指数与指数幂的运算
- 格式:ppt
- 大小:2.73 MB
- 文档页数:45
指数与指数幂的运算知识点总结本节知识点 (1)整数指数幂; (2)根式; (3)分数指数幂; (4)有理数指数幂; (5)无理数指数幂. 知识点一 整数指数幂1.正整数指数幂的定义:,其中N*.an na a a a 个⋅⋅=∈n 2.正整数指数幂的运算法则: (1)(N*);nm nmaa a +=⋅∈n m ,(2)(且N*);nm nma a a -=÷,,0n m a >≠∈n m ,(3)(N*);()mn nma a=∈n m ,(4)(N*);()mmmb a ab =∈m (5)(N*).m m mb a b a =⎪⎭⎫⎝⎛,0≠b ∈m 3.两个规定(1)任何不等于零的数的零次幂都等于1.即.()010≠=a a 零的零次幂没有意义.(2)任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数.即:n -n n . ()01≠=-a a a nn 零的负整指数幂没有意义. 知识点二 根式的概念及其性质 1.次方根n (1)定义 一般地,如果(且N*),那么叫做的次方根. a x n=1>n ∈n x a n (2)性质:①当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数,这时,的次n n n a n方根用表示;na ②当为偶数时,正数的次方根有两个,这两个数互为相反数,表示为.负数没有偶n n na ±次方根;③0的任何次方根都是0,记作.00=n2.根式的定义 形如(且N*)的式子叫做根式,其中叫做根指数,叫做被na 1>n ∈n n a 开方数.对根式的理解,要注意以下几点: na (1)且N*; 1>n ∈n (2)当为奇数时,R ; n ∈a (3)当为偶数时,≥0.n a 根式(且N*)的符号的确定:由的奇偶性和被开方数的符号共同确定. na 1>n ∈n n a (1)当为奇数时,的符号与的符号相同; n na a (2)当为偶数时,≥0,为非负数. n a na 3.根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn与的联系与区别:()nna nn a (1)对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意义()nna n ∈a n a nn a 的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制. n n (2)当为奇数时,.n ()=nna a a nn =知识点三 分数指数幂1. 规定正数的正分数指数幂的意义是(,N*,且)nm nm a a =0>a ∈n m ,1>n 于是在条件,N*,且下,根式都可以写成分数指数幂的形式.0>a ∈n m ,1>n2. 正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定(,N*,且)nmnm nm aaa11==-0>a ∈n m ,1>n 3. 0的正分数指数幂等于0,0的负分数指数幂没有意义. 对分数指数幂的理解:(1)分数指数幂不能理解为个相乘,它是根式的一种新的写法; nm a nma (2)分数指数不能随意约分. nm如,事实上,,式子是有意义的;而在()()214233-≠-()()424233-=-()3321-=-实数范围内是没有意义的.(3)在保证相应的根式有意义的前提下,负数也存在分数指数幂.如上面提到的,但没有意义.()()424233-=-()()434355-=-所以对于分数指数幂,当≤0时,有时有意义,有时无意义.因此,在规定分数指数幂的nm a a 意义时,要求. 0>a 知识点四 有理数指数幂规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于有理数指数幂同样适用: (1)(Q );sr sra a a +=⋅,0>a s r ,∈(2)(Q );()rs sra a=,0>a s r ,∈(3)(Q ).()rrrb a ab =0,0>>b a r ∈有理数指数幂的运算还有如下性质: (4)(Q );sr sraa a -=÷,0>a s r ,∈(5)(Q ).r r rb a b a =⎪⎭⎫⎝⎛0,0>>b a r ∈常用结论:(1)当时,; 0>a 0>ba (2)若则;,0≠a 10=a(3)若(,且),则; sr a a =0>a 1≠a s r =(4)乘法公式适用于分数指数幂.如().b a b a b a b a -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+221221212121210,0>>b a 知识点五 无理数指数幂一般地,无理数指数幂(,是无理数)是一个确定的实数.有理数指数幂的运算性αa 0>a α质同样适用于无理数指数幂.知识点六 运用公式进行指数幂的运算(条件求值) 常用公式:(1)平方差公式 .()()b a b a b a -+=-22(2)完全平方公式 .()()2222222,2b ab a b a b ab a b a +-=-++=+(3)立方和公式 . ()()2233bab a b a b a +-+=+(4)立方差公式 .()()2233bab a b a b a ++-=-(5)完全立方和公式 .()3223333b ab b a a b a +++=+(6)完全立方差公式 .()3223333b ab b a a b a -+-=-常用公式变形:(1),.()ab b a b a 2222-+=+()ab b a b a 2222+-=+(2),.211222-⎪⎭⎫ ⎝⎛+=+x x x x 211222+⎪⎭⎫ ⎝⎛-=+x x x x 或者写成,.()22122-+=+--x x xx ()22122+-=+--x x x x (3);⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+b b a a b a b a b a 212121213213212323.⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-b b a a b a b a b a 212121213213212323例题讲解例1. 