甲烷和氢呼气-sim
- 格式:ppt
- 大小:3.12 MB
- 文档页数:64
氢气甲烷二氧化碳呼气试验新技术新项目氢气甲烷二氧化碳呼气试验是一项新技术新项目,在现代科学研究和应用领域具有重要的意义。
本文将从背景介绍、技术原理、应用前景和发展趋势等方面进行详细阐述。
**一、背景介绍**随着工业化进程的加快和环境污染问题的日益严重,人们对清洁能源和环保技术的需求日益迫切。
氢气、甲烷和二氧化碳是目前广泛使用的能源和工业原料,它们的燃烧和排放对环境和人类健康造成了严重影响。
因此,如何有效地监测和控制这些气体的排放就成为了当前研究的热点之一。
**二、技术原理**氢气甲烷二氧化碳呼气试验是一种基于气体检测技术的新方法,通过对气体中氢气、甲烷和二氧化碳浓度的监测和分析,实现对工业生产和燃烧过程中这些气体排放的实时监测和控制。
该技术主要包括气体采集、样品预处理、气体分析和数据处理等几个步骤。
首先,需要采集目标气体的样品,并经过一定的预处理使其达到分析要求。
然后,利用气体分析仪器对样品进行定量分析,得出氢气、甲烷和二氧化碳的浓度。
最后,将分析结果进行数据处理和分析,实现对气体排放的监测、预警和控制。
**三、应用前景**氢气甲烷二氧化碳呼气试验技术具有广泛的应用前景。
首先,它可以在环保监测领域得到广泛应用,如在工业废气处理、城市环境监测和生态保护等方面。
其次,该技术也可以应用于石油化工、煤炭化工、电力和环保等领域。
另外,随着新能源、清洁能源和低碳经济的快速发展,氢气甲烷二氧化碳呼气试验技术将在新能源开发、能源转化和能源利用等方面发挥重要作用。
**四、发展趋势**在未来,氢气甲烷二氧化碳呼气试验技术有望在监测、控制和利用氢气、甲烷和二氧化碳排放方面发挥更大的作用。
随着气体分析技术的不断进步和仪器设备的不断更新,该技术将更加精准、快速和可靠。
同时,随着大数据、人工智能和云计算等技术的广泛应用,氢气甲烷二氧化碳呼气试验技术将实现更高程度的自动化、智能化和信息化。
总之,氢气甲烷二氧化碳呼气试验技术作为一种新技术新项目,具有广阔的应用前景和发展空间,将在环保监测、工业生产和清洁能源等领域发挥越来越重要的作用。
氢呼气试验(HBT)图1. 氢/甲烷呼气试验基本原理氢呼气试验(hydrogen breath tests)指测定口服某种化合物后呼气中的氢气(hydrogen)浓度变化而诊断胃肠疾病的一类检验方法。
仪器条件许可时,除了氢气还同时作甲烷(methane)浓度测定,故试验有时也称为氢/甲烷呼气试验。
我院目前常规开展的项目有:1.葡萄糖氢呼气试验诊断小肠细菌过生长; 2. 乳果糖氢呼气试验测定口-盲肠通过时间,也可同时诊断小肠细菌过生长。
人和哺乳动物细胞代谢不产生氢气和甲烷,呼气中的氢气和甲烷来源于机体细菌对碳水化合物的发酵。
大肠是身体含细菌最多的地方,而胃和小肠的细菌量是很少的。
所以,餐后一段时间出现的呼气氢和甲烷浓度上升显然就是大肠细菌对食物残渣碳水化合物的发酵的结果。
经过一段时间的禁食,残渣中的可分解碳水化合物耗尽,呼气氢气和甲烷浓度将回复到大气水平。
葡萄糖是一种极易被小肠迅速完全吸收的碳水化合物。
因此,健康人口服一定剂量的葡萄糖后不会出现呼气氢气和甲烷浓度上升的现象,因为几乎没有多余的葡萄糖进入大肠。
相反,小肠细菌过生长的病人,口服的葡萄糖在被小肠吸收的同时也被过量的小肠细菌分解产气。
乳果糖是一种不能消化吸收的人工合成碳水合物。
因此,口服一定剂量的乳果糖后将会出现呼气氢气和甲烷浓度上升的现象,从口服起到呼气氢气和甲烷浓度上升的时间便是药物从口到大肠起点盲肠的运行时间,简称口-盲通过时间,它大致反映了小肠的动力状态。
如果有小肠细菌过生长的存在,口服的乳果糖在到达大肠前就会提前被分解,结果出现两次产气高峰。
基本步骤除白开水外禁食禁饮12h以上采集0时气样口服试验糖餐再次采集气样测定报告注意事项1.严格空腹和饮食控制耗尽食物残渣中碳水化合物,让呼气氢气和甲烷浓度保持在大气水平是氢呼气试验的前提条件。
试验前一天的饮食以清淡易消化为宜,晚餐必须在8点前结束、只能喝白稀饭,餐后禁止白开水以外的一切食物或饮料,空腹时间一定要超过12小时!2.严禁吸烟烟草燃烧产生大量的氢气,吸烟者在试验前至少要禁烟一小时。
甲烷和氢呼气可以检查的项目丁文京博士北美医学教育基金会甲烷和氢呼气检测技术在临床有重要的应用前景,可以广泛应用于以下一些检查。
碳水化合物吸收不良:甲烷和氢呼气试验可以检测各种由于先天性或后天性糖类分解酶分泌不足造成的碳水化合物吸收不良。
中国人常见的先天性糖类分解酶不足有乳糖酶缺乏导致的乳糖不耐受。
不常见,但是传统方法比较难以诊断的果糖酶缺乏导致的果糖不耐受、蔗糖酶缺乏导致的蔗糖不耐受等,以及山梨醇酶缺乏导致的山梨醇不耐受等。
后天性糖类分解酶不足,多由于疾病导致。
常见的有由于腹泻导致的乳糖酶缺乏,慢性胰腺疾病导致的胰淀粉酶缺乏等。
检验时给受试者服用特定的糖(常用50g糖,儿童根据每kg体重1g计算),当肠道缺乏相应的酶时,小肠不能完全吸收这些糖,那些不能被吸收的糖进入结肠后被细菌酵解产生甲烷和氢,由此可以判断是否存在酶缺乏。
对于由于慢性胰腺疾病导致的胰淀粉酶缺乏,可以服用100g淀粉或米粉,胰淀粉酶缺乏导致小肠不能完全吸收淀粉或米粉,在结肠段出现甲烷和氢呼气高峰。
小肠细菌过度生长:正常人体小肠部分细菌很少,当服用糖类后尽产生很少的甲烷和氢,基本在基线水平。
当小肠有细菌后,可以酵解糖产生甲烷和氢,当氢呼气值高于基线值12ppm,或者氢气值加甲烷值高于基线值15ppm时表示小肠内有高于正常数量的细菌,临床上称为小肠细菌过度生长(Small Intestinal Bacteria Overgrowth,简称SIBO,欧洲常用Small Bowel Bacteria Overgrowth,简称SBBO)。
用甲烷和氢呼气检测小肠细菌过度生长,可以帮助了解肠道微生态的变化,在诊断和治疗由于菌群移位和菌群失调导致的疾病方面提供有重要价值的帮助。
国内外有大量研究证明肠道菌群失调可以导致人体多个系统的病变。
通过检测小肠细菌过度生长可以打开了解包括糖尿病、心血管、肝脏等疾病的新思路。
口盲时间:即从糖入口到达盲肠的时间,又称口盲传输时间(Orocecal Transit Time, OCTT),用以反映胃肠蠕动速度,检测多种与胃肠传输速度有关的疾病,或者评估某些疾病状态在胃肠传输的功能。
甲烷氢呼气试验操作流程一、试验前准备。
1. 饮食要求。
这个试验啊,对饮食可有要求啦。
在试验前一天呢,咱们可不能吃那些高纤维的食物哦,像什么芹菜啦、韭菜啦,这些都得先放放。
还有豆类,它们容易在肚子里产气,也别吃啦。
另外呢,试验前12小时要禁食禁水,这一点可一定要记住哦,不然会影响试验结果的。
就像你要参加一场很重要的比赛,得遵守规则才能取得好成绩呀。
2. 患者告知。
我们得跟患者好好聊一聊这个试验。
要告诉患者这个试验是怎么做的,大概需要多长时间,让患者心里有个底。
比如说,“亲,这个试验不会很复杂的,就是让您吹吹气,大概要两三个小时呢,您只要放松就好啦。
”还要告诉患者在试验过程中如果有什么不舒服的地方,一定要及时跟我们说哦,我们就像您的小管家,会随时照顾您的。
二、试验过程。
1. 基础呼气采集。
首先呢,让患者安静休息15 30分钟,就像让身体先适应一下这个即将开始的小测试。
然后给患者一个专门用来收集气体的袋子或者容器,让患者正常呼气,把这口气收集起来。
这就像是收集一个小样本,作为基础数据。
这个时候我们可以跟患者开个小玩笑,比如说“亲,您就像吹生日蜡烛一样,轻轻吹就好啦。
”2. 口服底物。
接下来,让患者口服特定的底物,这个底物就像是一个小钥匙,用来打开我们身体里某些反应的大门。
口服底物的时候,要确保患者完全服下,可不能洒出来或者剩下哦。
3. 定时呼气采集。
在口服底物之后呢,就开始按照规定的时间间隔来采集患者呼出的气体啦。
一般是每隔15 30分钟采集一次。
这个时候,我们要温柔地提醒患者,“亲,又到了吹气的时间啦,您感觉怎么样呢?”在采集气体的时候,要保证收集的气体量足够,还要标记好每次采集的时间。
这就像在做一个很有趣的记录游戏一样,每个时间点的气体都很重要呢。
三、试验后注意事项。
1. 患者观察。
试验结束后,可不能马上就让患者走哦。
我们要观察患者一会儿,看看患者有没有什么不舒服的地方。
就像在照顾一个刚做完小冒险的小朋友一样,要确保他一切都好。
Eur opean Rev iew for Med ical and Pharmacol ogical Sci ences 1328Abstract. –Background and Objectives:Calprotectin is a protein especially expressed in neutrophil cytosol. In the la st few yea rs, Feca l calprotectin (FC) turned out to be a direct mark-er of ga strointestina l infla mma tion. Beca use of the simplicity of the method, it has been studied in several gastroenterologic diseases but no da-ta a re a va ila ble a bout its concentra tion in chil-dren with Sma ll Intestina l Ba cteria l Overgrowth (SIBO), a complex and not well known condition defined by an excessive germs proliferation, es-pecially anaerobic, in the small bowel, and char-acterized by dyspeptic and malabsorption symp-toms. The aim of this study was to evaluate FC va lues in children with SIBO, compa ring to healthy subjects, in order to clarify if an inflam-matory process coexists with SIBO.Materials and Methods:We enrolled fifty-eight children affected by SIBO, as diagnosed by Lactu-lose Breath Test (LBT). They were assessed for FC values on stool samples. We compared them with a control population of 60 healthy children.Results:In SIBO pa tients, a media n va lue of 36.0 mg/kg and a mean value ± SD of 43.0 ± 31.6mg/kg were calculated, while in healthy controls the median value was 29.5 mg/kg and the mean va lue ± SD wa s 35.7 ± 20.7 mg/kg, showing no sta tistica lly significa nt differences between the two groups (p = 0.07).Conclusions:FC va lues a re nega tive in chil-dren a ffected by SIBO, not differing from those obtained in healthy children, suggesting that no subclinica l intestina l infla mma tion involving neutrophils occurs in patients with higher prolif-eration of bacteria in the small bowel. The