高中数学指数与指数幂的运算
- 格式:doc
- 大小:117.00 KB
- 文档页数:3
高中数学指数与指数幂的运算教案教学目标1.理解指数和幂的概念;2.掌握指数的基本运算法则;3.掌握指数幂的计算方法。
教学重难点1.掌握指数的基本运算法则;2.掌握指数幂的计算方法。
教学内容1. 指数的概念指数是数学中一个重要的概念,用于表示一个数的幂次。
指数通常写在一个数的右上角,如a n,其中a是底数,n是指数。
指数的计算可以用重复乘法的方法进行。
2. 指数的基本运算法则2.1. 指数相加、相减指数相加时,如果底数相同,则可以将指数相加,即 $a^m \\times a^n =a^{m+n}$。
指数相减时,如果底数相同,则可以将指数相减,即$\\dfrac{a^m}{a^n} = a^{m-n}$。
2.2. 指数相乘、相除指数相乘时,如果底数相同,则可以将指数相乘,即(a m)n=a mn。
指数相除时,如果底数相同,则可以将指数相除,即 $\\dfrac{a^m}{a^n} = a^{m-n}$。
2.3. 幂函数的运算幂函数是一种特殊的函数,它具有y=ax n的形式。
幂函数的运算可以用指数的基本运算法则进行,例如(x m)n=x mn和 $x^m \\times x^n = x^{m+n}$。
3. 指数幂的计算方法指数幂的计算方法包括以下几种。
3.1. 同底数幂的乘方运算当底数相同时,两个幂相乘可以将指数相加,即 $a^m \\times a^n =a^{m+n}$。
例如,$5^3 \\times 5^4 = 5^{3+4} = 5^7$。
3.2. 不同底数幂的乘方运算当底数不同时,两个幂相乘可以先将底数相乘,再将指数相加。
例如,$3^4 \\times 2^4 = (3 \\times 2)^4 = 6^4$。
3.3. 同底数幂的除法运算当底数相同时,两个幂相除可以将指数相减,即 $\\dfrac{a^m}{a^n} = a^{m-n}$。
例如,$\\dfrac{5^7}{5^3} = 5^{7-3} = 5^4$。
高中数学公式大全指数与对数的幂运算与对数运算公式数学是一门具有广泛应用的学科,不论是在学术研究还是实际生活中,数学公式都扮演着重要的角色。
在高中数学中,指数与对数是两个重要的概念,它们的公式在解题过程中经常被用到。
本文将为您提供高中数学公式大全,重点介绍指数与对数的幂运算与对数运算公式。
1. 指数与幂运算公式指数与幂运算是指数函数的基本运算法则,它包括以下几个公式:1.1 指数幂运算法则(1)指数相同,底数相乘:a^m × a^n = a^(m+n)。
例子:2^3 × 2^4 = 2^(3+4) = 2^7。
(2)幂相同,底数相乘:a^m × b^m = (a × b)^m。
例子:2^3 × 3^3 = (2 × 3)^3 = 6^3。
(3)指数的乘方:(a^m)^n = a^(m×n)。
例子:(2^3)^4 = 2^(3×4) = 2^12。
(4)幂的乘方:(a × b)^m = a^m × b^m。
例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。
1.2 指数的乘法法则(1)指数相加:a^m × a^n = a^(m+n)。
例子:2^3 × 2^4 = 2^(3+4) = 2^7。
(2)底数相乘:(a × b)^m = a^m × b^m。
例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。
2. 对数运算公式对数是指数的逆运算,它有以下几个重要的运算公式:2.1 对数幂运算法则(1)底数相同,幂相加:loga(x × y) = loga(x) + loga(y)。
例子:log2(4 × 8) = log2(4) + log2(8)。
(2)幂的乘方:loga(x^m) = m × loga(x)。
指数与指数幂的运算知识图谱指数与指数幂的运算知识精讲一.方根的定义及性质1.定义:如果存在实数x ,使得()*,1,n x a a R n n N =∈>∈,则把x 叫做a 的n 次方根,求a 的n 次方根,叫做把a 开n 次方,称为开方运算.2.性质(1)正数a 有两个偶次方根且互为相反数,记作0)n a a ±>;(2)负数没有偶次方根;(3n a n 为奇数,)a R ∈;(4)零的n 次方根都是0()*1,n n N >∈;(5)正数a 的正的n 次方根叫做a 的n 次算术根()*1,n n N>∈.二.根式的定义及性质1.定义:n a n a n 叫做根指数,a 叫做被开方数.2.性质:(1)()n n a a =;(2)当n n n a a =;(3)当n (0)||(0)n na a a a a a ≥⎧==⎨-<⎩三.分数指数幂1()p p a p Q a-=∈;m nmna a=(,m n N +∈、且m n 、互质)-1m n nma a =四.实数指数幂幂指数定义底数的取值范围正整数指数n n a a a a =⋅⋅⋅个()n N +∈a R ∈零指数01a =0a ≠且a R ∈负整数指数1n na a-=0a ≠且a R∈正分数指数m n mna a =(,m n N +∈、且m n 、互质)n 为奇数a R ∈n 为偶数0a ≥负分数指数-1m n nmaa =n 为奇数0a ≠且a R ∈n 为偶数a >无理数p a 是一个确定的实数(其中p 为无理数)a >五.