已知,求的值.32121=+-x x 32222323++++--x x x x 分析:采用整体思想方法,对所求式子进行合理变形,然后把条件整体代入求值.本题用到的公式和结论有:;()22122-+=+--x x x x . ()()1112121121213213212323-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+------x x x x x x x x x x xx 解:∵32121=+-xx ∴,∴. 92122121=++=⎪⎭⎫ ⎝⎛+--x x x x 71=+-x x ∴.()4727222122=-=-+=+--x x x x ()()181731121213213212323=-⨯=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+----x x x x x x xx ∴.52502034721832222323==++=++++--x x x x 例2. 已知,求下列各式的值:22121=+-a a (1); (2); (3).1-+a a 22-+a a 22--a a 分析:在求的值时,直接入手比较困难,我们可以先求出的值,然22--a a ()222--a a 后在进行开平方运算. 解:(1)∵22121=+-aa ∴,∴; 42122121=++=⎪⎭⎫ ⎝⎛+--a a a a 21=+-a a (2);()222222122=-=-+=+--a a a a (3)∵()()04242222222=-=-+=---a a a a ∴. 022=--a a例3. 已知,其中,求的值.41=+-x x 10<<x xx x x 122+--分析:要学会根式与分数指数幂的相互转化,在转化时要注意:根指数是分数指数的分母,被开方数(或式)的指数是分数指数的分子.解:∵41=+-x x ∴,∴,∴. 4222121=-⎪⎭⎫ ⎝⎛+-x x 622121=⎪⎭⎫ ⎝⎛+-x x 62121=+-x x()1424222122=-=-+=+--x x x x ∴()()19241442222222=-=-+=---x x x x ∵,∴,∴.10<<x 22-<x x 3819222-=-=--x x ∴. 24638121212222-=-=+-=+----x x x x x x x x 例4. (1)已知,求的值;42121=+-aa 21212323----aa a a (2)已知,且,求的值;9,12==+xy y x y x <21212121yx y x +-解:(1)∵42121=+-aa ∴,∴. 212212142=++=⎪⎭⎫ ⎝⎛+--a a a a 142161=-=+-a a ∴; ()15114111212112121212132132121212323=+=++=-++⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=----------a a a a a a a a a a a a aa a a (2)∵9,12==+xy y x ∴ ()()3192129212222221212212122121221212121=+-=++-+=++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+-xy y x xy y x xy y x xy y x y x y x y x y x∵,∴,∴y x <2121y x <021212121<+-yx y x ∴. 333121212121-=-=+-yx y x 例5. 已知,求的值.3232+=a 31311--++aa a a 分析:借助于分式的性质. 解:∵ 3232+=a ∴,.3232113232-=+==-a a()34732223234+=+=⎪⎭⎫⎝⎛=a a ∴()132323431313113131311++=⎪⎭⎫⎝⎛++=++-----a aa a a a a a a aa aa .()3333333333913232347=++=++=++-++=解法二:∵3232+=a ∴113232313132323131313133133131311-+=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++--------a a a a a a a a a a a a aa a a .313232132132113232=--++=-+++=-+=aa 例6. (1)当时,求的值;22,22-=+=y x ⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛----323132343132y y x x y x (2)若,求的值. 122-=xaxx xx aa a a --++33分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数. 本题中,,被开方数不是完全平方数,所以不能化简,当确有22+=x 22+x.()222222+=+=x 解:(1)∵22,22-=+=y x ∴12331332323132343132------=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛-y x y x y y x x y x ; ()22122222221222+=+-+=--+=(2)∵122-=x a ∴ ()()()()1122223333-+=++-+=++=++--------xx xx x x x x x x x x x x x x a a aa a a a a a a a a a a a a . 1121121122--+-=-+=xx a a 12211212-=-++-=另解:解例5的解法一.题型一 整数指数幂的运算例7. 已知(为常数,且Z ),求的值.a x x =+-22a ∈x x x -+88分析:因为,所以先由条()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+件求出的值.a x x =+-22x x 2222-+完全立方和公式 .