1)( 1 + p 2),且 1 + p 1>0,三、解答题17.解:令 x + 1 = t > 0,贝U x = t — 1, y =(t — 1 2)2皿-1)+10= tJ^ = t + 单 + 5> 2 t 4 + 5= 9,t t ' t当且仅当t = 4,即t = 2, x = 1时取等号,故x = 1时,y 取最小值 t1 + p 2> 0,2所以 a( 1 + p)2= a( 1 + p 1)( 1 + p 2) < a1+ p +1+P2= a 1+ p +P22-=(2m + n)(丄 + - ) = 4 + - + 迥n m n'n 4m …,' -——=8,当且仅当 I nn 4m m n 2m + n =1 1m =4时取等号.1n = 一2P22,解得 P 汁P 2p W JU 2,当且仅当1 + P 1= 1 + p 2,即P 1= P 2时取等号•所以P 2 P 1+ P 2 的最大值是2即x + y > ( Ja x y 即 a bH—I — =1t x y,x = a+Jab 时取等号. y = b^ab 9.18.解:因为直线I 经过点P (3, 2)且与x 轴y 轴都相交, 故其斜率必存在且小于 0.设直线I 的斜率为k , 则I 的方程可写成y — 2 = k (x — 3),其中k v 0.2令 x = 0,贝U y = 2— 3k ;令 y = 0,贝U x =——+ 3.kS A AOB =丄(2 — 3k )( — 2 + 3) = 1 12+( — 9k)+(—-)2k2k42=12,当且仅当(—9k )=(—匚),即k 一 3时*AOB 有最小值12,所求直线方程为—2 =— 2(x — 3),即 2x + 3y — 12= 0.319 •解:设生产甲产品 x 吨,生产乙产品y 吨,则有关系:x 0 y 0一则有,目标函数z = 5x + 3y3x y <13 2x 3y < 18‘ !12+1(—皿》A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3yy(第18题)作出可行域后求出可行域边界上各端点的坐标,可知 当x = 3, y = 4时可获得最大利润为 27万元.y < — 2 + 4= 2, 当且仅当5 — 4x =-一,即x = 1或x = 3(舍)时,等号成立,5- 4x2故当 x = 1 时,y max = 2 .20.解:(1) T x v 5 ,44x — 5v 0,故 5— 4x > 0.y = 4x — 1 + 14x — 5=—(5 — 4x +1 5- 4x5 — 4x +5- 4x=2,(0(3(第181 9(2) •/ x>0, y>0, + - = 1,x yy• 9X+ 10= 6+ 10= 16.x y当且仅当y = 9x,且1+ 9= 1,即x=4,时等号成立,x y x y y =12•••当x= 4, y= 12 时,(x+ y)min = 16.(3)a..1+ b2=2• a:2+b2 a2+丄2 3、.. 24当且仅当a = 2+b2,即a= ,b€ 时, a . 1+ b2有最大值3 2 ~4~• x+ y= ( - + ?)(x+ y) = y + 9x+ 10> 2 y。
高中基不等式试题及答案一、选择题1. 若a,b∈R,且a+b=2,则ab的最大值为()A. 1B. 2C. 3D. 4答案:A解析:根据基本不等式,对于任意实数a和b,有a^2 + b^2 ≥ 2ab。
因为a+b=2,所以(a+b)^2 = a^2 + 2ab + b^2 = 4。
将不等式代入得4 ≥ 4ab,即ab ≤ 1。
当且仅当a=b=1时,等号成立,所以ab 的最大值为1。
2. 若x,y∈R+,且x+y=1,则x^2+y^2的最小值为()A. 1/2B. 1/3C. 1/4D. 1/5答案:A解析:根据基本不等式,对于任意正实数x和y,有(x+y)^2 ≥4xy。
因为x+y=1,所以1 ≥ 4xy,即xy ≤ 1/4。
又因为x^2+y^2 = (x+y)^2 - 2xy = 1 - 2xy ≥ 1 - 2(1/4) = 1/2。
当且仅当x=y=1/2时,等号成立,所以x^2+y^2的最小值为1/2。
二、填空题3. 若a,b,c∈R+,且a+b+c=1,则abc的最大值为______。
答案:1/27解析:根据基本不等式,对于任意正实数a、b、c,有(a+b+c)^3 ≥ 27abc。
因为a+b+c=1,所以1 ≥ 27abc,即abc ≤ 1/27。
当且仅当a=b=c=1/3时,等号成立,所以abc的最大值为1/27。
4. 若x,y∈R+,且x/y + y/x = 2,则x+y的最小值为______。
答案:2解析:根据基本不等式,对于任意正实数x和y,有x/y + y/x ≥ 2。
因为x/y + y/x = 2,所以x^2 = y^2,即x=y。
此时x+y = 2x,要使x+y最小,只需使x最小。
因为x,y∈R+,所以x的最小值为正实数的最小值,即x=y=1。
此时x+y的最小值为2。
三、解答题5. 已知a,b,c∈R+,且a+b+c=3,求证:1/a + 1/b + 1/c ≥ 3。
证明:根据基本不等式,对于任意正实数a、b、c,有(a+b+c)/3 ≥ (3)^(1/3)abc^(1/3)。
高中数学基本不等式综合测试题(附答案)
基本不等式的最大最小值问题随堂练习
1、在下列函数中,最小值是的是
且)
2、已知正数满足,则的最小值为
3、若,则的最大值。
4、设时,则函数的最小值。
三、解答题
5、为迎接北京奥运会,北京市决定在首都国际机场粘贴一幅“福娃”宣传画,要求画面面积为,左、右各留米,上、下各留米,问怎样设计画面的长和宽才能使宣传画
所用纸张面积最小?
6、函数的值域
7、若是正数,且,则有最值=
8、已知,则的最小值是。
9、已知,求的最值及相应的的值。
10、正数、满足则的最小值是
11、已知函数f(x)满足2f(x)-f( 1x ) = 1| x | ,则f(x)的最小值是
12、函数若恒成立,则b的最小值为_
13、函数的图象恒过定点,若点在直线上,其中,则的最小值为
14、已知,,成等差数列,成等比数列,则的最小值是
15、若的最大值是 .
16、已知、,且,则的最小值是
17、若直线始终平分圆的周长,则的最小值是
18、求使 a (x>0,y>0)恒成立的a的最小值
19、若a是1+2b与1-2b的等比中项,则的最大值为
20、已知两正数x,y 满足x+y=1,则z= 的最小值为
21、已知a0,求的最小值
22、已知a,b,c为正实数,a+b+c=1求证
(1)a2+b2+c2
(2) 6
参考答案
1、 2、 3、 4、
5、解:设宣传画的长、宽分别为、米,则,设纸张面积为,则:
由,即代入上式得,
当且仅当,即时,。
所以宣传画的长为米,宽为米,所用纸张面积最小。
参考答案
1、 2、 3、
4、解:
当且仅当,即时取等号,故当时,有最小值。