平面图形的认识知识回顾
- 格式:ppt
- 大小:783.00 KB
- 文档页数:34
八年级上册数学4章知识点数学,是一门既重要又深奥的学科。
它不仅包含着运算、几何等基本知识点,也有着与实际生活紧密相连的的应用,比如概率、统计等。
今天我们就来谈谈八年级上册数学第四章的知识点。
一、平面图形的认识平面图形是指一个位于二维平面中的图形,它通常由线段、直线等组成。
在认识平面图形时,我们需要学习点、线、角、面等基本概念,了解三角形、四边形、五边形、圆形等基本图形的特点。
二、平面图形的性质在学习平面图形的性质时,我们需要认识到不同的图形具有不同的性质。
比如,三角形的内角和等于180度,正方形四条边长相等,等腰三角形两边相等等等,这些性质都需要我们认真掌握并加以运用。
三、平面图形的周长和面积周长和面积是平面图形的重要性质之一。
周长指的是一个图形的边界长度,而面积指的是一个图形所占据的二维空间的大小。
在学习计算周长和面积的过程中,我们需要掌握各种图形的计算公式,比如三角形的周长公式、圆的面积公式等等。
四、圆的基本性质圆是平面上一类重要的几何图形,它具有一些独特的性质。
比如,圆的内切正多边形的边数越多,逼近圆的程度越高;圆内任意两点之间的弦不超过圆的直径等等。
掌握圆的基本性质,对于学习数学和实际生活都有很大的意义。
五、相似与全等在几何学中,相似和全等是两个重要的概念。
两个形状相同但大小不同的图形称为相似图形,而两个形状和大小都相同的图形称为全等图形。
在学习相似和全等的过程中,我们需要掌握它们的定义、性质、判定方法等等,以便运用到实际问题的解决中。
六、三角形的性质三角形是几何学中的基本图形之一,它有着很多特殊的性质。
比如,三角形的内角和等于180度,等腰三角形两边相等,直角三角形斜边长度等于两直角边长度平方和的开方等等。
在学习三角形的性质时,我们需要掌握不同类型三角形的特点,并灵活运用三角函数等相关知识。
以上就是八年级上册数学第四章的主要知识点。
在学习这些知识点时,我们需要认真思考、举一反三,灵活运用所学到的知识解决实际问题,这样才能真正掌握数学并运用于生活中。
目录第七章平面图形的认识〔二〕1第八章幂的运算2第九章整式的乘法与因式分解3第十章二元一次方程组4第十一章一元一次不等式4第十二章证明9第七章平面图形的认识〔二〕一、知识点:1、“三线八角〞①如何由线找角:一看线,二看型。
同位角是“F〞型;错角是“Z〞型;同旁角是“U〞型。
②如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等错角相等两直线平行两直线平行错角相等同旁角互补两直线平行两直线平行同旁角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行〔或在同一直线上〕并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
假设三角形的三边分别为a 、b 、c ,那么 b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的角和:三角形的3个角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个角的和;三角形的一个外角大于与它不相邻的任意一个角。
8、多边形的角和:n 边形的角和等于〔n-2〕•180°;任意多边形的外角和等于360°。
第八章 幂的运算幂〔power 〕指乘方运算的结果。
a n 指将a 自乘n 次(n 个a 相乘〕。
把a n 看作乘方的结果,叫做a 的n 次幂。
对于任意底数a,b ,当m,n为正整数时,有a m•a n =a m+n (同底数幂相乘,底数不变,指数相加)a m÷a n =a m-n (同底数幂相除,底数不变,指数相减)(a m)n =a mn (幂的乘方,底数不变,指数相乘)(ab)n =a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a 0=1(a ≠0) (任何不等于0的数的0次幂等于1)a -n =1/a n (a ≠0) (任何不等于0 的数的-n 次幂等于这个数的n 次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n 的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念求n 个一样因数的积的运算,叫做乘方,乘方的结果叫做幂。
初一平面图形的认识2知识点1. 平面图形的分类在初一的数学学习中,我们会接触到许多不同的平面图形。
根据图形的特征和性质,我们可以将平面图形分为以下几类:1.1 直线直线是最基本的平面图形,可以用于连接两个点。
直线是由无数个点组成的,延伸的方向上没有尽头。
1.2 射线射线是由一个起点向一个方向延伸出去的直线。
射线只有一个端点,并且在延伸的方向上没有尽头。
1.3 线段线段是由两个端点确定的直线部分。
线段有确定的长度,起点和终点之间没有延伸。
1.4 角角是由两条射线共享一个端点组成的图形。
角可以通过两条射线的夹角来衡量,常用单位是度或弧度。
1.5 矩形矩形是一个具有四个直角的四边形。
矩形的对边相等且平行,对角线相等。
1.6 正方形正方形是一种特殊的矩形,它的四个角都是直角,并且四条边相等。
1.7 三角形三角形是一个由三条线段组成的图形。
根据边的长度和角的大小,三角形可以进一步分为等边三角形、等腰三角形和一般三角形。
1.8 平行四边形平行四边形是一种具有两对平行边的四边形。
平行四边形的对边相等且平行。
2. 平面图形的性质和特征了解平面图形的性质和特征有助于我们更好地认识和理解它们。
2.1 直线的性质 - 直线没有宽度和长度,可以延伸到无穷远。
-直线上的任意两点可以被直线上的任意一点所连接。
- 直线上的两个相邻角互补,即它们的和为180°。
2.2 角的性质 - 角的单位通常使用度或弧度来衡量。
- 角的大小可以用角度来表示,度数为0到360之间。
- 两个互补角的和为90°,两个补角的和为180°。
2.3 矩形的性质 - 矩形的对边相等且平行。
- 矩形的所有内角都是直角(90°)。
- 矩形的对角线相等且互相平分。
2.4 三角形的性质 - 三角形的三个内角的和为180°。
- 等边三角形的三条边相等,三个内角也相等(都是60°)。
- 等腰三角形的两个底角相等。
线段、射线和直线线段、射线和直线关系:直线和射线、线段是整体与部分的关系: (1)射线和线段都是直线的一部分。
(2)在射线上取一点可得线段。
