高中数学-指数与指数幂的运算(一)
- 格式:ppt
- 大小:339.00 KB
- 文档页数:42
2.1。
1指数与指数幂的运算第一课时根式根式[提出问题](1)若x2=9,则x是9的平方根,且x=±3;(2)若x3=64,则x是64的立方根,且x=4;(3)若x4=81,则x是81的4次方根,且x=±3;(4)若x5=-32,则x是-32的5次方根,且x=-2。
问题1:观察(1)(3),你认为正数的偶次方根都是两个吗?提示:是.问题2:一个数的奇次方根有几个?提示:1个.问题3:由于22=4,小明说,2是4的平方根;小李说,4的平方根是2,你认为谁说的正确?提示:小明.[导入新知]根式及相关概念(1)a的n次方根定义:如果x n=a,那么x叫做a的n次方根,其中n〉1,且n∈N*。
(2)a的n次方根的表示:n的奇偶性a的n次方根的表示符号a的取值范围n为奇数错误!Rn为偶数±错误![0,+∞)(3)根式:式子错误!叫做根式,这里n叫做根指数,a叫做被开方数.[化解疑难]根式记号的注意点(1)根式的概念中要求n>1,且n∈N*。
(2)当n为大于1的奇数时,a的n次方根表示为错误!(a∈R);当n为大于1的偶数时,错误!(a≥0)表示a在实数范围内的一个n次方根,另一个是-错误!,从而错误!n=a.根式的性质[提出问题]问题1:错误!3,错误!3,错误!4分别等于多少?提示:2,-2,2.问题2:错误!,错误!,错误!,错误!分别等于多少?提示:-2,2,2,2.问题3:等式错误!=a及(错误!)2=a恒成立吗?提示:当a≥0时,两式恒成立;当a〈0时,a2=-a,(a)2无意义.[导入新知]根式的性质(1)(错误!)n=a(n为奇数时,a∈R;n为偶数时,a≥0,且n〉1).(2)错误!=错误!(3)错误!=0。
(4)负数没有偶次方根.[化解疑难](错误!)n与错误!的区别(1)当n为奇数,且a∈R时,有错误!=(错误!)n=a;(2)当n为偶数,且a≥0时,有错误!=(错误!)n=a。
指数函数2.1.1指数与指数幂的运算预习课本P48~53,思考并完成以下问题(1)n次方根是怎样定义的?(2)根式的定义是什么?它有哪些性质?(3)有理数指数幂的含义是什么?怎样理解分数指数幂?(4)根式与分数指数幂的互化遵循哪些规律?(5)如何利用分数指数幂的运算性质进行化简?[新知初探]1.n次方根定义一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*个数n是奇数a>0 x>0x仅有一个值,记为naa<0x<0n是偶数a>0x有两个值,且互为相反数,记为±n aa<0x不存在*.2.根式(1)定义:式子na叫做根式,这里n叫做根指数,a叫做被开方数.(2)性质:(n>1,且n∈N*)①(na)n=a.②na n=⎩⎪⎨⎪⎧a,n为奇数,|a|,n为偶数.[点睛](n a)n中当n为奇数时,a∈R;n为偶数时,a≥0,而n a n中a∈R.3.分数指数幂的意义分数指幂正分数指数幂规定:amn=n a m(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-mn=1amn=1n a m(a>0,m,n∈N*,且n>1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义[点睛]分数指数幂amn不可以理解为mn个a相乘.4.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q).(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).5.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)任意实数的奇次方根只有一个.()(2)正数的偶次方根有两个且互为相反数.()(3)(π-4)2=4-π.()(4)分数指数幂a mn可以理解为mn个a相乘.()(5)0的任何指数幂都等于0.()-=答案=-:(1)√(2)√(3)√(4)×(5)×2.5a-2可化为()A.a2-5B.a52C.a25D..-a 52-=答案=-:A3.化简2532的结果是()A.5 B.15 C.25 D..125 -=答案=-:D4.计算:π0+2-2×⎝⎛⎭⎫21412=________.-=答案=-:118[例1] 化简: (1)n(x -π)n (x <π,n ∈N *);(2)64a 2-4a +1⎝⎛⎭⎫a ≤12. [解] (1)∵x <π,∴x -π<0. 当n 为偶数时, n(x -π)n =|x -π|=π-x ;当n 为奇数时, n(x -π)n =x -π.根式的化简与求值综上可知,n(x -π)n =⎩⎪⎨⎪⎧π-x ,n 为偶数,n ∈N *,x -π,n 为奇数,n ∈N *.(2)∵a ≤12,∴1-2a ≥0,∴64a 2-4a +1=6(2a -1)2=6(1-2a )2=31-2a .根式化简应遵循的3个原则(1)被开方数中不能含有能开得尽方的因数或因式. (2)被开方数是带分数的要化成假分数.(3)被开方数中不能含有分母;使用ab =a ·b (a ≥0,b ≥0)化简时,被开方数如果不是乘积形式必须先化成乘积的形式.[活学活用]1.若xy ≠0,则使4x 2y 2=-2xy 成立的条件可能是( ) A .x >0,y >0 B .x >0,y <0 C .x ≥0,y ≥0D .x <0,y <0解析:选B ∵4x 2y 2=2|xy |=-2xy ,∴xy ≤0. 又∵xy ≠0,∴xy <0,故选B.2.若(2a -1)2=3(1-2a )3,则实数a 的取值范围为________. 解析:(2a -1)2=|2a -1|,3(1-2a )3=1-2a .因为|2a -1|=1-2a , 故2a -1≤0,所以a ≤12.-=答案=-:⎝⎛⎦⎤-∞,12根式与分数指数幂的互化[例2] 用分数指数幂的形式表示下列各式(式中字母都是正数): (1)13a 2;(2)a 3·3a 2;(3)3b -a 2. [解] (1)13a2=12123a =a2-3. (2)a 3·3a 2=a 3·a 23=a 3+23=a113.