pres-ence of high FC levels in children affected by SI-BO might not be caused by bacterial overgrowth itself and, in this case, another cause should be investigated.Key Words:Fecal calprotectin, Small intestinal bacterial over-growth, Children, Lactulose breath test.Corresponding Author:Claudia Fantacci, MD; e-mail: claudiafantacci@yahoo.itIntroductionCalprotectin is a 36 kDa Calcium and Zincum binding protein which belongs to the S100 pro-tein family 1and it is mapped on the gene q12-q21 on chromosome 12. The S100 protein family is composed by about twenty proteins which are expressed in various cell types and have in com-mon the skill to bind Calcium ion, a second mes-senger which activates their function. S100 pro-tein family is involved in the complicated mecha-nisms of the intracellular transduction, than it takes part in the regulation of various processes such as protein phosphorylation, transcription,cell differentiation, cell cycle regulation, cell growth and proliferation, cell motility, inflamma-tory and immune response regulation 3. In partic-ular, Calprotectin has been described for the first time in 1980 by Fagerhol et al.4, who isolated it from leukocytes and named it “L1 protein”. Af-terwards, it has been found in cells, tissues and fluids in all parts of human body 5, but its pecu-liarity is to be expecially expressed in neutrophil cytosol. In fact, here its concentration is estimat-ed at 5-15 mg/ml and it constitutes about 5% of total proteins in neutrophil granulocytes 4,6. This entails that in inflammatory reactions, with neu-trophil activation and death, Calprotectin is re-leased and then its concentration in body fluids increases, constituting a marker of those inflam-matory processes in which neutrophil granulo-cytes are involved 7-9. Consequently, concerning gastrointestinal diseases, when there is an in-flammatory process in gastrointestinal mucosa,Calprotectin is released in the gut lumen and then it can be retrieved in feces 10-12. When, in 1992,Røseth et al.13described the method for the ex-traction and the assessment of Calprotectin in fe-ces, to quantify its concentrations in various gas-2011; 15: 1328-1335Fecal Calprotectin concentration in children affected by SIBOC. FUNDARÒ, C. FANTACCI, V . ANSUINI, V . GIORGIO, S. FILONI, F . BARBARO*, A. GASBARRINI*, C. ROSSI**Department of Pediatric; *Department of Gastroenterology and **Clinical Chemistry Laboratory,School of Medicine, Catholic University of the Sacred Heart, Gemelli Hospital, Rome (Italy)trointestinal diseases became possible. Because of the simplicity of the method, in the last few years fecal Calprotectin (FC) has been evaluated in various gastrointestinal disorders14-17and has emerged as a sensible and useful marker of gas-trointestinal inflammation, becoming an impor-tant aid in clinical practice.Small Intestinal Bacterial Overgrowth (SIBO) is a qualitative and quantitative variation of intesti-nal flora characterized by an excessive germs pro-liferation, especially anaerobic, in the small bow-el, exceeding 105Colony Forming Unit (CFU) of organisms per ml of intestinal juice18. This disor-der is not actually well known, and for explaining its pathogenesis several factors have been thought to be involved. A number of conditions which can compromise the delicate equilibrium of the gas-trointestinal tract have been supposed to play a role, such as intestinal dismotility (diabetic neu-ropathy, scleroderma, accelerated gastric empty-ing, chronic renal failure), gastrointestinal anato-my changes (gastric atrophy, small bowel divertic-ulosis, intestinal stenosis, gut surgery, resection of the ileocecal valve), hypo or achlorydria, ageing, immunodeficiency and malnutrition19. With regard to clinical aspects, patients affected by SIBO can suffer from dyspeptic and malabsorption symp-toms, such as bloating, meteorism, abdominal dis-comfort or pain, flatulence, diarrhea, steatorrhea, weight loss and anaemia20. The diagnosis of SIBO can be assessed with different methods. The gold standard is the culture of upper intestinal aspirate but it is an invasive and difficult to perform tech-nique, which requires an expert staff18. Today, one of the most used is the Lactulose Breath Test (LBT)21, which is a more simple and less invasive and expensive methodic. LBT is characterized by high sensitivity and specificity22.At present, no data are available about FC con-centrations in children with SIBO.This prospective study was designed to evalu-ate FC concentrations in children affected by SI-BO, comparing them to a group of healthy con-trols, in order to clarify if an inflammatory process coexists with SIBO.Materials and MethodsWe evaluated fifty-eight consecutive children with SIBO as assessed by LBT. They were re-ferred to the Pediatric Gastroenterology Outpa-tients Unit of Catholic University of the Sacred Heart, Gemelli Hospital of Rome between April 1st2008 and September 1st2009.Children who took Non Steroidal Anti-Inflam-matory Drugs (NSAIDs), antibiotics, gastric acidity inhibitors or drugs influencing gut motili-ty within the previous 2 months were excluded. Children who were affected by other gastroin-testinal disorders, respiratory or urinary infec-tions, or chronic diseases such as rheumatoid arthritis, diabetes, thyroid