(3)在直线上取一点可得两条射线,取两点可得一条线段。
线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况. (2)“连结 ”就是指画以A 、B 为端点的线段. 线段的表示方法:(1)用它的两个端点的大写字母来表示; (2)线段也可以用一个小写字母来表示。
线段AB ;线段ɑ 表示:线段AB 或线段BA 或线段a 射线的画法:(1)画射线一要画出射线端点 ;(2)要画出射线经过一点,并向一旁延伸的情况. 表示:射线AB 射线的表示方法: 射线AB ;(端点字母写在前,射线AB 和射线BA 不同) 表示:射线BA直线的画法:只能画出一部分,不能画端点。
直线的表示方法: 表示:直线MN 或直线NM 或直线a在直线取两点MN ,表示为直线MN 或直线NM ,或直线a;线段、射线和直线比较:相同点:它们都是由无数个点构成的,都是直的,都没有粗细。
不同点:⑴从端点上看:线段有两个端点,射线有一个端点,直线没有端点;⑵线段不能延伸,可度量;射线向一方无限延伸,直线向两个方向无限延伸,都不可度量。
ABaA B B AMNa重要知识点:(1)两点之间的所有连线中,线段最短。
我们把这条线段的长,就叫做这两点之间的距离;两点之间线段的长度,叫做这两点之间的距离 (2)经过一点可以画无数条直线; (3)经过两点只可以画一条直线;(4)线段上有一点B ,点B 把线段AC 分成两条相等的线段AB 和BC ,点B 叫做线段AC 的中点。
(注意:B 点一定要在线段上取。
) 若AB=AC则:点B 为线段AC 的中点角角的概念:(1)角是两条有公共端点的射线所组成的图形,这个公共端点叫这个角的顶点。
(2角也可以看成是一条射线绕着它的端点旋转到另一个位置的所形成的图形。
MOa第六章:平面图形的认识第一节:直线、射线、线段知识点1:概念线段:一段拉直的棉线可近似地看作线段,线段有两个端点。
线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
如手电筒、探照灯射出的光线等。
射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况. 直线:将线段向两个方向无限延长就形成了直线,直线没有端点。
如笔直的铁轨等。
直线的画法:用直尺画直线,但只能画出一部分,不能画端点。
知识点2:线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示如图: 记作线段AB 或线段BA ,记作线段a ,与字母顺序无关 此时要在图中标出此小写字母温馨提示:线段是直线(或射线)的一部分;2.线段不可向两方无限延伸,但可度量;3.延长线常化成虚线;4.延长线段AB 是指按A 到B 的方向延长,延长线段BA 是指按B 到A 的方向延长. (3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面如图:记作射线OM,但不能记作射线MO温馨提示:1.射线是直线的一部分;2.射线是像一方无限延伸,有一个端点,不能度量,不能比较大小;3.射线可作反向延长线,不存在射线的延长线。
(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示 如图:记作直线AB 或直线BA,记作直线l与字母顺序无关。
此时要在图中标出此小写字母知识点3:线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。
区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:BA BAl知识点4:直线的基本性质(重点)(1) 经过一点可以画无数条直线 (2) 经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线) 注:“确定”体现了“有”,又体现了“只有”。
平面图形的认识知识点(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平面图形的认识(二)平行一、平行:1、在同一平面内,不相交的两条直线叫做平行线.2、平行线的定义包含三层意思:①“在同一平面内”是前提条件;②“不相交”是指两条直线没有交点;③平行线指的是”两条直线”,而不是两条射线或两条线段.3、平行公理:经过一条直线外一点有一条并且只有一条直线与已知直线平行.4、推论:(平行线的传递性):设a、b、c是三条直线,如果a二、三线八角:两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD 被直线EF所截,直线EF为截线.两条直线AB、CD被直线EF所截可得8个角,即所谓“三线八角”.(一)、这八个角中有:1、对顶角:∠1与∠3,∠2与∠4,∠5与∠7,∠6与∠8.2、邻补角有:∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1,∠5与∠6,∠6与∠7,∠7与∠8,∠8与∠5.(二)、同位角,内错角,同旁内角:1、同位角:两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的二个角叫同位角.如图中的∠1与∠5分别在直线AB、CD的上侧,又在第三条直线EF的右侧,所以∠1与∠5是同位角,它们的位置相同,在图中还有∠2与∠6,∠4与∠8,∠3与∠7也是同位角.2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二个角叫内错角.如上图中∠2与∠8在直线AB、CD的内侧(即AB、CD之间),且在EF的两旁,所以∠2与∠8是内错角.同理,∠3与∠5也是内错角.3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条直线的同旁的两个角叫同旁内角.如上图中的∠2与∠5在直线AB、CD内侧又在EF的同旁,所以∠2与∠5是同旁内角,同理,∠3与∠8也是同旁内角.4、因此,两条直线被第三条直线所截,共得4对同位角,2对内错角,2对同旁内角.三、直线平行的条件(判定):1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简记为:同位角相等,两直线平行2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为:内错角相等,两直线平行3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为:同旁内角互补,两直线平行四、平行线的性质:1、两条平行线被第三条直线所截,同位角相等.简记为:两直线平行,同位角相等2、两条平行线被第三条直线所截,内错角相等.简记为:两直线平行,内错角相等3、两条平行线被第三条直线所截,同旁内角互补,简记为:两直线平行,同旁内角互补平移一、平移的概念:把图形上所有点都按同一方向移动相同的距离叫作平移。