(3) 3b -a 2=⎝⎛⎭⎫b -a 213=b 13·⎝⎛⎭⎫-1a 213=b 13·(-a -2) 13=-b 13a2-3根式与分数指数幂互化的规律(1)根指数 化为 分数指数的分母,被开方数(式)的指数 化为 分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.[活学活用]3.下列根式与分数指数幂的互化正确的是( ) A .-x =(-x )12(x >0) B.6y 2=y 13(y <0)C .x -34=4⎝⎛⎭⎫1x 3(x >0)D .x -13=-3x (x ≠0)解析:选C -x =-x 12(x >0);6y 2=[(y )2]16=-y 13(y <0);x -34=(x -3)14= 4⎝⎛⎭⎫1x 3(x >0); x 1-3=⎝⎛⎭⎫1x —13=31x(x ≠0). 4.将下列根式与分数指数幂进行互化: ①a4-3;②3a a (a >0);③a 3a ·5a 4(a >0).解:①a4-3=14a 3.②3a a =a 13·a 16=a 12.③原式=a 3·a1-2·a4-5=a143--25=a1710.[例3] 计算下列各式:(1)⎝⎛⎭⎫2350+2-2×⎝⎛⎭⎫214-12-0.010.5; (2)0.0641-3-⎝⎛⎭⎫-780+[(-2)3] 4-3+16-0.75;(3)⎝⎛⎭⎫141-223320.1()a b -- (a >0,b >0).3-2指数幂的运算[解] (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012=1+16-110=1615. (2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(3)原式=g 132244100·a 32·a 123-2·b3-2·b 32=425a 0b 0=425.利用指数幂的运算性质化简求值的方法(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示. [活学活用] 5.计算:(1)0.02713-⎝⎛⎭⎫61412+25634+(22)23-3-1+π0; (2)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (3)23a ÷46a ·b ·3b 3.解:(1)原式=(0.33) 13-⎣⎡⎦⎤⎝⎛⎭⎫52212+(44) 34+(223)23-13+1=0.3-52+43+2-13+1=64715.(2)原式=-4a -2-1b -3+1÷(12a -4b -2c ) =-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c.(3)原式=2a 13÷(4a 16b 16)·(3b 32) =12a 11-36b1-6·3b 32=32a 16b 43.[例4]已知a 12+a1-2=5,求下列各式的值:(1)a+a-1;(2)a2+a-2.[解](1)将a 12+a1-2=5两边平方,得a+a-1+2=5,即a+a-1=3.(2)将a+a-1=3两边平方,得a2+a-2+2=9,∴a2+a-2=7.[一题多变]1.[变结论]在本例条件下,则a2-a-2=________.解析:令y=a2-a-2,两边平方,得y2=a4+a-4-2=(a2+a-2)2-4=72-4=45,∴y =±35,即a2-a-2=±3 5.-=答案=-:±3 52.[变条件]若本例变为:已知a,b分别为x2-12x+9=0的两根,且a<b,求112211 22-a b a b+值.解:11221122-a ba b+=1122211112222--a ba b a b+()()()=12+-2-a b aba b()(). ①∵a+b=12,ab=9,②∴(a-b)2=(a+b)2-4ab=122-4×9=108.∵a<b,∴a-b=-6 3. ③条件求值问题将②③代入①,得11221122-a ba b+=129=-33.条件求值的步骤层级一 学业水平达标1.下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(-1)26B .0-2和012C .212和414D . 43-2和⎝⎛⎭⎫ 1 2 -3解析:选C 选项A 中,(-1) 13和(-1)26均符合分数指数幂的定义,但(-1) 13=3-1-1,(-1)26=6(-1)2=1,故A 不满足题意;选项B 中,0的负分数指数幂没有意义,故B 不满足题意;选项D 中,43-2和⎝⎛⎭⎫12-3虽符合分数指数幂的定义,但值不相等,故D 不满足题意;选项C 中,212=2,414=422=212=2,满足题意.故选C.2.已知:n ∈N ,n >1,那么2n(-5)2n 等于( ) A .5 B .-5 C .-5或5D .不能确定解析:选A2n(-5)2n =2n52n =5.3.计算⎝⎛⎭⎫8116-14的结果为( )A.23B.32 C .-23 D .-32解析:选A ⎝⎛⎭⎫8116-14=⎣⎡⎦⎤⎝⎛⎭⎫324-14=⎝⎛⎭⎫32-1=23.4.化简[3(-5)2]34的结果为( )A .5 B. 5 C .- 5 D ..-5解析:选B [3(-5)2]34=[(-5)23]34=512= 5.5.计算(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得( )A .-32b 2 B.32b 2 C .-32b 73 D.32b 73解析:选A 原式=-4-464a b a b-133-5=-32b 2.6.若x ≠0,则|x |-x 2+x 2|x |=________. 解析:∵x ≠0,∴原式=|x |-|x |+|x ||x |=1.-=答案=-:1 7.若x 2+2x +1+y 2+6y +9=0,则(x 2 019)y =___________________.解析:因为 x 2+2x +1+y 2+6y +9=0,所以(x +1)2+ (y +3)2=|x +1|+|y +3|=0,所以x =-1,y =-3.