第四章-最优化理论运输问题
- 格式:ppt
- 大小:7.01 MB
- 文档页数:84
第四章 运输问题Chapter 4Transportation Problem§4.1 运输问题的定义设有同一种货物从m 个发地1,2,…,m 运往n 个收地1,2,…,n 。
第i 个发地的供应量(Supply )为s i (s i ≥0),第j 个收地的需求量(Demand )为d j (d j ≥0)。
每单位货物从发地i 运到收地j 的运价为c ij 。
求一个使总运费最小的运输方案。
我们假定从任一发地到任一收地都有道路通行。
如果总供应量等于总需求量,这样的运输问题称为供求平衡的运输问题。
我们先只考虑这一类问题。
图4.1.1是运输问题的网络表示形式。
运输问题也可以用线性规划表示。
设x ij 为从发地i 运往收地j 的运量,则总运费最小的线性规划问题如下页所示。
运输问题线性规划变量个数为nm 个,每个变量与运输网络的一条边对应,所有的变量都是非负的。
约束个数为m+n 个,全部为等式约束。
前m 个约束是发地的供应量约束,后n 个约束是收地的需求量约束。
运输问题约束的特点是约束左边所有的系数都是0或1,而且每一列中恰有两个系数是1,其他都是0。
运输问题是一种线性规划问题,当然可以用第一章中的单纯形法求解。
但由于它有特殊的结构,因而有特殊的算法。
在本章中,我们将在单纯形法原理的基础上,根据运输问题的特点,给出特殊的算法。
图4.1x x x x x x x x x d x x x d x x x d x x x s x x x s x x x s x x x .t .s x c x c x c x c x c x c x c x c x c z min mn2m 1m n22221n11211n mnn 2n122m 221211m 2111m mn2m 1m 2n222211n11211mn mn 2m 2m 1m 1m n 2n 222222121n 1n 112121111≥=++=++=++=++=+++=++=+++++++++++++=在运输问题线性规划模型中,令X =(x 11,x 12,…,x 1n ,x 21,x 22,…,x 2n ,……,x m1,x m2,…,x mn )TC =(c 11,c 12,…,c 1n ,c 21,c 22,…,c 2n ,……,c m1,c m2,…,c mn )T A =[a 11,a 12,…,a 1n ,a 21,a 22,…,a 2n ,……,a m1,a m2,…,a mn ]T=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎭⎪⎪⎬⎫⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡行行n m 111111111111111111b =(s 1,s 2,…,s m ,d 1,d 2,…,d n )T则运输问题的线性规划可以写成:min z=C TX s.t. AX =b X ≥0其中A 矩阵的列向量a ij =e i +e m+je i 和e m+j 是m+n 维单位向量,元素1分别在在第i 个分量和第m+j 个分量的位置上。
最优化理论在交通运输规划与控制中应用交通运输是现代社会中不可或缺的重要组成部分,其规划与控制涉及多个方面,包括道路网络设计、交通流量控制、运输效率优化等。
为了解决这些问题,最优化理论被广泛应用于交通运输领域。
本文将探讨最优化理论在交通运输规划与控制中的应用及其效果。
一、交通运输规划中的最优化理论应用1.1 道路网络设计最优化理论可以用于道路网络设计中,通过确定最佳的道路布局和连接方式,实现整体交通系统的效率最大化。
例如,可以使用最优化算法确定适当的道路宽度、交叉口布局和信号灯安装位置,以减少交通拥堵和提高道路通行能力。
1.2 公共交通线路规划在公共交通线路规划中,最优化理论可以帮助确定最佳的线路布局、站点设置和班次安排,以提高公共交通系统的服务水平和运输效率。
通过最优化算法,可以考虑乘客流量、交通需求和运行成本等因素,制定出最佳的线路方案。
1.3 物流配送路径规划对于物流配送而言,最优化理论可以应用于确定最短路径或者最优路径,以实现物流运输的高效性和经济性。
通过考虑货物数量、配送地点、供需关系等因素,最优化算法能够找到最佳的配送路径,减少运输成本和时间成本。
二、交通运输控制中的最优化理论应用2.1 交通流量优化控制最优化理论可以应用于交通流量优化控制中,通过调整信号配时和交通流分配,实现交通拥堵的缓解和道路通行能力的提高。
