第1讲 最优化理论与方法概述
- 格式:pptx
- 大小:1.03 MB
- 文档页数:41
最优化理论与方法什么是最优化?最优化是一种以最佳结果为目标的技术。
它的主要任务是寻找最佳的解决方案,以最小的代价来实现目标。
本文将从定义、方法、应用等几个方面来探讨最优化理论与方法。
一、简介最优化是一种研究变量空间中满足限制条件下实现最大和最小化的解决问题的科学。
它是一种数学理论,用于求解多变量最优化问题的数学模型,包括线性规划、非线性规划、动态规划等。
它的思想是:希望能够将一个复杂的解决问题分解成若干简单的子问题,以便更好地求解。
最优化理论是一种科学,它涉及到多重条件下的变量求值,以实现最大化或最小化某个系统的特定性能或目标。
最优化理论可以应用于各种工程领域,如机械、航空、船舶、结构、动力、电力能源、汽车等。
二、原理最优化方法基于一组影响结果的变量,以及它们的限制条件。
主要的最优化方法可以分为精确法和近似法。
精确法求解非线性规划问题,其最终结果非常精确,但求解它的计算代价更高。
而近似法的最终结果仅大致最优,但求解计算代价较低,广泛用于工程优化设计。
最优化方法解决的问题可以分为有约束和无约束两大类。
有约束优化问题指系统内各变量受到某些限制条件的制约。
而无约束优化问题不需要考虑任何限制条件,只要达到优化目标即可。
三、应用最优化方法在工程和科学领域中有着广泛的应用,并且日益增多。
在机械设计领域,可以采用最优化方法优化设计结构的参数和性能,以更好地满足设计要求;在空间控制领域,可以采用最优化方法优化机械系统的控制参数;在机器人规划领域,可以采用最优化方法解决运动规划问题;在多异构系统优化设计领域,可以采用最优化方法综合优化系统的性能等。
最优化的应用不仅仅限于以上领域,还广泛应用于其他领域,如计算机图形学、信号处理、投资组合管理、生物学、医学、金融、科学计算等。
四、结论最优化理论与方法是一种研究变量空间中满足限制条件下实现最大和最小化的解决问题的科学,它的主要目标是寻找最佳的解决方案,以最小的代价来实现目标。
最优化理论与方法综述优化理论是以数量分析为基础,以寻找具有确定的资源、技术约束的系统最大限度地满足特定活动目标要求的方案为目的,帮助决策者或决策计算机构对其所控制的活动进行实现优化决策的应用性理论。
优化理论又称为数学规划,依据优化理论对具体活动进行数学规划的方法成为优化方法。
在中国,优化理论通常被划为运筹学的范畴,所以在有些书籍中,线性规划理论被称为运筹学的一个分支。
优化理论的主要分支结构为:优化理论最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。
这类问题普遍存在。
例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排工厂、机关、学校、商店、医院、住户和其他单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。
最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。
最优化问题数学模型的一般形式为:()()()⎪⎩⎪⎨⎧++=≥===,,,2,1,0,,,2,1,0..,zoptpmmixcmixct sxfii无约束优化问题的解法●解析解法●数值解法:最速下降法;Newton法;共轭梯度法;拟Newton法;信赖域法约束优化问题的解法●解析方法:Lagrange法●数值解法:●外罚函数法●内障碍罚函数方法●广义Lagrange乘子法●序列二次规划方法线性规划的解法:●单纯形法:小型●对偶单纯形法● 内点算法:大型整数规划的解法:● 分支定界法● 割平面法求解非线性规划问题⎩⎨⎧≤≤≤vubx vlb x G t s x F 0)(..)(min 的MATLAB 命令为1)x=constr (‘fun’,x0)2)x=constr(‘fun’,x0,options)3)x=constr (‘fun’,x0,options ,vlb,vub)实例:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i建立函数文件FUN44.Mfunction [f,g]=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;键入命令x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];options=[];x=constr('fun44',x0,options,vlb,vub)fun44(x)得到1.438.152,2.126,2.104,2.864321=====z x x x x。