所以(x 2 019)y =[(-1)2 019]-3=(-1)-3=-1. -=答案=-:-1 8.614- 3338+30.125 的值为________. 解析:原式= ⎝⎛⎭⎫522- 3⎝⎛⎭⎫323+ 3⎝⎛⎭⎫123=52-32+12=32. -=答案=-:329.计算下列各式(式中字母都是正数): (1)⎝⎛⎭⎫2a 23b 12⎝⎛-6a 12b 13)÷⎝⎛⎭⎫-3a 16b 56 ; (2)(m 14n -38)8.解:(1)原式=[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4ab 0=4a . (2)原式=(m 14)8(n3-8)8=m 2n -3=m 2n3.10.已知4a 4+4b 4=-a -b ,求4(a +b )4+3(a +b )3的值. 解:因为4a 4+4b 4=-a -B. 所以4a 4=-a ,4b 4=-b , 所以a ≤0,b ≤0,所以a +b ≤0,所以原式=|a +b |+a +b =-(a +b )+a +b =0.层级二 应试能力达标1.计算(2n +1)2·⎝⎛⎭⎫122n +14n ·8-2(n ∈N *)的结果为( ) A.164 B .22n +5 C .2n 2-2n +6D.⎝⎛⎭⎫122n -7解析:选D 原式=22n +2·2-2n -1(22)n ·(23)-2=2122n -6=27-2n =⎝⎛⎭⎫122n -7. 2.1⎛⎫ ⎪⎝⎭12 0-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( )A .-13 B.13 C.43 D.73解析:选D 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73.故选D. 3.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 23B .a 55C .a 76D ..a 32解析:选Ca 2a ·3a 2=a 2a ·a 23=2=212a a ⨯53=a 2·a -56=a 2-56=a 76.4.设x ,y 是正数,且x y =y x ,y =9x ,则x 的值为( ) A.19B.43 C .1 D.39解析:选B ∵x 9x =(9x )x ,(x 9)x =(9x )x ,∴x 9=9x . ∴x 8=9.∴x =89=43.5.如果a =3,b =384,那么a [()]b a17n -3=________.解析:a [()]b a 17n -3=3384[()]317n -3=3[(128)17]n -3=3×2n -3. -=答案=-:3×2n -36.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 解析:由根与系数的关系得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.-=答案=-:14 2157.化简求值:(1)⎛⎫ ⎪⎝⎭792 0.5+0.1-2+⎛⎫ ⎪⎝⎭10272-23-3π0+3748;(2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4;(3)⎛⎫ ⎪⎝⎭383-23+(0.002)-12-10(5-2)-1+(2-3)0. 解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫64272-3-3+3748=53+100+916-3+3748=100. (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4=(23)23-(2-1)-3+(3-12)-6×⎣⎡⎦⎤⎝⎛⎭⎫3243-4=22-23+33×⎝⎛⎭⎫32-3=4-8+27×827=4. (3)原式=(-1)-23×⎛⎫ ⎪⎝⎭383-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+(500)12-10(5+2)+1=49+105-105-20+1=-1679.8.已知a =3,求11+a14+11-a14+11+a12+41+a的值. 解:11+a14+11-a14+11+a 12+41+a =2(1+)(1-)a a 1144+21+a12+41+a=21-a12+21+a12+41+a=4(1-)(1+)a a 1122+41+a=41-a +41+a =81-a 2=-1.。
2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。
某某省青龙满族自治县逸夫中学高中数学必修1第2章 基本初等函数〔1〕-1.示X 教案〔1.1 指数与指数幂的运算 第1课时〕本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质〔单调性、值域、特别点〕,通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质〔单调性、值域、特殊点〕;知道指数函数y=a x 与对数函数y=log a x 互为反函数〔a >0,a≠1〕,初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考〞的内容,有利于加强数学文化的教育,应指导学生认真研读.2.1 指数函数2.1.1 指数与指数幂的运算整体设计我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,表达数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化〞的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算. 推进新课提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维. 