diseases, connective tissue diseases, or had a history of intestinal surgery were excluded. Children who had nasal or menstrual bleeding in the last three weeks were excluded too.The control population included sixty healthy children, without SIBO (as assessed by negative LBT). They were referred to our General Pedi-atrics Outpatients Unit for routine medical care. All patients affected by SIBO and all healthy controls were assessed for F C values after stool sample measurements.All children were clinically evaluated at three and six months of follow-up.All patients and control subjects were enrolled with parents informed consent, according to the Ethics Committee of our University.Hydrogen/Methane Lactulose Breath TestHydrogen (H2)/methane (CH4) Lactulose Breath Test (LBT) was performed under standard conditions. No patients had received laxatives in the 30 days preceding the test. Subjects were asked to have a carbohydrate-restricted dinner on the day before the test and to fast for at least 12hours to minimize basal H2excretion. On the day of testing, patients received a mouthwash with 20 mL of chlorhexidine 0.05%. Physical exercise was not allowed for 30 minutes before and dur-ing the test. End-alveolar breath samples were collected immediately before lactulose ingestion (lactulose 10 g in solution 20 mL). Samples were taken every 15 minutes for 4 hours with a 2 bag system, consisting of a mouthpiece, a T-valve, and 2 collapsible bags; the first one collects dead space air, the second one collects alveolar air. The breath sample was aspirated from this bag into a 20 mL plastic syringe. Samples were ana-lyzed immediately for H2and CH4with a model DP Quintron gas chromatograph (Quintron In-strument Company, Milwaukee, WI, USA). The results were expressed as parts per million. A normal LBT was defined as the absence of anearly rise in H2or CH4excretion of more of 20 parts per million within the first 90 minutes.1329Fecal Calprotectin concentration in children affected by SIBO1330FC Measurement and RangesOne hundred-eighteen stool samples were col-lected, using a disposable plastic test tube. Speci-mens were returned to the laboratory within 48hours of defecation. The weight of the samples necessary for the test was 40-120 mg. This little amount was collected with a specific device and then diluted with a buffer solution containing cit-rate and urea in a weight per volume ratio 1:50(20 µl of stool sample in 980 µl of buffer solu-tion). If necessary, a second dilution 1:250 (200µl of the first diluted solution in 800 µl of buffer solution) could be performed for very concentrat-ed stool samples. After this procedure, the sam-ple was mixed for 30 seconds by a vortex method, homogenized for 25 minutes and then one milliliter of the homogenate was centrifuged for 20 minutes. The supernatant was collected and kept refrigerated at –20°C. Within seven days, the samples were thawed at room tempera-ture and then Calprotectin concentration was ac-tually measured by the quantitative ELISA test Calprest ®(Eurospital Spa, Trieste, Italy).Laboratory ranges were expressed as mg of Calprotectin/kg of feces. The linearity of the method was 15-500 mg/kg.On the basis of data available in literature concerning the F C cut-off value in the pediatric age, a negative FC concen-tration was defined by a FC value lower than 100mg/kg, while a positive FC concentration was de-fined by a F C value equal or higher than 100mg/kg 16,23.Statistical AnalysisThe statistical analysis was performed with ANOV A test. Student’s t -test was used for data analysis. A p value <0,05 has been considered statistically significant. All results have been pre-sented as median and mean ± standard deviation (SD), or as absolute count numbers when appro-priate.ResultsThe results were reported on Tables I, II and Figures 1, 2.Fifty-eight children affected by SIBO and six-ty healthy subjects were evaluated.The number of males/females was 39/19 in the group of patients affected by SIBO and 36/24 in the group of healthy controls. The age range of the children in the two groups was respectivelyC. Fundarò, C. Fantacci, V . Ansuini, V . Giorgio, S. Filoni, F . Barbaro, A. Gasbarrini, C. Rossi52-202 months and 52-211 months, with a mean age of 121.8 ± 38.9 months and 126.8 ± 46.9months. Concerning demographic data, a p value of 0.26 was calculated, demonstrating that no statistically significant differences for sex and age were observed between the two groups.F ifty-six (96.6%) patients affected by SIBO and sixty (100%) healthy children had a negative F C value. In particular, the range of F C values obtained in the two groups was <15-159 mg/kg and <15-89 mg/kg respectively. In the group of patients affected by SIBO, a median value of 36.0 mg/kg and a mean value ± SD of 43.0 ±31.6 mg/kg were calculated, while in the group of healthy controls the median value was 29.5mg/kg and the mean value ± SD was 35.7 ± 20.7mg/kg. Evaluating these results obtained in the two groups, a p value of 0.07 was calculated,suggesting that no statistically significant differ-ences came out between FC concentrations in pa-tients affected by SIBO in comparison with healthy children.DiscussionFor the first time, our case control study shows that F C levels in children affected by SIBO are not statistically different from those obtained in healthy controls. Our findings are similar to those pointed out by Montalto et al 24, who per-Table I.Demographic characteristics of patients affected by SIBO and healthy controls.