最优化理论与方法最优化理论是一种用于解决实际问题的有效方法。
它可以帮助我们找到解决实际问题的最佳解决方案。
本文将介绍最优化理论的基本概念,以及它的特点和应用。
最优化理论的基本概念是:最优化理论旨在求解一个或多个变量的最优解,使得系统的某种目标函数的值达到最优。
最优化理论的目标函数可以是最大化或最小化函数。
最优化理论具有非常强大的表达能力,可以通过不同的方式来求解最优解。
最优化理论具有三个主要特点:第一,它拥有解决问题的高效率和精确性;第二,它可以有效地处理多变量优化问题;第三,它可以通过数学模型有效地实现最优解的有效求解。
最优化理论应用非常广泛,它可以应用于工程,金融,计算机,经济,生物技术,社会科学等。
在工程领域,最优化理论可以用来解决资源分配问题,能源分配问题,分布式计算问题和工程优化问题;在金融领域,它可以用来解决财务优化问题,保险业绩优化问题和金融模拟优化问题;在计算机领域,它可以用于解决计算机视觉问题和搜索算法等;在经济领域,它可以用于解决交易问题,价格优化问题,风险优化问题,以及经济模型优化问题;在生物技术领域,它可以用于研究蛋白质结构及其疾病发病机制;在社会科学领域,它可以用于研究社会现象及其规律。
在任何领域,最优化理论都拥有以上优势,可以提高系统性能和精确度,特别是在现代计算机技术竞争激烈的时代,最优化理论的应用更加广泛。
最优化理论可以有效地满足多个变量的最佳解,以提高系统性能。
综上所述,最优化理论是一种有效的求解多变量优化问题的理论,能够有效地提高系统性能和精确度。
它具有高效率,准确性,可扩展性,应用范围广泛等优点。
最优化理论是一种在许多领域,尤其是工程,金融,经济,计算机,生物技术和社会科学领域都有广泛应用的理论和方法。
它的应用已经使系统的性能和精确度得到了极大的提升,为解决实际问题提供了有效的理论和方法。
最优化理论与方法最优化是研究如何找到使某个目标函数取得最大值或最小值的问题。
最优化理论和方法是解决最优化问题的一类数学方法。
随着现代科学技术的发展,最优化理论和方法在工程、经济、管理等领域有着广泛的应用。
最优化问题可以分为无约束问题和约束问题。
无约束问题是指目标函数只受自变量的约束,而约束问题则在自变量取值的同时还受到一定的约束条件。
最优化问题的数学描述为:\begin{align*}&\text{最小化} \quad f(x)\\&\text{约束条件} \quad g(x) \le 0\\&\quad\quad\quad\quad h(x) = 0\\\end{align*}其中,f(x)是目标函数,g(x)是不等式约束条件,h(x)是等式约束条件,x是自变量。
最优化问题的解即为使目标函数取得极小值或极大值的自变量值。
解的存在性和唯一性与目标函数和约束条件的性质有关。
解的性质可以通过最优性条件来判定,最优性条件包括一阶导数条件和二阶导数条件。
最优化理论和方法可以分为数学规划方法和数值优化方法。
数学规划方法是一类用数学方法求解最优化问题的方法。
其中,线性规划是最基本的数学规划方法之一。
线性规划问题的目标函数和约束条件都是线性的。
线性规划问题具有特殊的结构,可以通过线性规划算法高效地求解。
线性规划的应用非常广泛,例如生产计划、资源分配、运输问题等。
非线性规划是一类目标函数或者约束条件中存在非线性项的最优化问题。
非线性规划问题的求解相对更加困难。
常用的非线性规划算法包括梯度下降法、牛顿法和拟牛顿法等。
整数规划是一类目标函数或者约束条件中自变量取整数值的最优化问题。
整数规划问题具有离散性的特点,求解整数规划问题比线性规划问题更加困难。
常用的整数规划算法包括枚举法、分支定界法和割平面法等。
数值优化方法是一类用数值计算方法求解最优化问题的方法。
数值优化方法主要分为直接搜索法和迭代法。