最优化算法可以根据实时交通流量、车辆速度和拥堵程度等信息,调整信号灯的时长和车道分配,以最大限度地提高交通效率。
2.2 车辆路径选择在现代交通系统中,最优化理论可以帮助车辆选择最佳路径,以避开交通拥堵和减少行程时间。
通过考虑路况信息、交通拥堵情况和车辆速度等因素,最优化算法可以为驾驶员提供最佳的行车路径选择,以提高行车速度和减少拥堵现象。
2.3 公交车调度优化对于公共交通调度而言,最优化理论可以帮助优化公交车的班次和运行路线,以提高公交系统的服务水平和运输效率。
通过考虑乘客需求、路线长度和运行时间等因素,最优化算法可以确定最佳的班次频率和路线安排,以满足乘客的需求并减少运行成本。
运输方案问题的优化模型摘要:本文研究运输最优化问题。
运输问题(Transportation Problem)是一个典型的线性规划问题。
一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。
本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。
引入x变量作为决策变量,建立目标函数,列出约束条件,借助LINGO软件进行模型求解运算,得出其中的最优解,使得把某种产品从2个产地调运到3个客户的总费用最小。
关键词:LINGO软件运输模型最优化线性规划1问题重述与问题分析1、1 问题重述要把一种产品从产地运到客户处,发量、收量及产地到客户的运输费单价如表1所示。
表1 运输费用表客户1 客户2 客户3 发量产地1 10 4 12 3000 产地2 8 10 3 4000 需求量2000 1500 5000这是一个供求不平衡问题,产品缺少1500个单位,因此决定运输方案应按下列目标满足要求:第一目标,客户1为重要部门,需求量必须全部满足;第二目标,满足其他两个客户至少75%的需要量;第三目标,使运费尽量少;第四目标,从产地2到客户1的运量至少有1000个单位。
1、2 问题分析运输方案就是安排从两个产地向三个客户运送产品的最佳方案,目标是使运费最少。
而从题目来看产品的总量只有7000个单位,客户的需求量却有8500个单位,产品明显的缺了1500各单位,所以至少要按以下要求分配运输,首先客户1为重要部门,需求量必须全部满足,从产地2到客户1的运量至少有1000个单位,即至少向客户1发2000个单位,且从产地2向客户1发的要大于等于1000个单位;其次满足其他两个客户至少75%的需要量,即至少得向客户2发1125个单位,至少向客户3发3750个单位。
最佳的运输方案就是满足了要求中的发量,而让运输费用最少的方案。
最优化理论在交通运输系统规划与控制中的应用交通运输系统规划和控制一直是一个具有挑战性的问题,涉及到复杂的交通流量分配、路径选择、交通信号控制以及资源的高效利用等多个方面。
为了实现交通系统的高效运行,最优化理论被广泛应用于交通运输领域,以优化交通规划和运输控制的决策,提高交通系统的效能和可持续性。
本文将探讨最优化理论在交通运输系统规划与控制中的应用,并重点介绍其在路网规划、交通信号控制以及公共交通调度方面的具体应用。
一、路网规划中的最优化理论应用在路网规划中,最优化理论可以帮助确定最佳的道路布局和路径选择,以减少交通拥堵、缩短出行时间和降低交通成本。
最优化理论的应用路径选择模型通常基于交通需求、道路网络和出行时间等因素,通过数学模型和算法求解,得出最佳路径。
例如,迪杰斯特拉算法和Floyd-Warshall算法都是常用的最优路径选择算法,可以在复杂的路网中找到最短路径或最少时间路径。
利用这些最优化算法,交通规划者可以预测交通流量,评估交通影响,规划新的道路,并设计合理的交通控制策略。
二、交通信号控制中的最优化理论应用交通信号控制是提高道路交通效率的重要手段之一。
以往的交通信号控制方法往往是基于固定的时间周期或简单的经验规则,无法适应动态的交通需求变化。
而最优化理论可以提供一种更科学、更有效的交通信号控制方法,通过优化交叉口的信号时长和相位设计,实现交通拥堵的减少和交通流的高效分配。
最优化理论在交通信号控制中的应用包括传统的静态优化模型和现代的动态优化模型。
静态优化模型主要是通过数学规划和模拟仿真等方法,确定每个相位的持续时间和周期,以最大化交通吞吐量或最小化行程时间。
动态优化模型则更加注重交通流的实时调整和优化,通过实时数据采集和交通流预测,结合最优化算法实时调整交通信号配时,以适应交通需求的变化。
三、公共交通调度中的最优化理论应用公共交通的高效调度对于提供方便快捷的城市交通服务至关重要。
最优化理论可以用于公共交通的线路选择、车辆调度和乘客分配等方面,以提高公共交通系统的可达性和服务水平。