()3223333b ab b a a b a +++=+解法一:∵a x x =+-22∴()2222222222-=-+=+--a x x x x ∴()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+.()()a a a a a a 3312322-=-=--=解法二:(完全立方和公式) ∵a x x =+-22∴,展开得:.()3322a x x =+-()()()()3322322232232a x x x x x x =+⨯⨯+⨯⨯+---整理得:,∴. ()382238a x x x x =+++--3838a a x x =++-∴.a a x x 3883-=+-例8. 已知,则_________. 3101=+-x x =--22x x 解:∵ 3101=+-x x ∴ ()9822310222122=-⎪⎭⎫⎝⎛=-+=+--x x xx ∴ ()()816400498242222222=-⎪⎭⎫⎝⎛=-+=---x x x x ∴. 98081640022±=±=--x x 解法二分析:使用平方差公式得. ()()1122----+=-x x x x x x 解法二:∵ 3101=+-x x ∴ ()()9644310422121=-⎪⎭⎫⎝⎛=-+=---x x xx ∴. 389641±=±=--x x ∴. ()()980383101122±=⎪⎭⎫ ⎝⎛±⨯=-+=----x x x x x x 例9. 若,求的值. 31=+-x x 2323-+x x 解:∵(这里)31=+-x x 0>x ∴,∴. 3222121=-⎪⎭⎫ ⎝⎛+-x x 522121=⎪⎭⎫ ⎝⎛+-x x ∵,∴.02121>+-x x 52121=+-xx ∴ ()1212132132123231----+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+x x x x x x xx . ()52135=-⨯=解法二:∵31=+-x x ∴()723222122=-=-+=+--x x x x∴ ()()()202173122213322323=+-⨯=+-+=++=⎪⎭⎫ ⎝⎛+----x x x x x x x x ∴.52202323==+-xx 例10. 已知,则【 】41=+-x x =+-2121x x (A )2 (B )2或 2-(C )(D )或666-分析:题目的隐含条件为. 0>x 解:∵41=+-x x ∴,∴ 42221211=-⎪⎭⎫ ⎝⎛+=+--x x x x 622121=⎪⎭⎫ ⎝⎛+-x x ∵02121>+-x x ∴.选择【 C 】.62121=+-x x例11. 已知,则【 】212121++=⎪⎭⎫ ⎝⎛+--x x x x f ()=+1x f (A ) (B )42-x ()21+x (C )(D )()()2111-+++-x x 322-+x x 解:(换元法)设,则有t xx =+-2121∴222221211-=-⎪⎭⎫ ⎝⎛+=+--t x x x x ∴,∴. ()2222t t t f =+-=()2x x f =∴.选择【 B 】.()()211+=+x x f 解法二(凑整法):∵212121++=⎪⎭⎫ ⎝⎛+--x x x x f ∴,∴.2212122121212122⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+---x x x x x x f ()2x x f =∴.()()211+=+x x f题型二 根式的化简在进行根式的化简时,主要用到的是根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn注意 对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意()nna n ∈a n a nn a 义的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制.n n 例12. 化简下列各式: (1);()()222535-+-(2)(≥1).()()2231x x -+-x 解:(1)原式;125532535=-+-=-+-=(2).()()x x x x -+-=-+-313122∵≥1x ∴当1≤≤3时,原式; x 231=-+-=x x 当时,原式. 3>x 4231-=-+-=x x x 例13. 化简: (1); (2)(≤).()nnx π-62144+-a a a 21分析:对于(1),要对的奇偶性进行分类讨论. n 解:(1)当为奇数时,;n ()ππ-=-x x nn 当为偶数时,; n ()()()⎩⎨⎧<-≥-=-=-ππππππx x x x x x nn(2).()()()33162626221212112144a a a a a a -=-=-=-=+-注意:当底数为正数时,其分数指数可以约分.例14. 求下列各式的值: (1);223223-++(2).347246625-+--+分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数.根据此结论,可知,,均可以化为完全平方的形式. 625+246-347-解:(1)原式;()()221212*********2=-++=-++=-++=(2)原式()()()222322232-+--+=.22322232322232=-++-+=-+--+=总结 形如()的双重二次根式的化简,一般是将其化为n m 2±0,0>>n m 的形式,然后再化简.由得:()2ba ±()ab b a ba n m 222±+=±=± ⎩⎨⎧==+nab mb a 所以是一元二次方程的两个实数根.b a ,02=+-n mx x 例15. 化简. 32-解:. ()()226213213222132324322-=-=-=-=-=-例16. 计算:.()()4123323-+-解:原式.()[]()58323233443=+-=-+-=-+-=注意 在利用根式的性质进行的化简时,一定要注意当为偶数时,底数的符号.nna n a 例17. 化简下列各式: (1)();()()665544b a b a a -+++0<<b a (2)(). 