*p = 0.26.Table II.Fecal Calprotectin values obtained in patients af-fected by SIBO and in healthy controls.*p = 0.07.1331Fecal Calprotectin concentration in children affected by SIBOformed the only study available in literature about the correlation between SIBO and FC con-centrations. Their study was carried out on an adult population: they evaluated 40 patients af-fected by SIBO and 40 controls, demonstrating no statistically significant differences in FC con-centrations between the two groups.In the last few years, the importance of F C measurement in the management of gastrointesti-nal disorders is becoming more and more evi-dent, and it is settling as an useful marker of gas-trointestinal inflammation which can support the clinical practice 8.In fact, FC concentration increases in a num-ber of organic gastroenterologic conditions such as colorectal cancer, NSAIDs enteropathy, al-choolic enteropathy, active inflammatory bowel diseases (IBD), acute gastroenteritis, allergic col-itis and gastro-esophageal reflux disease 8,25-28.This happens because it is released from neu-trophils in gut lumen during gastrointestinal in-flammation, then it binds Ca 2+, becoming resis-tant against heat and proteolysis. Consequently, it is eliminated intact in feces and there it can re-main stable at room temperature for about 7days 10,11. This allows to measure it by means of a simple and non invasive laboratory test, which requires a little amount of feces. These character-istics make F C measurement a convenient labo-ratory test, easy to be performed by patients, es-pecially in the pediatric age.Furthermore, supporting data that FC can con-stitute a direct marker of those gastrointestinal inflammatory processes in which neutrophils are involved, some studies which compared FC mea-surement with invasive techniques have shown interesting results.Røseth et al 29investigated the correlation be-tween the faecal excretion of the granulocyte marker protein and that of 111-Indium-labelled granulocytes in patients with IBD. In fact, faecal excretion of 111-Indium-labelled neutrophilic granulocytes has been suggested as the gold stan-dard of disease activity, but it is a complex and expensive method which expose patients to ion-izing irradiation. The results obtained in this study suggested that FC reflects the granulocyte migration through the gut wall in patients with IBD and hence could be used as a simple, inex-pensive alternative to the 111-indium technique.Limburg et al 30evaluated 110 subjects with chronic diarrhea who were referred for colonoscopy and observed that increased FC lev-els were significantly associated with the colono-scopic and histological findings of colorectal in-flammation.A recent metanalysis has analyzed 30 prospec-tive studies which compared F C levels against the histological diagnosis in patients with diag-nosis of IBD. It evaluated F C concentrations of 5983 adults and children and demonstrated that FC has a sensitivity of 95% and a specificity of 91% in IBD diagnosis. The same metanalysis shows that the diagnostic precision in childhoodFigure 2.Fecal Calprotectin values obtained in the group of patients affected by SIBO and in healthy controls.F e c a l c a l p r o t e c t i n (m g /k g )Patients ControlsFigure parison between the age of the patients af-fected by SIBO and healthy controls.A g e (m o n t h s )Patients Controlspopulation is higher than in the adult popula-tion23. F urthermore, F C values of children with IBDs in remission turn into normal ranges be-coming non statistically different from those of healthy children16,31, while they increase again in relapses, preceding clinical symptoms32-36. Moreover, FC values in functional symptoms have been demonstrated to be not statistically different from controls16, and this is true in children affected by IBD too. So, FC can help in distinguishing functional pains from relapses in a child affected by IBD, and this is very im-portant for these subjects because they present with an increased frequency bowel movements, urgency and abdominal cramping, and these symptoms can be mistakenly interpreted as a flare-up37.Concerning literature which has examined FC levels specifically in the pediatric age, a remark-able study is that of Berni Canani et al16, who en-rolled 281 children assessed for gastrointestinal symptoms. Among these subjects, those of them affected by a disease characterized by gastroin-testinal mucosal inflammation, such as Crohn’s disease (38 children), ulcerative colitis (45 chil-dren) had increased FC concentrations, while 44 children suffering from functional gastrointesti-nal disorders (F GIDs) showed normal values. Therefore, they pointed out that FC is a sensitive but not disease specific marker to easily detect inflammation throughout the whole gastrointesti-nal tract and may help in identifying an organic disease and in the differential diagnosis of func-tional bowel disorders.All these results impact on clinical practice be-cause suggest that several invasive