实数指数幂的运算性质1.r s r s a a a +⋅=(0,,)a r s R >∈;2.rr s s a a a-=(0,0,,)a b r s R >>∈3.()r s r s a a ⋅=(0,,)a r s R >∈;4.() (0,0,)r r r a b a b a b r R ⋅=⋅>>∈;5.() (0,0,)rr r a a a b r R b b=>>∈.三点剖析一.方法点拨1.利用分数指数幂进行根式的运算步骤:(1)先把根式化成分数指数幂;(2)再根据实数指数幂的运算性质进行计算.2.指数式的运算(1)在有关根式、分数指数幂的变形、求值过程中可通过解方程(组)来求值,或用换元法转化为方程求解,例如1139x -=(2)带条件的求值问题,常有两种思考方法:①将已知的条件变形,得到所需要的值或关系式;②将待求的式子化成可用已知条件表示的式子.例如:已知()130a a a -+=>,求22a a -+的值将13a a -+=两边平方得21229a a a a --++= ,即2229a a -++=,所以得到227a a -+=.根式与指数的计算与化简例题1、66(3)π-=____.例题2、设3a =2,3b =5,则3a +b =________.例题3、若12a <24(21)a -的结果是()21a - B.21a -12a- D.12a--例题4、(Ⅰ)已知x+x -1=4,求x 2+x -2的值;(Ⅱ)计算331.5612随练1、若a =333-π(),b 442-π(),则a +b 的值为()A.1B.5C.-1D.2π-5随练2、下列式子正确的是()A.log 22=0B.lg10=1C.22×25=21032212-利用公式进行指数运算例题1、式子()13321--⎡⎤-⎣⎦=().例题2、已知0a >且0a ≠,且24x a =,327y a =,则x y a +的值为________.例题3、计算:1223256437392748-⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.随练1、求值220.53327492()()(0.008)8925---+⨯=________.带有附加条件的求值问题例题1、已知:a +a -1=2则a 2+a -2=________.例题2、已知11223x x-+=,计算下列各式的值(1)x +x -1;(2)x 2+x -2.例题3、已知函数732()2(,)32x x x xb f x ax a b R x -=++-∈+,若f (2017)=2018,则f (-2017)的值为________.随练1、x 2-3x +1=0,则221x x +=_____.随练2、若1a >,0b >,且22b b a a -+=b b a a --的值为()6B.2或2-C.2- D.2拓展1、a a a 的值为()A.14a B.25aC.78aD.58a2、33(2)π-2(3)π-的值为()A.5B.1- C.2π5- D.52π-3、已知11-225a a -=22_____a a -+=。
课题 指数与指数幂的运算(三)
课 型:练习课
教学目标:
n 次方根的求解,会用分数指数幂表示根式, 掌握根式与分数指数幂的运算.
教学重点:掌握根式与指数幂的运算.
教学难点:准确运用性质进行计算.
教学过程:
一、复习提问: (学生回答,老师板演)
1. 提问:什么叫做根式? 运算性质?
2. 提问:分数指数幂如何定义?运算性质?
3. 基础习题练习: (口答下列基础题)
① n 为
时,(0)
||...........(0)x x x ≥⎧=⎨<⎩.
② 求下列各式的值:
681; 62)2(-; 1532-; 48x ; 642b a 二、教学典型例题:
例1.(P 52,例4)计算下列各式(式中字母都是正数)
(1)2115
11336622(2)(6)(3)a b a b a b -÷-
(2)3
1
884()m n -
例2.(P 52例5)计算下列各式
(1
)(2
2
(a >0
)
例3..已知1
1
22a a -+=3,求下列各式的值:
(1)1-+a a ; (2)22-+a a ; (3)3
3
22
1122
a a a a ---- .
三、巩固练习:
1. 化简:)()(41412121y x y x -÷-.
2. 已知12(),0x f x x x π=⋅>,试求
)()(21x f x f ⋅的值
3. 用根式表示2134()m n -, 其中,0m n >.
4. 已知x +x -1=3,求下列各式的值:.)2(,)1(23232121--++x x x
x
5. 求值:2325; 2327; 3236()49; 3225()4-
6. 已知32x a b --=+, .
7.从盛满1升纯酒精的容器中倒出31升,然后用水填满,再倒出3
1升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?
四、小结:
1. 熟练掌握有理指数幂的运算法则,化简的基础.
2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.
五,作业
化简:(1)2932)-
(2
(3)
后记:。