1212----+x x x x 21<<x 解:(1)∵0<<b a ∴原式; ()a b a b b a a b a b a a -=-+++-=-+++=2(2)∵,∴ 21<<x 110<-<x ∴原式()()1111111122---+-=---+-=x x x x. ()1211111111-=-+-+-=---+-=x x x x x 例18. 求值_________. =-++335252解:令,则有y x =-=+3352,52,.4525233=-++=+y x 1-=xy ∴,∴()()422=+-+y xy x y x ()()[]432=-++xy y x y x 设,则,有t y x =+0>t ,∴,()432=+t t 0433=-+t t 01333=--+t t ∴()()0412=++-t t t ∵,∴,∴. 042>++t t 01=-t 1=t ∴. 1525233=-++解法二:设,则有=x 335252-++,∴()x x 3452523333-=-++=0432=-+x x∴, ()()03313=-+-x x ()()0412=++-x x x ∵,∴,∴ 042>++x x 01=-x 1=x ∴. 1525233=-++例19. 根据已知条件求值: (1)已知,求的值;32,21==y x yx y x yx y x +---+(2)已知是方程的两根,且,求的值.b a ,0462=+-x x 0>>b a ba b a +-解:(1)∵ 32,21==y x ∴原式()()()()()()yx yx yx yx yx yx -+--+-+=22yx xyy x y x xy y x --+--++=22; 383221322144-=-⨯⨯=-=yx xy(2)∵是方程的两根 b a ,0462=+-x x ∴4,6==+ab b a ∴()()204464222=⨯-=-+=-ab b a b a ∵,∴ 0>>b a 0>-b a ∴. 5220==-b a ∴. ()()()55515242622==-=--+=-+-=+-b a ab b a ba ba ba ba b a (2)解法二:∵是方程的两根,∴b a ,0462=+-x x 4,6==+ab b a ∴. ()()5110242642622222==+-=++-+=+-=⎪⎪⎭⎫⎝⎛+-abb a ab b a b a b a b a b a ∵,∴,∴0>>b a b a >0>+-ba b a ∴. 5551==+-ba b a 例20. 已知,N*,求的值.⎪⎭⎫ ⎝⎛-=-nn x 115521∈n ()n x x 21++解:∵⎪⎭⎫ ⎝⎛-=-n nx 115521∴.n n n n n n x 222221125215525411552111---++=⎪⎭⎫ ⎝⎛+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+2115541⎪⎭⎫ ⎝⎛+=-n n∴⎪⎭⎫ ⎝⎛+=+-n nx 11255211∴.()55552155211111112=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=++--nn n nn n n nx x例21. 已知函数,.()53131--=x x x f ()53131-+=x x x g (1)证明:在上是增函数(已知在R 上是增函数);()x f ()+∞,031x y =(2)分别计算和的值,由此概括出函数和()()()2254g f f -()()()3359g f f -()x f 对所有不等于0的实数都成立的一个等式,并加以证明.()x g x (1)证明:任取,且()+∞∈,0,21x x 21x x <∴ ()()55531131231231131231231131121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---=-----x x x x x x x x x f x f ∵,且,在R 上是增函数 ()+∞∈,0,21x x 21x x <31x y =∴312311312311,--><x x x x ∴,∴ ()()021<-x f x f ()()21x f x f <∴在上是增函数; ()x f ()+∞,0(2)解:()()()2254g f f -.0522522552222554432323232313131313131=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----同样求得. ()()()03359=-g f f 猜想:. ()()()052=-x g x f x f 证明:()()()x g x f x f 52-.055555532323232313131313232=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----x x x x x x x x xx 例22. 当,且时,求的值.0,0>>y x ()()y x y y x x 53+⋅=+yxy x y xy x -+++32解:∵,且0,0>>y x ()()y x y y x x53+⋅=+∴, y xy xy x 153+=+0152=--y xy x ∴()()053=-+y x yx ∴,. 05=-y x y x y x 25,5==∴.22958525355032==-+++=-+++yyy y y y y y yxy x y xy x 题型三 根式与分数指数幂的互化在进行根式与分数指数幂的互化时要注意两个对应: (1)根指数对应分数指数的分母;(2)被开方数(或式)的指数对应分数指数的分子. 当出现多重根号时,应从里向外化简.例23. 用根式或分数指数幂表示下列各式:,,,;.51a ()043>a a 36a ()013>a a()0>a a a 解:;551a a =;()43430a a a =>;23636a a a ==;()23233101-==>a aa a.()4323210a a a a a a a ==⋅=>例24. 将根式化为分数指数幂是【 】 53-a (A ) (B )(C )(D )53-a 53a 53a -35a -解:选择【 A 】. 例25. 化简:_________.(用分数指数幂表示)()()=⋅÷⋅109532a a a a 解:由题意可知:.0>a ∴原式.561012101451310921532a a a a a a a a ==÷=⎪⎭⎫⎝⎛⋅÷⎪⎭⎫ ⎝⎛⋅=例26. 