diagnostic techniques can be avoided, and this is even more important in Pediatrics38.SIBO is a condition characterized by an exces-sive germs proliferation, especially anaerobic, in the small bowel (more than 105CF U/ml of in-testinal juice)18, liable to antibiotic treatment, which improves gastrointestinal symptoms39. Generally, in the intestinal tract there are 103-104CF U/ml of bacteria such Enterococcus and Lactobacillus, and there are a number of factors which permit to restrain bacterial overgrowth. Among these, there are anatomical and function-al factors (such as gastric acidity, ileocecal valve continence, gall and pancreatic secretions and their antibacterial activity), mechanical factors (the peristalsis) and factors which inhibit bacteri-al adhesion to the epithelium (gastric mucus, se-cretory IgA and epithelial desquamation)40,41.Moreover, gut micloflora plays a crucial role in the development of intestinal defences: the colonization with diverse intestinal microbes, in fact, is necessary for the synthesis and the secre-tion of polymeric immunoglobulin A and the generation of a balanced T Helper cell response. By studying germ-free animals, it results that neither function exists in the germ-free state, but rapidly develops after germ colonization42.In-testinal bacteria maintain “a physiological in-flammation” in the human gut which is efficient-ly protective and necessary to have an appropri-ate local immune response, while a disregulation of the mucosal immune response can switch a “controlled” toward an “uncontrolled”intestinal inflammation, paving the way to pathology43. Therefore, when intestinal bacteria exceed, this label equilibrium can be broken. The presence of a higher bacterial number in the small bowel causes a premature and abnormal deconjugation of the bile acids, determining a larger jejunal re-absorption and secondary lipid malabsorption. Moreover, contaminant bacteria can cause a di-rect damage on entherocytes because of their adesivity on epithelial surface and because of their competition with entherocytes for the link with the complex vitamin B12 – intrinsic factor. This results in a reduction of the vitamin B12 ab-sorption. Even if some type of bacteria can pro-duce the vitamin theirselves, finally the subject has reduced levels of bio-availability of vitamin B12 and can have malabsorption symptoms40. Otherwise, patients affected by SIBO often suffer from a nebulouse symptomatology charac-terized by diarrhea, flatulence, abdominal pain or discomfort. Underlying these symptoms, there is the glucidic malabsorption, which causes an ac-centuated fermentation and then higher produc-tion of water, short chain fatty acids and gas such as carbon dioxide, hydrogen and methane44. Whether the presence of SIBO leads to small intestinal mucosal changes is not well known. There are some investigations about the histolog-ical changes caused by SIBO in animal models, where changes of villus and crypt architecture and an increase in chronic inflammatory cells number – mostly lymphocytes of the lamina pro-pria – have been shown45-47.Recently, a retrospective study has been per-formed on 122 subjects who underwent upper gastrointestinal endoscopic examination because of gastrointestinal symptoms. Among these pa-tients, 67 was affected by SIBO (as assessed by duodenal aspirate culture >105CF U/ml), whileC. Fundarò, C. Fantacci, V. Ansuini, V. Giorgio, S. Filoni, F. Barbaro, A. Gasbarrini, C. Rossi133255 had a negative culture (<105CF U/ml) and they were considered controls. F rom these duo-denal biopsy has emerged one feature significant-ly more frequent in SIBO than in controls, which was villous blunting to crypt ratio (<3:1)48.SIBO seems, also, to determine a higher level of IgA in the proximal small intestine particular-ly when the overgrowth is caused by colonic type bacteria 49. Nevertheless, no study performed on patients with SIBO about direct parameters that indicates the number of leucocytes neutrophils in the gut wall are available. Montalto et al 24have published about F C concentrations in adults af-fected by SIBO considering it as an indirect para-meter of intestinal inflammation. Their results suggested that no inflammatory changes involv-ing neutrophils occurs in SIBO. On the edge of this finding, we have evaluated for the first time F C concentrations in a pediatric population af-fected by SIBO, comparing this values with healthy controls. No statistically significant dif-ferences have been found between cases and con-trol subjects (p = 0.07), according to the findings observed in adults. This confirms the hypothesis that no subclinical intestinal inflammation in-volving neutrophils occurs in patients with high-er proliferation of bacteria in the small bowel.The presence of high FC levels in children affect-ed by SIBO might not be caused by bacterial overgrowth itself and, in this case, another cause should be investigated.In conclusion, our study demonstrates for the first time that F ecal Calprotectin values do not increase in children affected by SIBO. Our re-sults are similar to the findings obtained in adults, supporting the hypothesis that no subclin-ical intestinal inflammation involving neutrophils occurs in SIBO.References1)F AGERHOL MK.Nomenclature for proteins: is Calpro-tectin a proper name for the elusive myelomonocyt-ic protein? J Clin Pathol 1996; 49: M74-79.2)D ORIN JR, E MSLIE E, V AN H EYNINGEN V .Related calci-um-bindings proteins map to the same subregion of chromosome 1q and to an extended region of synteny on mouse chromosome 3. Genomics 1990; 8: 420-426.3)S CHÄFER BW , H EIZMANN CW .The S100 family of EF-hand calcium-binding proteins: functions and pathol-ogy . T rends Biochem Sci 1996; 21: 134-140.1333Fecal Calprotectin concentration in children affected by SIBO4)F AGERHOL MK, D ALE I, A NDERSON I . Release andquantitation of a leukocyte derived protein (L 1).Scand J Haematol 1980; 24: 393-398.5)J OHNE B, F AGERHOL MK, L YBERG T, P R YDZ H,B RANDTZAEG P , N AESS -A NDRESEN CF , D ALE I . Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol Pathol 1997; 50: 113-123.6)B ERNTZEN HB, F AGERHOL MK . L I, a major granulo-cyte protein: isolation of high quantities of its sub-units. Scand J Clin Lab Invest 1990; 50: 769-774.7)V OGANATSI A, P ANYUTICH A, M IYASAKI KT, M URTHY RK.Mechanism of extracellular release of human neutrophil calprotectin complex. J L eukoc Biol 2001; 70: 130-134.8)P OULLIS A, F OSTER R, M ENDALL MA, F AGERHOL MK .Emerging role of calprotectin in gastroenterology.J Gastr Hepatol 2003; 18: 756-762.9)B ERNI C ANANI R, R OMANO MT, T ERRIN G, R APACCIUOLOL . Fecal calprotectin is a useful diagnostic tool in pediatric gastroenterology. It J Pediatr 2005; 32:89-94. 10)N AESS -A NDRESEN CF , E NGELANDSDAL B, F AGERHOL MK .Calcium binding and concomitant changes in the structure and heat stability of calprotectin (L1 pro-tein). Clin Mol Pathol 1995; 48: M278-284.11)R ØSETH AG.Determination of fecal calprotectin, anovel marker of organic gastrointestinal disor-ders. Dig Liver Dis 2003; 35: 607-609.12)A ADLAND E, F AGERHOL MK.Fecal calprotectin: amarker of inflammation throughout the intestinal tract. Eur J Gastroenterol Hepatol 2002; 14: 823-825.13)R ØSETH AG, F AGERHOL MK, A ADLAND E, S CHJØNSBY H.Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study.Scand J Gastroenterol 1992; 27: 793-798.14)O LAFSDOTTIR E, A KSNES L, F LUGE G, B ERSTAD A . Faecalcalprotectin levels in infants with infantile colic,healthy infants, children with inflammatory bowel disease, children with recurrent abdominal pain and healthy children. Acta Paediatr 2002; 91: 45-50.15)K AISER T, L ANGHORST J, W ITTKOWSKI H, B ECKER K,F RIEDRICH AW , R UEFFER A, D OBOS GJ, R OTH J, F OELL D.Faecal S100A12 as a non-invasive marker dis-tinguishing inflammatory bowel disease from irri-table bowel syndrome. Gut 2007; 56: 1706-1713.16)B ERNI C ANANI R, R APACCIUOLO L, R OMANO MT, T ANTUR -RI DE H ORATIO L, T ERRIN G, M ANGUSO F , C IRILLO P , P A -PARO F , T RONCONE R.Diagnostic value of faecal cal-protectin in pediatric gastroenterology clinical practice. Dig Liver Dis 2004; 36: 467-470.17)C ARROCCIO A, I ACONO G, C OTTONE M, D I P RIMA L,C ARTABELLOTTA F , C AVATAIO F , S CALICI C, M ONTALTO G,D I F EDE G, R INI G, N OTARBARTOLO A, A VERNA MR . Di-C. Fundarò, C. Fantacci, V. Ansuini, V. Giorgio, S. Filoni, F. Barbaro, A. Gasbarrini, C. Rossiagnostic accuracy of fecal calprotectin assay in distinguishing organic causes of chronic diarrhea from irritable bowel syndrome: a prospective study in adults and children. Clin Chem 2003; 49: 861-867.18)B AYELI PF, M ARIOTTINI M, L ISI L, F ERRARI P, T EDONE F.Guidelines on intestinal dysmicrobism (SIBO Small Intestine Bacterial Overgrowth). Minerva Gastroenterol Dietol 1999; 45: 297-308.19)R ANA SV, B HARDWAJ SB.Small intestinal bacterialovergrowth. Scand J Gastroenterol 2008; 43: 1030-1037.20)S INGH VV, T OSKES PP.Small bowel bacterial over-growth: presentation, diagnosis, and treatment.Curr Treat Options Gastroenterol 2004; 7: 19-28.21)R HODES JM, M IDDLETON P, J EWELL DP. The lactulosehydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand J Gas-troenterol 1979; 14: 333-336.22)M ENDOZA E, C RISMATT C, M ATOS R, S ABAGH O, C AMPOM, C EPEDA J, V ILLANUEVA D. Diagnosis of small in-testinal bacterial overgrowth in children: the use of lactulose in the breath hydrogen test as a screening test. Biomedica 2007; 27: 325-332. 23)V ON R OON AC, K ARAMOUNTZOS L, P URKAYASTHA S,R EESE GE, D ARZI AW, T EARE JP, T EARE JP, P ARASKEVA P, T EKKIS PP.Diagnostic precision of fecal calprotectin for inflammatory bowel diseases and colorectal malignancy. Am J Gastroenterol 2007; 102: 803-813.24)M ONTALTO M, S ANTORO L, D ALVAI S, C URIGLIANO V,D’O NOFRIO F, S CARPELLINI E, C AMMAROTA G, P ANUNZI S,G ALLO A, G ASBARRINI A, G ASBARRINI G. Fecal calpro-tectin concentrations in patients with small intesti-nal bacterial overgrowth. Dig Dis 2008; 26: 183-186.25)B UNN SK, B ISSET WM, M AIN MJC, G RAY ES, O LSON S,G OLDEN BE.Fecal Calprotectin: validation as anoninvasive measure of bowel inflammation in childhood inflammatory bowel disease. J Pediatr Gastr Nutr 2001; 33: 14-22.26)L EACH ST, Y ANG Z, M ESSINA I, S ONG C, G ECZY CL,C UNNINGHAM AM,D AY AS.Serum and mucosalS100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in chil-dren with inflammatory bowel disease. Scand J Gastroenterol 2007; 42: 1321-1331.27)D E J ONG NS, L EACH ST, D AY AS.Fecal S100A12: anovel noninvasive marker in children with Crohn’s disease. Inflamm