最优控制课程介绍
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
最优控制教课纲领课程基本信息( Course Information )课程代码 MA4125 * 学时 * 学分 3( Course Code ) MA424(Credit Hours )48( Credits )* 课程名称 (中文)最优控制( Course Name )(英文) Optimal Control Methods 课程性质 专业方向选修 B 组(Course Type)讲课对象 理工科各专业本科生( Audience )讲课语言中文(Language of Instruction)* 开课院系 数学系( School )先修课程 《高等数学》、《线性代数》( Prerequisite )讲课教师周 钢课程网址 无(Instructor )(Course Webpage)* 课程简介( Description )* 课程简介( Description )从数学的角度,最优控制问题是最优化问题中拥有特别构造的一类问题。
就问题的根源看,它又是控制问题。
最优控制研究动向系统在各样拘束条件下追求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。
最优控制问题波及范围广跨度大,几乎理工医农,管理军事以致人文经法领域,都存在着大批此类问题。
最优化就是追求最优系统和构造,发掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本修养之一。
本课程的主要任务是,从各个教课环节指引学生认识不一样数学识题的特色和相应数学模型的构造,自己学会剖析实质问题,成立各样数目之间的联系,写出正确的合理的最优控制的模型;领悟求解最优控制问题解法是怎样提出的数学思想,并学会怎样依据这些思想来组成相应方法的技巧;学会能正确地解说计算结果的物理意义的能力。
最基本的是学会和培育系统地、动向地、综合地考虑,认识和办理问题的思想方法和着手能力。
这样,经过本课程的各个教课环节,提升学生的数学素质,增强学生展开科研工作和解决实质问题的能力。
最优控制先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。
最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。
希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。
主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。
最优控制一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。
从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。
就问题的来源看,它又是控制问题。
最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。
最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。
最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。
通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。
最优控制一、课程基本情况二、课程内容简介主要内容包括为:最优化问题的基本概念、最优控制中的变分法、极大值原理、动态规划和线性二次型最优控制问题。
为了培养学生现代化的分析与设计能力,在每一部分都涉及利用MATLAB对其实现的方法,让学生在有限的时间内,掌握最优控制的基本原理与应用技术。
三、课程教学大纲第1章绪论(4学时)1. 教学内容及基本要求本章的基本要求是使学生了解最优控制理论的基本知识和基本方法。
主要内容包括:最优控制的发展;最优控制问题;最优控制的提法;最优控制的求解方法。
2. 重点、难点最优控制的提法、最优控制的求解方法等。
第2章最优控制中的变分法(14学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用变分法求解最优控制的方法。
主要内容包括:静态最优控制的解;变分法;应用变分法求解最优控制问题;角点条件。
2. 重点、难点无约束情况下的角点条件和内点约束情况下的角点条件下最优控制的求解等。
第3章极大值原理(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用极大值原理求解最优控制的方法。
主要内容包括:连续系统的极大值原理;离散系统的极大值原理;极大值原理的应用。
2. 重点、难点极大值原理的应用等。