设,化简:.0>a 434334aa a a -解:∵0>a ∴.611616653163254343234434334---===⋅⋅=aaa aa a a aa aa aa例27. 下列根式与分数指数幂的互化中,正确的是【 】 (A )(B )()()0414>-=-x x x )0551≠-=-x x x(C ) (D )()0,4343≠⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-y x x y y x 4182y y =解:(A ),故(A )错;()0414>-=-x x x (B ),故(B )错; ()0155151≠==--x xx x(D ),故(D )错. 选择【 C 】. 4182y y =例28. 下列各式正确的是【 】 (A );(B )35531aa=-2332x x =(C )(D )⎪⎭⎫ ⎝⎛-⨯-=814121814121aaa a x x x x 412212323131-=⎪⎭⎫ ⎝⎛---解:(A ),故(A )错;53535311aaa ==-(B ),故(B )错; 3232x x =(C ),故(C )错. 选择【 D 】.85814121814121a aaa a ==⎪⎭⎫ ⎝⎛-+-题型四 根式和分数指数幂有意义的条件1.对于次根式,当为奇数时,R ;当为偶数时,≥0. n na n ∈a n a 2.0的0次幂和负实数幂都没有意义.例29. 若有意义,则的取值范围是__________.()4321--x x解:∵()()()43434321121121x x x -=-=--∴,解之得:. 021>-x 21<x 即的取值范围是.x ⎪⎭⎫ ⎝⎛∞-21,例30. 函数的定义域是【 】()()2125--+-=x x y (A ) (B ){}2,5≠≠x x x {}2>x x (C ) (D ){}5>x x {}552><<x x x 或解:∵()()()()()215215250210210-+-=-+-=-+-=-x x x x x x y ∴,解之得:且.⎩⎨⎧>-≠-0205x x 2>x 5≠x ∴该函数的定义域为.选择【 D 】.()()+∞,55,2 题型五 幂的运算目前,当底数大于0时,指数已经由整数指数推广到了实数指数,整数指数幂的运算性质适用于实数指数幂的运算.运算的结果可以化成根式形式或者保留分数指数幂的形式,但不能既有根式又有分数指数幂,也不能同时含有分母和负指数幂.(1)(R ); s r s r a a a +=⋅∈>s r a ,,0(2)(R );()rs sr a a =∈>s r a ,,0(3)(R ).()r r rb a ab =∈>>r b a ,0,0例31. 计算下列各式(式中的字母均为正数): (1);()()()c b a b a b a 24132124-----÷-⋅(2). ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+----------212121211122b a b a b a b a 解:(1)原式;()ca ac cb a b a 33112412423-=-=÷-=-----(2)原式 ()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+---=--------21212121112121b a b a b a b a ()()()bb b a b a b a ba b a b a221111111111111==+-+=----+=-------------例32. 化简下列各式: (1);212121211111aaa a a++------(2).111113131313132---+++++-x xx x x x x x 解:(1)原式; ()()011112121212121211=-=+⎪⎭⎫ ⎝⎛+---=-----a a a a a a a a a (2)原式 11111131323131333131323331-⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛=x x x x x x x x 31323132313131313131313231313231323111111111111xx x x x x x x x x x x x x x x x x --+-+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=.31x -=例33. 化简:. ()()()()()1421443333211--------++-++-+aa a a a a a a a a a a解:原式 ()()()()()()1221442212212111---------+-+-++++-+-+=a a a a a a a a a a a a a aa a ()[]()[]()()1214412222111--------++++++-+=aa a a a a a a a a a a()()aa a a a aa a a a a a a 21111144144=-++=-++++++=------例34. 化简下列各式:(1);(2).436532yx xy⋅1111212331++-+++a a a a a 解:(1)原式;1212143653231--==yx yx y x (2)原式 111111111121212131313231213321313331++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛=a a a a a a a a a a a a a a21313221313211aa a a a a +-=-++-=例35. 【 】 ()=-⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛--21212001.04122532(A )(B ) (C )(D )0151630173658-解:. ()21212001.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛--1516101324111001491411=-⨯+=-⨯+=选择【 A 】.