Bowel Dis 2006; 12: 566-572.28)F AGERBERG U L, LÖÖF L, M YRDAL U, H ANSSON LO,F INKEL Y.Colorectal inflammation is well predictedby fecal calprotectin in children with gastrointesti-nal symptoms. J Pediatr Gastr Nutr 2005; 40: 450-455.29)RØSETH AG, S CHMIDT PN, F AGERHOL MK.Correlationbetween faecal excretion of Indium-111-labelledgranulocytes and Calprotectin, a granulocytemarker protein, in patients with inflammatorybowel disease. Scand J Gastroenterol 1999; 34:50-54.30)L IMBURG PJ, A HLQUIST DA, S ANDBORN WJ, M AHONEYDW, D EVENS ME, H ARRINGTON JJ, Z INSMEISTER AR. Fe-cal Calprotectin levels predict colorectal inflam-mation among patients with chronic diarrhea re-ferred for colonscopy. Am J Gastroenterol 2000;95: 2831-2837.31)RØSETH AG, A ADLAND E, G RZYB K. Normalization ofFecal Calprotectin: a predictor of mucosal healingin patients with inflammatory bowel diseases.Scand J Gastroenterol 2004; 39: 1017-1020. 32)RØSETH AG, A ADLAND E, J AHNSEN J, R AKNERUD N. As-sessment of disease activity in ulcerative colitisby faecal calprotectin, a novel granulocyte markerprotein. Digestion 1997; 58: 176-180.33)H O GT, L EE HM, B RYDON G, T ING T, H ARE N, D RUM-MOND H, S HAND AG, B ARTOLO DC, W ILSON RG, D UN-LOP MG, A RNOTT ID, S ATSANGI J. Fecal calprotectin predicts the clinical course of acute severe ulcer-ative colitis. Am J Gastroenterol 2009; 104: 673-678.34)D IAMANTI A, C OLISTRO F, B ASSO MS, P APADATOU B,F RANCALANCI P, B RACCI F, M URACA M, K NAFELZ D, D EA NGELIS P, C ASTRO M. Clinical role of calprotectinassay in determining histological relapses in chil-dren affected by inflammatory bowel diseases. In-flamm Bowel Dis 2008; 14: 1229-1235.35)T IBBLE JA, S IGTHORSSON G, B RIDGER S, F AGERHOL MK,B JARNASON I.Surrogate markers of intestinal in-flammation are predictive of relapse in patientswith inflammatory bowel disease. Gastroenterolo-gy 2000; 119: 15-22.36)P ARDI DS, S ANDBORN WJ.Predicting relapse in pa-tients with inflammatory bowel disease: what isthe role of biomarkers? Gut 2005; 54: 321-322. 37)S APS M, D I L ORENZO C. Diagnosis and managingfunctional symptoms in the child with inflammato-ry bowel disease. J Pediatr Gastr Nutr 2004; 39:S760-762.38)B JARNASON I, S HERWOOD R. Fecal Calprotectin: asignificant step in the noninvasive assessment ofintestinal inflammation. J Pediatr Gastr Nutr 2001;33: 11-13.39)S CARPELLINI E, G ABRIELLI M, L AURITANO CE, L UPASCU A,M ERRA G, C AMMAROTA G.High dosage rifaximin for the treatment of small intestinal bacterial over-growth. Aliment Pharm Ther 2007; 25: 781-786.40)G REGG CR. Enteric bacterial flora and bacterialovergrowth syndrome. Semin Gastrointest Dis2002; 13: 200-209.41)J ONES MP, B RATTEN JR. Small intestinal motility. CurrOpin Gastroenterol 2008; 24: 164-172.42)S HI HN, W ALKER A.Bacterial colonization and thedevelopment of intestinal defences. Can J Gas-troenterol 2004; 18: 493-500.1334。
氢气甲烷二氧化碳呼气试验新技术新项目氢气甲烷二氧化碳呼气试验是一项新技术新项目,通过呼气气体的分析,在临床和科研领域提供了一种便捷、无创、可重复性高的评估方法,用于监测和诊断患者的肺功能和代谢情况。
本文将从技术原理、应用领域、优势和挑战等方面进行介绍。
技术原理:氢气甲烷二氧化碳呼气试验基于肺部气体交换和代谢过程,通过分析呼气气体中的气体成分,了解患者的肺功能和代谢情况。
这些气体成分包括氢气、甲烷和二氧化碳。
通常在测试前,患者会被要求采取一些准备措施,如禁食、禁止吸烟和饮酒等。
在实际测试中,患者通过呼吸进入的空气含有不同浓度的这些气体,通过呼吸将其排出体外。
然后这些呼气气体被采集和分析,从而得到相关指标。
应用领域:氢气甲烷二氧化碳呼气试验广泛应用于临床和科研领域,可用于以下方面:1.消化系统疾病:氢气甲烷呼气试验可用于检测乳糖不耐受、蔗糖不耐受和细菌过度生长等消化系统疾病。
通过分析呼气中的氢气和甲烷含量,可以评估患者对乳糖和蔗糖的消化和吸收情况,并诊断细菌过度生长引起的消化问题。
2.肝功能评估:氢气呼气试验还可用于评估肝功能。
在肝疾病患者中,由于肝脏代谢能力的降低,氢气的清除能力也会受到影响。
通过分析呼气中的氢气浓度,可以间接评估肝功能的状况。
3.肺功能评估:二氧化碳呼气试验可用于评估肺功能,如慢性阻塞性肺疾病、哮喘等。
患者在测试过程中需吸入含有不同浓度二氧化碳的气体,然后呼气时二氧化碳的浓度会被测量和分析,从而评估肺功能的情况。
优势:氢气甲烷二氧化碳呼气试验具有以下优势:1.无创性:呼气试验不需要穿刺和取样,对患者没有任何伤害,非常适合临床应用。
2.便捷性:呼气试验操作简便,无需特殊仪器和复杂的操作。
通常只需要在测试前作一些准备措施即可进行。
3.可重复性:呼气试验结果可重复性高,多次测试的结果具有较好的一致性。
这使得呼气试验成为一种可靠的监测和评估方法。
挑战:尽管氢气甲烷二氧化碳呼气试验在临床和科研领域有广泛应用,但也面临一些挑战:1.结果解读:呼气试验结果的解读需要专业医生进行,对于一般人来说可能较难理解。
氢气甲烷二氧化碳呼气试验新技术新项目一、引言近年来,氢气、甲烷和二氧化碳等气体的排放对环境造成了严重的污染和危害,加速了全球变暖和气候变化的进程。
因此,研究氢气、甲烷和二氧化碳的排放和减排技术具有重要的意义。
本项目旨在通过氢气甲烷二氧化碳呼气试验,探索新技术,改善环境质量。
二、试验原理氢气甲烷二氧化碳呼气试验是一种用于测定气体排放水平的试验方法。
其原理主要是通过收集被测气体的呼气样本,采用气相色谱仪或质谱仪等分析设备对其成分进行分析,从而确定氢气、甲烷和二氧化碳的排放浓度。
通过对不同条件下的呼气样本进行分析,可以评估排放水平,并为减排技术提供依据。
三、试验步骤1.采集呼气样本在进行氢气甲烷二氧化碳呼气试验时,首先需要采集被测对象的呼气样本。
这需要使用专用的呼气采集器或吸气袋等工具,将呼出的气体收集起来以备后续分析。
2.样本处理采集到的呼气样本需要进行处理,以去除其中的杂质和水汽。
这通常可以通过吸附管或降温凝结的方式实现。
处理后的样本将会更适合于后续的分析操作。
3.分析呼气样本处理后的呼气样本将会通过气相色谱仪或质谱仪等专业分析设备进行分析。
这些设备可以准确地检测呼气样本中的氢气、甲烷和二氧化碳的含量,从而确定排放水平。
4.数据处理通过对分析结果进行处理和比对,可以得出被测对象在不同条件下的氢气、甲烷和二氧化碳排放水平。
这些数据将为环境保护和减排技术的研究提供重要参考。
四、试验应用氢气甲烷二氧化碳呼气试验在环境保护和减排技术研究中具有重要的应用价值。
1.评估环境污染水平通过对不同人群或不同环境条件下的呼气样本进行分析,可以评估氢气、甲烷和二氧化碳的排放水平。
这有助于科学地评估环境污染程度,为环境保护工作提供数据支持。
2.研究减排技术通过对减排技术的研究,可以减少氢气、甲烷和二氧化碳的排放。
氢气甲烷二氧化碳呼气试验可以为减排技术的研发和改进提供重要数据依据,促进环保产业的发展。
3.监测健康状况氢气甲烷二氧化碳呼气试验还可以用于监测人体的健康状况。
氢气甲烷二氧化碳呼气试验新技术新项目一、前言随着工业化的快速发展和人类生活水平的不断提高,气体排放问题日益严重。
二氧化碳的排放是导致全球气候变化的主要原因之一。
因此,探索新技术来减少和控制气体排放已成为当今世界各国的重要课题。
氢气和甲烷作为两种清洁能源被广泛应用,同时二氧化碳也是一种常见的废气。
本项目旨在利用氢气和甲烷与二氧化碳的相互作用,研究利用呼气产生的气体进行环保和能源回收的新技术。
二、研究背景1.氢气氢气是一种清洁能源,不产生二氧化碳等温室气体,被广泛应用于燃料电池、化工和航空航天等领域。
2.甲烷甲烷是一种重要的燃料,燃烧产生的二氧化碳排放相对较少,具有较高的能源利用率。
3.二氧化碳二氧化碳是一种温室气体,大量排放会导致全球气候变暖,对地球生态环境造成危害。
4.呼气呼气是人体新陈代谢的产物,其中含有氢气、二氧化碳和微量甲烷等气体。
三、实验目的本实验旨在研究利用呼气中的氢气和甲烷与二氧化碳的相互作用,探索一种新的清洁能源回收和二氧化碳减排技术。
四、实验内容1.实验材料本实验所需材料包括氢气、甲烷、二氧化碳和呼气样品。
2.实验步骤(1)收集呼气样品将呼气样品收集到气瓶中,拧紧瓶塞,避免外界空气污染。
(2)氢气和二氧化碳反应将氢气与二氧化碳在一定温度和压力下进行反应,观察反应产物。
(3)甲烷和二氧化碳反应将甲烷与二氧化碳在一定温度和压力下进行反应,观察反应产物。
(4)不同条件下的反应改变温度、压力和反应时间等条件,研究其对反应产物的影响。