讨论结果:(1)假设x2=a,那么x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,假设x3=a,那么x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,那么这个数叫a的四次方根.一个数的五次方等于a,那么这个数叫a的五次方根.一个数的六次方等于a,那么这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,那么这个数叫a的n次方根.(4)用一个式子表达是,假设x n=a,那么x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出以下数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题〔2〕中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题〔2〕中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:〔1〕因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.〔2〕方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.〔3〕一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.〔4〕任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n 次方根的性质:①当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用n a -表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题. 解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n na =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a因此我们得到n 次方根的运算性质: ①(n a )n=a.先开方,再乘方〔同次〕,结果为被开方数. ②n 为奇数,n n a =a.先奇次乘方,再开方〔同次〕,结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方〔同次〕,结果为被开方数的绝对值.应用示例思路1例1求以下各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求以下各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数. 解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出以下各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a -3,(3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:此题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1以下各式中正确的选项是( ) (1)44a =a; (2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,此题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故此题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故此题错.(3)a 0=1是有条件的,即a≠0,故此题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故此题正确.所以答案选(4).点评:此题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,此题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 假设12a -a 2+=a-1,求a 的取值X 围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的选项是( )n a 表示(以上n >1且n∈N *).答案:C2.化简以下各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a 〔n >1,n∈N 〕哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①〔n a 〕n =a 〔n >1,n∈N 〕.如果x n =a 〔n >1,且n∈N 〕有意义,那么无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以〔n a 〕n =a 恒成立.例如:〔43〕4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a 443=3,40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即〔n a na 〕n =a 〔n >1,n∈N 〕是恒等式,n n a =a 〔n >1,n∈N〕是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. n =a,那么x 叫a 的n 次方根,其中n >1且n∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简以下各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.假设5<a<8,那么式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23. 答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.。