例36. 化简:_________.=⎪⎪⎭⎫⎝⎛÷⋅⋅----321132132a b b a bab a 解:原式.656161673223236167322121131212132--------=÷=⎪⎭⎫⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=b a ab b a b a b a b a ba b a b a 例37._________. =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---442102324953121解:原式. 22322322232491112=-++=-++-+=例38. 已知,则的值是_________. 3,2==n m 32432332⎪⎪⎭⎫⎝⎛÷⋅----m n nm m n n m 解:∵3,2==n m ∴原式 32325343322534312322332⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=--------mn n m n m n m n m mn n m n m . 27232333131=⨯==⎪⎭⎫⎝⎛=---mn n m 例39. 已知函数,则_________.()()⎪⎩⎪⎨⎧≥--<=1,351,312x x x x x f =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--4321353f f 解: ⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛---4343213533353f f f f . 33939335353331243=+-=+⎪⎭⎫⎝⎛-+-⨯=-题型六 解含幂的方程例40. 解下列方程:(1);(2).2291381+⎪⎭⎫ ⎝⎛=⨯x x0123222=-⨯++x x 解:(1),()2224333+-=⨯x x 424233--+=x x ∴,解之得:;4242--=+x x 2-=x (2),设,则()0123242=-⨯+⨯x x t x =20>t ∴, 01342=-+t t ()()0114=+-t t 解之得:(舍去). 1,241221-===-t t ∴,∴.222-=x 2-=x 结论 若(,且),则sra a =0>a 1≠a s r =题型七 指数幂等式的证明 设参数法例41. 设都是正数,且,求证:. c b a ,,c b a 643==ba c 122+=证明:设,则有. t cba===643cbat t t 12116,2,3===∵ 236⨯=∴,∴ba bacttt t 2112111+=⋅=ba c 2111+=等式两边同时乘以2得:. b a c 122+=例42. 设,且,则_________.m b a ==52211=+ba =m 分析:这是指数幂的连等式,参数已经给出. 解:∵,∴. m ba==52bam m 115,2==∵211=+ba ∴,∴,.2111152m m m m ba ba==⋅=⨯102=m 10±=m ∵,∴. 0>m 10=m 例43. 已知,且. 333cz by ax ==1111=++zy x 求证:.()31313131222c b a czby ax ++=++证明:设,则. t cz by ax ===333zt cz y t by x t ax ===222,,∴.⎪⎭⎫⎝⎛++=++z y x t cz by ax 111222∵,∴ 1111=++z y x t z y x t =⎪⎭⎫⎝⎛++111∴,t cz by ax =++222()3131222t czby ax =++∵3131313313313313131111t z y x t z t y t x t c b a =⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++∴.()31313131222c b a czby ax ++=++例44. 对于正整数(≤≤)和非零实数,若c b a ,,a b c ω,,,z y x ,ω70===z y x c b a ,求的值. zy x 1111++=ωc b a ,,解:设,则有.k c b a zyx====ω70ω111170,,,k k c k b k a zyx====∴zy x k abc 111=∵,∴. zy x 1111++=ω70=abc ∵为正整数,且≤≤ c b a ,,a b c ∴ 752107170⨯⨯=⨯⨯==abc ∴或10,7,1===c b a 7,5,2===c b a 当时,,不符合题意,舍去. 10,7,1===c b a 0===ωz y ∴.7,5,2===c b a 本节易错题例45. 计算_________.()()=-++44332121分析 对于对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn解:原式.2212212121=-++=-++=例46. 化简_________. ()()=-⋅-43111a a 分析:题目的隐含条件为. 1>a 解:原式.()()()()()()()414343431111111--=-⋅--=-⋅-=-⋅-=---a a a a a a a 例47. 已知,N*,化简.1,0><<n b a ∈n ()()nn nnb a b a ++-解:当为奇数时,原式; n a b a b a 2=++-=当为偶数时,原式.n b a b a ++-=∵,∴原式. 0<<b a a b a a b 2-=---=其它例48. 已知函数,则_________. ()⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛>=0,210,21x x x x f x ()=-)4(f f 解:∵ ()1621121444=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=--f ∴.()()4161616)4(21====-f f f 例49. 已知集合,,且,则_______.