3.实验方法利用气相色谱-质谱联用技术对反应产物进行分析,确定反应产物的组成和结构。
五、预期效果1.能源回收利用呼气产生的氢气和甲烷与二氧化碳的反应产生新的化合物,实现能源的回收和利用。
2.二氧化碳减排将呼气中的二氧化碳转化为其他化合物,减少二氧化碳的排放,对环境起到一定的改善作用。
3.新技术应用本实验研究的新技术可以应用于工业生产、环保和能源回收领域,具有广阔的应用前景。
一、实验目的1. 掌握氢气和甲烷呼气实验的操作方法。
2. 了解氢气和甲烷的性质,观察其燃烧现象。
3. 通过实验验证质量守恒定律,分析实验结果。
二、实验原理1. 氢气(H2)的性质:无色、无味、密度小于空气,熔点-259.2℃,沸点-252.77℃,难溶于水。
氢气具有可燃性,燃烧时产生淡蓝色火焰,生成水。
2. 甲烷(CH4)的性质:无色、无味、密度小于空气,熔点-182.5℃,沸点-161.5℃,难溶于水。
甲烷具有可燃性,燃烧时产生蓝色火焰,生成二氧化碳和水。
三、实验用品1. 火柴2. 氢气瓶3. 甲烷瓶4. 干燥的小烧杯5. 澄清石灰水6. 玻璃棒7. 烧杯8. 玻璃片9. 集气瓶四、实验步骤1. 准备工作a. 将氢气瓶和甲烷瓶分别置于干燥的桌面上。
b. 检查集气瓶、烧杯、玻璃棒等实验用品是否干燥。
2. 氢气呼气实验a. 点燃火柴,将火焰靠近氢气瓶口,观察氢气燃烧现象。
b. 将干燥的小烧杯罩在火焰上方,观察烧杯内壁是否有水珠生成。
c. 将蘸有澄清石灰水的小烧杯罩在火焰上方,观察石灰水是否变浑浊。
3. 甲烷呼气实验a. 点燃火柴,将火焰靠近甲烷瓶口,观察甲烷燃烧现象。
b. 将干燥的小烧杯罩在火焰上方,观察烧杯内壁是否有水珠生成。
c. 将蘸有澄清石灰水的小烧杯罩在火焰上方,观察石灰水是否变浑浊。
五、实验现象及分析1. 氢气呼气实验a. 氢气燃烧时产生淡蓝色火焰。
b. 烧杯内壁有水珠生成,证明氢气燃烧生成水。
c. 澄清石灰水无变化,证明氢气燃烧不生成二氧化碳。
2. 甲烷呼气实验a. 甲烷燃烧时产生蓝色火焰。
b. 烧杯内壁有水珠生成,证明甲烷燃烧生成水。
c. 澄清石灰水变浑浊,证明甲烷燃烧生成二氧化碳。
六、实验结论1. 氢气燃烧时只生成水,不生成二氧化碳。
2. 甲烷燃烧时生成二氧化碳和水。
3. 通过实验验证了质量守恒定律。
七、注意事项1. 实验过程中注意安全,避免火灾和爆炸事故。
2. 实验用品需保持干燥,以免影响实验结果。
呼出气氢甲烷一氧化氮测定哎呀,今天咱们聊聊一个可能听起来有点儿冷冰冰的话题,叫“呼出气氢甲烷一氧化氮测定”。
听起来有点复杂,但其实也没那么难懂,咱们用轻松点的方式来聊聊。
想想,如果你吃了特别好吃的东西,满肚子都是美味,结果到了晚上你发现自己呼出来的气体竟然有一股怪味,这可真是让人哭笑不得呀!这些气体可不是随便的东西,它们里面藏着不少信息。
你知道吗,我们的身体就像一个小工厂,每天都在生产各种各样的东西。
呼出的气体就像是工厂的“产品”,而这些“产品”里面的成分就能告诉我们身体的健康状况。
比如说氢、甲烷和一氧化氮,这些家伙可不是普通的气体,它们各自有各自的故事。
你有没有想过,为什么有的人吃完豆子就会放屁,而有的人却没事儿一样?这就跟肠道里的微生物有关系啦。
它们在分解食物时,会产生氢和甲烷,真是个“神奇”的团队,给我们的身体提供了不少信息。
医生会通过测定你呼出的气体,来判断你的肠道健康。
听起来像是魔法吧?其实这就是科学。
比如,医生可能会问你吃了什么,或者最近感觉怎么样,然后就能根据你呼出的气体,给你一些建议,甚至是诊断。
这就像是侦探在分析证据,听到的每一丝线索都可能是关键。
呼出气体的成分,可以反映出肠道里的微生物活动,甚至是你吃的那些东西都能被一一“曝光”。
你敢信?这些气体不光是废气,它们还藏着健康的秘密。
说到这里,你是不是觉得呼出气体变得神秘又有趣了呢?不过,测定这些气体可不是随便的事儿。
得有专门的设备和方法。
比如,医生可能会让你深呼吸,接着用一个小设备把你呼出的气体收集起来,像是在做科学实验一样。
然后,这些气体会被分析,看看里面含有什么成分。
哎呀,别小看这一步,背后可是有大把的科学原理在支撑呢。
呼出气体的测定不仅限于肠道健康哦。
它们在呼吸系统、心血管甚至免疫系统中,也能发挥作用。
想象一下,如果你呼出的气体中含有过多的一氧化氮,那可能就意味着你的身体在抗击某种炎症。
这时候,医生就会注意到这点,进而帮助你找到问题所在,真是无微不至呀!这样的检测方法还很简单,几乎没有侵入性,基本上就像在做一次简单的呼吸测试,给你带来的不适感几乎为零。
甲烷和氢呼气使用手册甲烷和氢呼气试验解决了很多其它试验难以检查的项目以及一些无法完成的检测盲区,譬如胰腺功能检查、小肠细菌过增长、肠道通过时间以及乳糖酶缺乏症,都是其它检查方法都不能完成的“盲区”。
呼气检测方法是一种无创、无痛、准确、环保、快捷技术,具有广泛的临床应用价值。
检测前需要做好准备工作。
∙禁食12小时∙头天晚餐不吃不易消化的食物。
∙晚饭后至测试前不喝含糖的饮料。
∙清晨清洁口腔。
∙不吸烟、不喝酒。
∙避免剧烈运动。
空腹基础值的解释:H2 <10ppm:正常H2 10-20ppm:禁食不充分或晚餐进食不宜消化食物。
H2 >20ppm:考虑小肠细菌过度生长该技术的应用范围涵盖40%-60%的胃肠疾病,消化科、儿科、体检中心、内分泌科、胃肠及肝胆外科等临床科室都可开展。
1填补国内外胰腺功能检查的盲区,诊断胰腺炎后的胰腺损伤程度可评价糖尿病的病因和预后。
2诊断和治疗不明原因的长期腹泻及腹胀、消化不良综合症、儿童和成人的乳糖酶缺乏症、小肠细菌过度生长。
3慢性便秘的病因测定肠道通过时间和回盲瓣功能障碍。
4诊断糖尿病患者自主神经节病变所致的胃肠动力异常。
5对慢性结肠炎合并碳水化合物吸收不良,确定其肠道感染状况及是否有吸收不良暨严重程度。
6评价亚健康状况常伴有小肠细菌过度生长最常用的几种氢呼气试验1、支链淀粉呼气试验(测定胰腺外分泌功能)用一定负荷量的支链淀粉作试验餐,可诊断胰腺损伤程度,这个试验填补目前国内外胰腺功能无法检测的盲区。
评估胰腺炎后胰腺功能损伤和糖尿病患者的病因和预后。
2、乳果糖呼气试验(用于小肠细菌过量增长、口盲通过时间、回盲瓣功能不良)适应症:慢性腹泻或慢性结肠炎功能性肠病,消化不良综合症、慢性肝病或肝硬化糖尿病患者的胃肠动力异常慢性便秘亚健康状态3、乳糖呼气试验(测定乳糖酶缺乏症、小肠细菌过增长、胃肠通过时间)适应症:乳糖酶缺乏症或不耐症各种功能性肠病慢性腹泻或慢性肠炎肠道预激综合症的诊断胃肠或肝胆外科手术后肠道功能恢复的评估。
甲烷氢气呼气检测意义好嘞,今天我们来聊聊甲烷和氢气的呼气检测,听上去有点复杂,但其实很有意思哦。
说到呼气检测,很多人可能会想到那些高科技的设备,或者医生那副专业的模样,但这个话题在我们生活中也有很多实际的应用。
想象一下,你跟朋友聚会,吃了顿丰盛的火锅,结果大家都闻到了“特别”的味道,哎呀,那可真是让人哭笑不得啊。
这种时候,咱们就得想办法搞清楚,自己到底是吃了啥东西,还是身体出了问题。
呼气检测就像是一个神秘的侦探,能够告诉你很多关于自己身体的信息。
甲烷和氢气到底是啥呢?听名字可能有点吓人,其实它们就是我们体内细菌发酵的产物。
当你吃了某些食物,比如说豆类、乳制品、或者那些“神秘”的零食,体内的细菌就开始忙碌起来,发酵过程中就会产生甲烷和氢气。
你要是吃得过多,或者是肠胃消化不良,这两种气体就可能变得“暴躁”,最终通过呼气释放出来。
其实这也是一种身体在跟你对话的方式,告诉你它到底过得好不好。
呼气检测的意义就在于此,医生通过检测你呼出的气体,可以判断你的肠道健康,甚至发现一些潜在的疾病。
比如说,有的人可能因为肠道菌群失调,导致消化不良,呼气中可能会含有过多的氢气。
这样一来,医生就能及时介入,给你一些建议,或者开点药。
就像是在你身体里安装了一个小小的警报器,随时提醒你注意身体状况。
这比你自己瞎猜要靠谱多了,谁愿意因为肚子痛就跑去吃药呢?说到这里,可能有人会问,那呼气检测痛不痛啊?哈哈,别担心!这可不是打针,实际上很简单。
你只需要深吸一口气,然后轻轻地把气吐出来,就像是在做一个小小的“气体实验”。
整个过程就像是跟你的肺部来一次亲密接触,既没有压力也没有痛苦。
就算是在医院,医生也是一脸轻松的样子,像是在跟朋友聊天,根本不会让你感到紧张。
不仅如此,呼气检测的准确性也是不容小觑的。
通过现代科技的帮助,医生能够迅速分析你呼出的气体成分,甚至可以把检测结果和一些常见的消化问题联系起来,像是一道连环解谜题,帮助你揭开身体的秘密。
甲烷和氢呼气检测设备丁文京博士北美医学教育基金会前言甲烷和氢呼气检测是了解人体胃肠功能和代谢的一个重要无创检查方法,也是了解由于肠道微生态变化所导致的疾病的一个有实用价值的方法。
甲烷和氢呼气检测的原理甲烷和氢呼气检测之所以可以用于临床检验的基本是基于以下几个基本要素:第一、人体的新陈代谢虽然可以产生氢离子,但是不产生分子状态的氢气和也不能产生甲烷气体。
我们呼出气中的甲烷和氢气全部来自于胃肠道的细菌在酵解碳水化合物过程中产生的代谢产物。
第二、胃肠道产生甲烷和氢气必须基于两个最基本的条件,即胃肠道要有碳水化合和可以酵解碳水化合物的细菌,这两个因素缺一不可。
所以可以认为甲烷和氢呼气主要是反映与胃肠道细菌和胃肠道对碳水化合物消化吸收有关的疾病。
第三、正常情况下,胃肠道细菌酵解碳水化合物后产生包括甲烷和氢在内的气体,其中大约有14-21%的气体可以通过肠粘膜屏障进入血液循环,经血液循环到达肺泡,通过气体交换呼出体外。
呼出气中的甲烷和氢含量很低,在ppm水平。
ppm是英文Parts Per Million的缩写,称百万分率,表示百万分之几。
在某些疾病情况时,肠粘膜的通透性变化,甲烷好氢通过率增加,有报导肠道甲烷和氢的通过率可以达到50%。
第四、正常情况下小肠内的细菌非常少,所以在甲烷和氢呼气曲线在小肠段呼出的量很少,当小肠内细菌增加时,临床上称为小肠细菌过度生长,在小肠段代谢产生的甲烷好氢就会增加,甲烷和氢呼气曲线会明显上升。
第五、某些肠道细菌可以利用氢,使2个氢分子与1个碳原子结合生产甲烷。
不同的文献报道,大约有15-35%的人群由于上述原因,在疾病时呼出气中氢的浓度没有变化,会出现假阴性结果。
中国人大约有65%左右的人群没有产甲烷的细菌,或只有很少产甲烷的细菌,其呼出其中或者没有甲烷,或者只有很少量的甲烷。
鉴于这两个因素,现在临床日益认识到有必要同时测量呼出气中的甲烷和氢,整合这两个参数的变化以减少假阴性。
甲烷和氢呼气检测的原理丁文京博士,北美医学教育基金会甲烷和氢呼气检测是了解人体胃肠功能和代谢的一个重要的无创检查方法,也是了解由于肠道微生态变化所导致的疾病的一个有实用价值的方法。
甲烷和氢呼气检测用于临床检验的基本是主要是基于以下几个基本要点:第一、人体的新陈代谢虽然可以产生氢离子,但是不产生分子状态的氢和也不能产生分子状态的甲烷这两种气体。
我们呼出气中的甲烷和氢气唯一的来源是胃肠道的细菌在酵解碳水化合物过程中产生的代谢产物。
第二、胃肠道产生甲烷和氢气必须基于两个最基本的条件,即胃肠道要有碳水化合和可以酵解碳水化合物的细菌,这两个因素缺一不可。
所以可以认为甲烷和氢呼气主要是反映与胃肠道细菌和胃肠道对碳水化合物消化吸收有关的疾病。
第三、正常情况下,胃肠道细菌酵解碳水化合物后产生包括甲烷和氢在内的气体,其中大约有14-21%的气体可以通过肠粘膜屏障进入血液循环,经血液循环到达肺泡,通过气体交换呼出体外。
呼出气中的甲烷和氢含量很低,在ppm水平。
ppm是英文Parts Per Million的缩写,称百万分率,表示百万分之几。
在某些疾病情况时,肠粘膜的通透性变化,甲烷好氢通过率增加,有报导肠道甲烷和氢的通过率可以达到50%。
第四、正常情况下小肠内的细菌非常少,所以在甲烷和氢呼气曲线在小肠段呼出的量很少,当小肠内细菌增加时,临床上称为小肠细菌过度生长,在小肠段代谢产生的甲烷好氢就会增加,甲烷和氢呼气曲线会明显上升。
第五、某些肠道细菌可以利用氢,使2个氢分子与1个碳原子结合生产甲烷。
不同的文献报道,大约有15-35%的人群由于上述原因,在疾病时呼出气中氢的浓度没有变化,会出现假阴性结果。
中国人大约有65%左右的人群没有产甲烷的细菌,或只有很少产甲烷的细菌,其呼出其中或者没有甲烷,或者只有很少量的甲烷。
鉴于这两个因素,现在临床日益认识到有必要同时测量呼出气中的甲烷和氢,整合这两个参数的变化以减少假阴性。
作者联系方式: abs94555@。