- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
,
1 4
, 1
,
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
D1
F1
C1
DF1
0
,
1 4
,1
(0
,
0
,
0)
0
,
1 4
,1 .
A1
E1 B1
BE1
DF1
0
0
1 4
1 4
11
15 16
,
D
O
A
x
C
y | BE1、
B(x2 , y2 , z2 ),则 AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
d A,B ( x2 x1)2 ( y2 y1)2 (z2 z1)2
2.两个向量夹角公式
cos a,b a b | a || b |
注意:
a1b1 a2b2 a3b3
;
a12 a22 a32 b12 b22 b32
(1)当 cos a , b 1 时,a 与 b 同向; (2)当 cos a , b 1 时,a 与 b 反向;
(3)当cos a , b 0 时,a b 。
a // b a1 b1,a2 b2 ,a3 b3( R) ; a1 / b1 a2 / b2 a2 / b2 .
a b a1b1 a2b2 a3b3 0 ;
已知=(3,-2,4),=(-2,5,-3),则
a b __________
a b __________
3a 5b ________________
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
解:设正方体的棱长为1,如图建
D1
F1
C1
立空间直角坐标系 O xyz ,则
A1
E1 B1
B(1,1, 0)
,
E1 1,
3 4
, 1
,
D
O
A
x
Cy
D(0 , 0 , 0)
,
F1
0
,
1 4
,1 .
B
BE1
1 ,
3 4
, 1
(1,1,
0)
(1) A(1,1, 0) , B(1,1,1) ;
(2) C(3 ,1, 5) , D(0 , 2 , 3) .
三、应用举例
例1 已知A(3 , 3 ,1)、B(1, 0 , 5) ,求:A (1)线段 AB 的中点坐标和长度;
解:设 M(x , y , z) 是 AB的中点,则
M
B
OM
1 2
(OA
OB)
1 2
(3 ,
3
, 1)
1 ,
0
,
5
2
,
3 2
,
3
,
O
∴点 M的坐标是
2
,
3 2
,
3
.
dA,B (1 3)2 (0 3)2 (5 1)2 29 .
(2)到 A 、B两点距离相等的点 P(x , y , z) 的
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、B 的距离相等,则
思考:当 0 cos a , b 1 及1 cos a , b 0 时,的夹角在什么范围内?
练习一: 1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1 , 0 , 0) ;
(2) a (1, 1,1) , b (1, 0 ,1) ; 2.求下列两点间的距离:
(x 3)2 ( y 3)2 (z 1)2 (x 1)2 ( y 0)2 (z 5)2 ,
化简整理,得 4x 6 y 8z 7 0 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x 6 y 8z 7 0
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
3.1.5 空间向量运算的坐标
表示
一、向量的直角坐标运算
设a (a1, a2 , a3), b (b1,b2 , b3)则
a b (a 1b1,a2 b2 ,a3 b3 ) ; a b (a 1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R) ;
a b a1b1 a2b2 a3b3 ;
a b __________
(2a b) (a 2b) ____
二、距离与夹角
1.距离公式
(1)向量的长度(模)公式
| a |2 a a a12 a22 a32
| b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式 终点坐标减
思考题:
九州娱乐网 九州娱乐网 uyd31vau
说:“是这样的,树和庄禾一样,长得过密了就会合挤着往上窜!”耿直不解,瞪着俩眼儿问爹爹:“那又是为什么呢?”耿 老爹怜爱地看着小儿子骨碌碌转动黑眼珠,伸手摸摸他的脑袋意味深长地说:“它们得晒太阳啊!晒不着太阳,它们就长不结 实哩!”“唔,我明白了。这树和庄禾晒太阳,敢情就好像我们人吃饭一样啊!”耿直的话把大家都给逗乐了。小青拍着手说: “我终于知道了,为什么你们三个吃饭都那么香呢,原来是争着晒太阳啊!”耿英追上去要打小青,嘴里直嚷着:“好你这张 利嘴,看我怎么收拾你!”小青咯咯地笑着拐个弯儿突然不见了。大家快步追上去也都来了一个90度的急转弯,这才发现, 眼前已经是齐刷刷的一排淋灰池子了。小青调皮地说:“怎么样,我就说藏着的嘛!”耿正说:“真还别说,要不是到了跟前, 谁会想到就在这里了呢!”小青用手指着十几步之外的几间平房说:“耿伯伯,卖石灰膏的人就住在那里!”于是,大家一起 向那几间平房走去。还没有走出几步,一只硕大的黑狗突然窜了出来,冲着众人“汪汪汪”直叫,凶巴巴的大有随时就要冲上 来的样子。耿正赶快就手捡起一根木棍拿在手里,挺身挡在大家的面前。耿直也随手拾起一块儿石头做出要扔出去的姿势。大 黑狗不敢往前冲了,但仍然还站在原地狂吠不止。耿老爹说:“你们不要打它!它一叫,卖石灰膏的人就会出来了。”果然, 耿老爹话音未落,就见一个略显肥胖的中年男人走了出来。他上下打量着对面的五个人,突然认出小青来了,大声说:“哦, 这不是小青姑娘吗?这几个人是”小青接过他的话音说:“来买你们的石灰膏!”中年男人笑了,说:“好一个嘎巴萝卜脆! 来买我们的石灰膏,好啊,快请屋里坐!”说着,轻轻踢一脚那只大黑狗:“去,一边去!”大黑狗乖乖地溜达到一边卧着去 了。耿老爹说:“这位兄弟啊,不用进屋啦,我们就在这里说话吧。喏,我先看看你们的货。可以吗?”中年男人说:“当然 可以了。靠西边这五个池子里的石灰膏都已经熟透了,你随便看啊。”说着,弯下腰挨着个儿掀起覆盖在池子上面的油布,请 大家逐个查看池子里的石灰膏。耿老爹看到每一个池子里的石灰膏都非常干净细腻,实在无可挑剔,就说:“行,我要买五间 新屋亮家所需要的石灰膏,价格就按照你们的销售价吧。我不砍你们的价,但你们一定得给我把料装足了!”中年男人说: “大哥你办事痛快,我自然也要够意思了!”他说完这话,随即大声地冲屋子里喊:“大伢子,肥子,你们快出来,装石灰膏 送货去啊!你们推两挂车过来,再带上八只最大号的桶!”只见一个大个子的年轻后生和另一个胖墩墩的大男娃儿应声而出。 俩人从旁边的一间房子里推出来两挂大块头的平车
17 4 , | DF1 |
17 . 4 15
B
cos
BE1
,
DF1
|
BE1 DF1 BE1 | | DF1
|
16 15 . 17 17 17 44
练习二:
D1 F A1
D A
C1 B1
E
C B
练习三:
C1
A1
B1
M
N C
A
B
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。