{}4,,2a a A -=⎭⎬⎫⎩⎨⎧-=b a aa B 2,,33B A ==+b a 解:{}{}4,,4,,2a a a a A -=-=根据集合元素的互异性,,∴a a -≠0>a ∴{}b b a a aa B 2,1,2,,33-=⎭⎬⎫⎩⎨⎧-=∴,解之得:.⎩⎨⎧==421b a ⎩⎨⎧==21b a ∴ 3.=+b a 例50. 设,若,则()244+=x xx f 10<<x _________. =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f 解:∵()244+=x x x f ∴()()=+++=+++=+++=-+--2422444444244244244111x x x x x x x x x x x x f x f 12424=++x x ∴ ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f.500111100150110015001001100010011=++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= f f f f。
指数与指数幂的运算练习题指数与指数幂的运算练习题在数学中,指数与指数幂是一种常见的运算形式。
通过这种运算,我们可以快速计算出大量的数值,同时也能够更好地理解数学中的乘方概念。
本文将介绍一些指数与指数幂的运算练习题,帮助读者提升运算能力。
一、简单指数运算1. 计算2的3次方。
解析:2的3次方等于2乘以2乘以2,即2 × 2 × 2 = 8。
2. 计算5的2次方。
解析:5的2次方等于5乘以5,即5 × 5 = 25。
3. 计算10的0次方。
解析:任何数的0次方都等于1,所以10的0次方等于1。
4. 计算(-2)的4次方。
解析:(-2)的4次方等于(-2)乘以(-2)乘以(-2)乘以(-2),即(-2) × (-2) × (-2) × (-2) = 16。
二、指数幂的运算1. 计算2的3次方乘以5的2次方。
解析:2的3次方等于8,5的2次方等于25,所以2的3次方乘以5的2次方等于8乘以25,即8 × 25 = 200。
2. 计算3的4次方除以3的2次方。
解析:3的4次方等于81,3的2次方等于9,所以3的4次方除以3的2次方等于81除以9,即81 ÷ 9 = 9。
3. 计算(-2)的3次方乘以(-2)的2次方。
解析:(-2)的3次方等于-8,(-2)的2次方等于4,所以(-2)的3次方乘以(-2)的2次方等于-8乘以4,即-8 × 4 = -32。
4. 计算10的5次方除以10的3次方。
解析:10的5次方等于100000,10的3次方等于1000,所以10的5次方除以10的3次方等于100000除以1000,即100000 ÷ 1000 = 100。
三、指数运算的特殊规律1. 计算2的3次方的平方。
解析:2的3次方等于8,所以2的3次方的平方等于8的平方,即8 × 8 = 64。
2. 计算3的4次方的开平方。
指数与幂的基本概念与运算指数与幂是数学中的重要概念,广泛应用于各个领域,如代数、几何和物理等。
本文将介绍指数与幂的基本概念,并探讨它们的运算规则。
一、指数的概念指数是幂运算中的一个重要概念,表示一个数的重复乘法。
指数通常用小数字写在大数字的上方,如2²表示2的平方,2³表示2的立方。
其中,2称为底数,2²称为2的平方,2³称为2的立方。
在指数运算中,指数表示要将底数乘以自身的次数。
二、幂的概念幂是指数运算中的结果,表示一个数被自身乘以指数次后的值。
幂也可以表示为乘方或次方。
例如,2²=4,2³=8,4⁴=256。
这里,4的4次方等于256。
三、指数与幂的运算规则1. 同底数幂相乘:若两个幂的底数相同,则它们的指数相加。
例如,3² × 3³=3⁵。
2. 同底数幂相除:若两个幂的底数相同,则它们的指数相减。
例如,5⁴ ÷ 5²=5²。
3. 幂的乘法:若指数相同,则幂的结果为底数相乘后的指数。
例如,2³ × 4³=8³。
4. 幂的除法:若指数相同,则幂的结果为底数相除后的指数。
例如,6⁵ ÷ 2⁵=3⁵。
5. 幂的幂:若一个幂的底数为另一幂,则它们的指数相乘。
例如,(2³)²=2⁶。
6. 幂的倒数:一个幂的倒数等于底数的倒数的幂。
例如,(3²)⁻¹=1/3²。
四、指数与幂的应用指数与幂在实际生活中有着广泛的应用。
例如,在科学计数法中,我们使用幂来表示非常大或非常小的数。
在物理学中,指数与幂可以表示速度、功率和能量等。
指数函数和对数函数是微积分中的基本函数。
此外,指数与幂也应用于金融领域,如复利计算和股票收益率的计算等。
总结:本文介绍了指数与幂的基本概念与运算规则。
指数表示重复乘法,幂表示数被自身乘以指数次后的值。
指数与指数幂的运算教学目标:1.了解根式的概念及表示方法. 理解根式的概念2.正确理解分数指数幂的概念,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算.教学重点:掌握n 次方根的求解. 有理数指数幂的运算. 教学难点:理解根式的概念,有理数指数幂的运算 教学过程: 一、复习:1、回顾初中根式的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一个数的立方等于a ,那么这个数叫做a 的立方根. →2、整数指数幂的运算二. 新课:1.根式的概念及运算:①2(2)4±=,2±就叫4的平方根;3327=,3就叫27的立方根.探究:4(3)81±=,3±就叫做81的?次方根, 依此类推,若n x a =,那么x 叫做a 的n 次方根. ② 定义n 次方根:一般地,若n x a =,那么x 叫做a 的n 次方根,其中1n >,n *∈N例如:328=2=③ 讨论:当n 为奇数时, n 次方根情况如何?, 例如3=3-,记:x 当n 为偶数时,正数的n 次方根情况? 例如: 4(3)81±=,81的4次方根就是3±,记: 强调:负数没有偶次方根,0的任何次方根都是0, 即0=④ 练习:4b a =,则a 的4次方根为 ; 3b a =, 则a 的3次方根为 .⑤radical ), 这里n 叫做根指数(radical exponent ), a 叫做被开方数(radicand ). ⑥计算2→ 探究:n 、n n a 的意义及结果? (特殊到一般)结论:na =. 当n 是奇数时,a a n n=;当n(0)||(0)a a a a a ≥⎧==⎨-<⎩2.