第4章动态规划(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用动态规划求解最优控制的方法。
主要内容包括:动态规划的基本原理;离散系统的动态规划;连续系统的动态规划;动态规划与变分法和极大值原理的关系。
2. 重点、难点动态规划在微分对策问题中的应用等。
第5章线性二次型最优控制问题(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握线性二次型最优控制问题的求解方法。
主要内容包括:线性二次型问题;状态调节器;输出调节器;输出跟踪器;离散系统的线性二次型最优控制;利用MATLAB求解二次型最优控制问题。
2. 重点、难点线性二次型的微分对策问题等。
四、课程知识单元与知识点1. 论述●最优控制理论基本概念●最优控制理论常用的求解方法2. 变分法●普通函数的极值问题●变分法的基本概念●变分法在动态最优控制中的应用3. 极大值原理●极大值原理的基本概念●离散系统的动态规划和连续系统的动态规划;●极大值原理的应用4. 动态规划●动态规划的基本概念●基于动态规划的微分对策问题●动态规划与变分法和极大值原理的关系5. 线性二次型最优控制●线性二次型问题●状态调节器●输出调节器●跟踪器各部分都列举了大量的应用实例及利用MATLAB对其实现的方法,便于读者掌握和巩固所学知识。
最优化方法与最优控制课程设计一、设计背景随着现代科技的迅猛发展和社会竞争的加剧,各领域都需要越来越高效、精确、优化的设计方法和控制策略。
其中,最优化方法和最优控制技术是目前工程和科学领域中广泛应用的重要工具。
为了培养具有创新、实际和实践能力的工科人才,本次课程设计旨在通过对最优化方法和最优控制的讲解和实践,让学生更好地掌握和应用相关知识和技能。
二、设计目标通过本次课程设计,学生将会达到以下目标:1.掌握最优化方法和最优控制技术的基本理论和基本方法。
2.学会使用常见的数学建模软件,如Matlab等进行系统建模和仿真分析。
3.能够独立和团队完成一个小型的最优化或最优控制项目,提高实践能力和工程实践能力。
三、设计内容本次课程设计包含以下主要内容:1. 最优化方法最优化问题是在已知约束和目标函数的情况下,寻找能够使目标函数达到最大值或最小值的决策变量。
本部分主要包括以下内容:1.1. 常见最优化方法:线性规划、非线性规划、整数规划等。
1.2. 最优化算法:梯度下降法、共轭梯度法、拟牛顿法、遗传算法等。
1.3. 最优化软件:Matlab、Gurobi、CPLEX等。
2. 最优控制方法最优控制是指将控制问题描述为寻求使性能指标最优的动态过程。
本部分主要包括以下内容:2.1. 常见最优控制方法:最优控制基本原理、极小值原理与动态规划、Pontryagin最小值原理、最优控制的数值方法等。
2.2. 最优控制软件:Matlab、Simulink、LabVIEW等。
3. 课程设计环节选做题目:利用所学知识设计一个最优化或最优控制的小型项目,完成以下步骤:3.1. 对所选项目进行问题陈述和问题定义,明确项目的目标和指标。
3.2. 采用合适的数学建模方法,将该项目建立为数学模型。
3.3. 选择相应的最优化或最优控制方法,探究寻找最优解的过程。
3.4. 采用合适的软件工具,在计算机上进行仿真分析和可视化呈现。
3.5. 编写实验报告,总结和分析实验结果,分享并展示项目成果。
最优控制-理论方法与应用课程设计1. 概述最优控制是控制科学中的重要领域,它的主要研究目标是在特定控制系统条件下寻求最优的控制策略和状态序列。
最优控制理论涉及的数学和工程学科范畴广泛,如微积分、微分方程、优化理论、控制理论、动力学等。
在科技领域,最优控制已经应用于航空、航天、导航、水利、自动化、电力等许多领域。
2. 学习内容2.1 最优控制的基本概念在本门课中,我们将首先讲述最优控制理论中的基本概念,包括状态空间、状态矢量、控制输入、性能荷重、性能指标等概念。
我们将学习如何根据所给控制系统的数学模型建立最优控制问题的数学表达式。
2.2 最优控制方法在本门课的第二部分中,我们将介绍最优控制理论的主要方法,包括动态规划、线性二次型控制、最小时间控制、最大原则控制等。
我们将学习如何选择最适合控制问题的方法,并根据具体问题进行模型求解。
2.3 最优控制的应用在最后一个部分中,我们将重点介绍最优控制在工程中的应用。
我们将以航空航天和导航为例,学习如何用最优控制解决机动问题,如轨道控制、制导、自动驾驶器的设计等。
3. 课程设计本门课程旨在培养学生的最优控制理论和实践应用能力。
为了达到这一目标,我们设计了以下课程设计项目:3.1 最优控制数学建模在这个项目中,学生将根据所给的控制系统模型,利用所学的最优控制理论,构建最优控制问题的数学模型,并选择适当的最优控制方法求解问题。
3.2 最优控制仿真实验在这个项目中,学生将使用Matlab等数学仿真软件,模拟控制系统的动态过程,并通过设计多种控制策略,比较不同策略的性能指标,最终确定最优控制策略。