目录1.最优化的概念与分类 (2)2. 最优化问题的求解方法 (3)2.1线性规划求解 (3)2.1.1线性规划模型 (3)2.1.2线性规划求解方法 (3)2.1.3 线性规划算法未来研究方向 (3)2.2非线性规划求解 (4)2.2.1一维搜索 (4)2.2.2无约束法 (4)2.2.3约束法 (4)2.2.4凸规划 (5)2.2.5二次规划 (5)2.2.6非线性规划算法未来研究方向 (5)2.3组合规划求解方法 (5)2.3.1 整数规划 (5)2.3.2 网络流规划 (7)2.4多目标规划求解方法 (7)2.4.1 基于一个单目标问题的方法 (7)2.4.2 基于多个单目标问题的方法 (8)2.4.3多目标规划未来的研究方向 (8)2.5动态规划算法 (8)2.5.1 逆推解法 (8)2.5.2 顺推解法 (9)2.5.3 动态规划算法的优点及研究方向 (9)2.6 全局优化算法 (9)2.6.1 外逼近与割平面算法 (9)2.6.2 凹性割方法 (9)2.6.3 分支定界法 (9)2.6.4 全局优化的研究方向 (9)2.7随机规划 (9)2.7.1 期望值算法 (10)2.7.2 机会约束算法 (10)2.7.3 相关机会规划算法 (10)2.7.4 智能优化 (10)2.8 最优化软件介绍 (11)3 最优化算法在电力系统中的应用及发展趋势 (12)3.1 电力系统的安全经济调度问题 (12)3.1.1电力系统的安全经济调度问题的介绍 (12)3.1.2电力系统的安全经济调度问题优化算法的发展趋势 (12)2. 最优化问题的求解方法 最优化方法是近几十年形成的,它主要运用数学方法研究各种优化问题的优化途径及方案,为决策者提供科学决策的依据。
最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。
最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。
最优化理论与方法1(2014-简版)《最优化理论与方法》讲义(上)第一章绪论1.1 学科简介最优化这一数学分支,为这些问题的解决提供了理论基础和求解方法。
最优化就是在一切可能的方案中选择一个最好的方案以达到最优目标的学科。
1.1.1 优化的含义优化是从处理各种事物的一切可能的方案中,寻求最优的方案。
(1)来源:优化一语来自英文Optimization,其本意是寻优的过程;(2)优化过程:是寻找约束空间下给定函数取极大值(以max表示)或极小(以min表示)的过程。
1.2 发展概况第一阶段—人类智能优化第二阶段—数学规划方法优化第三阶段—工程优化第四阶段—现代优化方法1.3研究意义研究意义:最优化在本质上是一门交叉学科,它对许多学科产生了重大影响,并已成为不同领域中很多工作都不可或缺的工具。
应用范围:信息工程及设计、经济规划、生产管理、交通运输、国防工业以及科学研究等诸多领域。
总之,它是一门应用性相当广泛的学科,讨论决策的问题具有最佳选择之特性。
它寻找最佳的计算方法,研究这些计算方法的理论性质及其实际计算表现。
1.4 示例例1 资源分配问题某工厂生产A和B两种产品,A产品单位价格为P万元,B产品单位价格为B P万元。
每生产一个单位AA产品需消耗煤a吨,电E a度,人工L a个人日;每生产一个单位B 产品需消耗煤C b吨,电E b度,人工L b个人日。
C现有可利用生产资源煤C 吨,电E 度,劳动力L个人日,欲找出其最优分配方案,使产值最大。
分析:(1)产值的表达式;(2)优化变量确定:A 产品x,B 产品B x;(3)优化约束条件:A①生产资源煤约束;②生产资源电约束;③生产资源劳动力约束。
例2 指派问题设有四项任务1B 、2B 、3B 、4B 派四个人1A 、2A 、3A 、4A 去完成。
每个人都可以承担四项任务中的任何一项,但所消耗的资金不同。
设i A 完成j B 所需资金为ij c 。
如何分配任务,使总支出最少?分析:设变量⎪⎩⎪⎨⎧=任务完成不指派,任务完成指派j j i ij B A B A x 0,1则总支出可表示为:ij i j ij x c S ∑∑===4141数学模型:ij i j ij x c S ∑∑===4141min∑===414,3,2,1,1..j iji xt s∑===414,3,2,1,1i ijj x{}4,3,2,1,,1,0=∈j i x ij1.5 最优化的数学模型最优化的数学模型是描述实际优化问题目标函数、变量关系、有关约束条件和意图的数学表达式,并能反映物理现象各主要因素的内在联系,是进行最优化的基础。