分数指数幂概念及运算性质: 引例:a>01025a a === →?=; 32333232)(a a a == →?.定义分数指数幂:规定*0,,,1)mna a m n N n =>∈>;*10,,,1)m nm naa m n N n a-==>∈>1()(,)m n m n a a a m n Z +⋅=∈2()(,)m n m n a a a m n Z -÷=∈3()()(,)m n mna a m n Z =∈4()()()n n n ab a b n Z ⋅=⋅∈5()()()nn n a a n Z b b =∈练习:A.(0,,1)a m n N n *>∈>B. 求值 2327; 255; 436-; 52a -.讨论:0的正分数指数幂? 0的负分数指数幂?⑤ 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 指数幂的运算性质:0,0,,a b r s Q >>∈r a ·s r r a a +=; rs s r a a =)(; s r r a a ab =)(.3、无理指数幂的教学.(结合教材P 58利用逼近的思想理解无理指数幂意义) 无理数指数幂),0(是无理数αα>a a 是一个确定的实数.实数指数幂的运算性质?4、例题讲解 (P 5O 例题1):求下列各式的值(1)(2)(3)(4)三、巩固练习: 1.计算或化简:.2、;3、求值化简:a b <)4、求值:2327; 4316-; 33()5-; 2325()49-四、作业:1、化简:211511336622(3)(8)(6)a b a b a b -÷-;311684()m n2. 计算:122121(2)()248n n n ++-⋅的结果小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n为偶数时,x = 2.两个公式:(0),||(0)na a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时分数指数是根式的另一种写法.指数函数及其性质教学目标:理解指数函数的的概念和意义,能画出具体指数函数的图象,掌握指数函数的性质. 教学重点:掌握指数函数的的性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教学过程: 一、复习准备:1. 提问:零指数、负指数、分数指数幂是怎样定义的?2. 提问:有理指数幂的运算法则可归纳为几条? 二、讲授新课:1.指数函数模型思想及指数函数概念:定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R.讨论:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?→ 举例:生活中其它指数模型? 2. 指数函数的图象和性质:回顾:研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =探讨:函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?根据两个函数的图象的特征,归纳出这两个指数函数的性质. → 变底数为3或1/3后? 根据图象归纳:指数函数的性质 (书P56) 3、例题讲解例1:已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.例2:比较下列各题中的个值的大小(1)1.72.5与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1例3:求下列函数的定义域:(1)442x y -= (2)||2()3x y = (3) y =例4求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.例5、已知函数[]2,1,2329∈+∙-=x y x x ,求这个函数的值域例6、设函数f (x )是定义域为R ,当x>0时,有f (x )>1, 对任意x ,y 都有f (x+y )=f (x )∙f (y ).解不等式f (x ))1(1+≤x f .三、作业1、求函数132)(++=x x e e x f 的值域2、求函数xx x x f 2424)(1++=+的值域3、解不等式813122<+-x x小结1、理解指数函数(0),101xy a a a a =>><<注意与两种情况。
幂的运算与指数运算的关系幂的运算与指数运算是数学中非常重要的概念,两者之间有着密切的关系。
在本文中,我们将探讨幂的运算与指数运算的关系,并详细解释它们之间的相互作用。
首先,让我们来了解一下幂的运算。
在数学中,幂是指将一个数(称为底数)自乘若干次来得到的结果。
幂数(或指数)表示了底数自乘的次数。
例如,3的2次幂(记作3^2)表示3自乘两次,即3^2 = 3 × 3 = 9。
同样地,4的3次幂(记作4^3)表示4自乘三次,即4^3 = 4 × 4 × 4 = 64。
我们可以看到,幂数告诉我们底数需要自乘的次数。
而指数运算是指利用指数的规则对幂进行运算的过程。
指数运算可以进行加法、减法、乘法和除法。
以下是一些指数运算的规则:1. 幂的乘法规则:a的m次幂乘以a的n次幂等于a的m+n次幂。
即a^m × a^n = a^(m+n)。
例如,2的3次幂乘以2的4次幂等于2的7次幂,即2^3 × 2^4 = 2^7。
2. 幂的除法规则:a的m次幂除以a的n次幂等于a的m-n次幂。
即a^m ÷ a^n = a^(m-n)。
例如,5的6次幂除以5的3次幂等于5的3次幂,即5^6 ÷ 5^3 = 5^3。
3. 幂的幂规则:将a的m次幂的幂作为底数,幂数为n,等于a的m×n次幂。
即(a^m)^n = a^(m×n)。
例如,(3^2)^3等于3的2×3次幂,即(3^2)^3 = 3^(2×3)。
通过这些规则,我们可以在幂的运算中使用指数运算来简化计算过程。
指数运算的规则为我们提供了更方便、快捷的方法来处理幂。
此外,幂的运算与指数运算在实际问题中也有重要的应用。
在科学和工程领域中,我们经常需要对数据进行指数运算和幂运算。
通过运用指数和幂的概念,我们可以更好地理解和分析实际问题,并找到解决问题的方法。
总而言之,幂的运算与指数运算是数学中不可或缺的概念。