3.3 工程最优控制应用设计在这个项目中,学生可以自主选择一个最优控制应用方向,如航空、航天、水利、导航等,根据实际需求,设计最优控制系统,并结合仿真软件进行仿真验证。
4. 总结最优控制理论和应用是现代控制工程中不可或缺的领域,它不仅拓展了学科的范围,也推动了科技的进步和社会的发展。
最优控制
先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。
最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。
希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。
主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。
最优控制
一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。
从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。
就问题的来源看,它又是控制问题。
最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。
最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。
最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。
通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。
最根本的是学会和培养系统地、动态地、综合地考虑,认识和处理问题的思想方法和动手能力。
这样,通过本课程的各个教学环节,提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。
三、教学内容和要求基本要求:期望学生能够结合工程背景认识最优控制问题的数学结构的特点,从而能灵活地建立实际问题的数学模型,深刻领会求解它们的三大类方法的数学思想,熟练地掌握这些方法的运用步骤,能正确地解释求解结果的意义,并学会最优控制问题的数值解法。
第一章最优控制与最优化问题 1.1 最优化问题的源和流 1.2 最优控制问题的例子和数学描述 1.3 最优控制问题求解的基本思想第二章数学基础 2.1 向量与矩阵的求导法则 2.2 函数极值的几个条件 2.3 线性微分方程的解第三章变分法 3.1 泛函的变分与极值 3.2 Euler方程 3.3 等式约束条件下泛函极值问题的必要条件 3.4 几类可用变分方法求解的最优控制问题 3.5 应用实例第四章极小值原理 4.1 极值曲线场与充分条件 4.2 有控制变量不等式约束的极小值原
理 4.3 含有状态变量不等式的极小值原理 *4.4 极小值原理的证明 4.5 极小值原理的应用实例 4.6 离散极小值原理第五章极小值原理的几类应用 5.1 时间最短最优控制问题 5.2 燃料最省最优控制问题 5.3 线性二次型最优控制问题第六章动态规划 6.1 多阶段决策问题与动态规划思想 6.2 用动态规划思想解最优化问题 6.3 离散系统最优控制问题的动态规划解法 6.4 离散线性二次型问题的动态规划解 6.5 连续系统做优控制问题的动态规划解和HJB方程 6.6 连续二次型问题的动态规划解 6.7 Riccatti方程的求解第七章最优控制的新发展 7.1 对策论和微分对策 7.2 随机最优控制四.实验(上机)内容和基本要求本课程无实验和上机的教学安排,但要求学生结合本专业的特点和所研究的课题,选择部分算法自己上机实现。
要求学生熟悉至少一门数学软件平台(Mathematica/ matleb/Maple)和至少一种编程语言。
教学实验就是编程解决实际问题。
至少做有求解
足够规模的问题的大作业3-4次大作业。
五.对学生能力培养的要求本课程采用“引出问题,启发思路,重点分析,课堂讨论,课外探索,自行归纳”的教学方式,使学生在掌握最优控制基本知识的基础上,力求活跃其数学思想,从而培养学生运用较高层次的数学观点和数学知识,能对实际问题进行分析、归纳、提炼和建立数学模型,选择适当的算法,能够编写计算机程序实际求解,并且能对计算结果进行分析和解释。
另一方面,希望在教师引导下,学生逐步学会自己从前人研究的问题、分析问题的过程、演绎推导的结果中,体会和领悟这些人类高级心智文明的成果,使学生自己真正学懂数学,而不是被“教会”数学;同时希望学生通过研究式的钻研、探索乃至犯错误的过程中,培养从错纵复杂的现象事理中和繁杂无序的结果数据中,寻找与总结内在关系和规律的能力,并且体会科学研究的艰辛和乐趣,培养在科学研究和事理处理上百折不挠、持之以恒的毅力和意志。
提高他们的数学素质和数学修养,提高他们开展科技活动和社会实践的能力以及开展科研工作的能力。
尽管本课程的重点放在运用算法解决问题上,但是仍然鼓励和希望学有余力的同学,对于问题建立模型、算法的性态分析和算法实际运行性质的分析,有实质性的研究和提高。