初一数学期末复习讲义复习内容:第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直 一、知识点复习及例题选讲 1、知识点1 :(1)线段、射线、直线的异同点:(2)线段的统计方法:看线上端点的个数为n 个,则有n(n-1)/2条线段。
射线的统计方法:直线上端点的个数为n 个,则有2n 条射线;其中有2条不好用图中字母表示。
射线上端点的个数为n 个,则有n 条射线;其中有1条不好用图中字母表示。
例 1、已知点A 、点B 、点C 是直线上的三个点,则下图中有_____条线段,它们是 ,有____射线,能用图中字母表示的有 ,有_________条直线,它们是 ,。
ABC例 2、判断题:射线AB 与射线BA 表示同一条直线. ( )例 3、根据图形,下列说法:①直线AC 和直线BD 是不同的直线;②直线AD=AB+BC+CD ;③射线DC 和射线DB 不是同一条射线;④射线AB 和射线BD 不是同一条射线;⑤线段AB 和线段BA 是同一条线段。
其中正确..的是 ( ) A 、1个 B 、2个 C 、3个 D 、4个2、知识点2 :(1)两点之间的所有连线中,线段最短。
(2)两点之间线段的长度叫做这两点之间的距离。
(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离。
例 1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设④把弯曲的道路改直,就能缩短路程。
其中可用“两点之间,线段最短.........”的道理来解释的现象有__________.例 2、判断题:连结两点的线段叫做两点之间的距离.( )例 3、 如图,从A 地到B 地有①、②、③三条路可以走,每条路长分别为n m l 、、(图中、表示直角),则第_________条路最短,另两条路的长短关系为__________________。
第七章 平面图形的认识(二)一、知识梳理1、在同一平面上,两条直线的位置关系有 或者 .练习:平面内三条直线的交点个数可能有 ( )A. 1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个2、判定与性质:什么叫做平行线?在同一平面内, 的两直线叫平行线。
的两直线平行。
判 定性 质(1) ,两直线平行。
(2) ,两直线平行。
(3) ,两直线平行。
(1)两直线平行, 。
(2)两直线平行, 。
(3)两直线平行,互补。
如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
(等积变形)(2)如图,长方形ABCD 的面积为16,四边形BCFE 为梯形,BC 与DE 交于点G,则阴)如图,对面积为,使得记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5= .(4)已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C ,连接AB ,AC ,BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有 个.(1)如图,边长为3cm ,与5cm 的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积是______cm 2(π取3).F3、图形的平移 在平面内,将一个图形沿着________________移动____________,这样的____________叫做图形的平移。
4、平移的性质(1)平移不改变图形的_______、________,只改变图形的_________。
七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。
在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。
本文旨在介绍七年级上册几何初步知识点,供学生参考。
一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。
线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。
面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。
1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。
四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。
多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。
多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。
二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。
一个角包含两个部分,即顶点和两条边。
角可以分为锐角、直角、钝角等。
2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。
线段是由两个端点和这两个端点之间的线段组成的线。
射线是由一个端点和一个方向组成的线段。
直线图形具有平移不变性、旋转不变性、翻转不变性等特点。
线段与射线也具有相似的性质。
2.3 物体的转动物体的转动分为旋转和翻折。
旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。
翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。
三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。
坐标系原点是两条直线的交点。
3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。