正交试验的分类 (2)
- 格式:ppt
- 大小:866.00 KB
- 文档页数:44
正交实验设计1.概述任何生产部门,任何科学实验工作,为达到预期目的和效果都必须恰当地安排实验工作,力求通过次数不多的实验认识所研究课题的基本规律并取得满意的结果。
例如为拟定一个正确而简便的分析方法,必然要研究影响这种分析方法效果的种种条件,诸如试剂浓度和用量、溶液酸度、反应时间以及共存组分的干扰等等。
同时,对于影响分析效果的每一种条件,还应通过试验选择合理的范围。
在这里,我们把受到条件影响的反系方法的准确度、精密度以及方法的效果等叫做指标;把试验中要研究的条件叫做因素;把每种条件在试验范围内的取值(或选取的试验点)叫做该条件的水平。
这就是说我们常常遇到的问题可能包括多种因素,各种因素又有不同的水平,每种因素可能对分析结果产生各自的影响,也可能彼此交织在一起而产生综合的效果。
正交试验设计就是用于安排多因素实验并考察各因素影响大小的一种科学设计方法。
它始于1942年,之后在各个领域里都得到很快的发展和广泛应用。
这种科学设计方法是应用一套已规格化的表格——正交表来安排实验工作,其优点是适合于多种因素的实验设计,便于同时考查多种因素各种水平对指标的影响通过较少的实验次数,选出最佳的实验条件,即选出各因素的某一水平组成比较合适的条件,这样的条件就所考查的因素和水平而言,可视为最佳条件。
另一方面,还可以帮助我们在错综复杂的因素中抓住主要因素,并判断那些因素只起单独的作用,那些因素除自身的单独作用外,它们之间还产生综合的效果。
数理统计上的实验设计还能给出误差的估计。
2. 试验设计的基本方法2.1 全面试验法正交设计的方法,首先应根据实验的目的,确定影响实验结果的各种因素,选择这些影响因素的试验点,进而拟出实验方案,之后按所拟方案进行实验并对实验结果作出评估。
必要时再拟出进一步的实验方案,使实验工作更趋完善,所得结果也更为可靠。
如在研究某一显色反应时,为选择合适的显色温度、酸度和显色完全的时间,可作如下的试验安排。
什么是正交试验设计正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分析因式设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行3^3 = 27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)正交表安排实验,只需作9次,按L18(3)正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
正交表是一整套规则的设计表格,用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
例如L9(3),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×2),此表的5列中,有1列为4水平,4列为2水平。
正交试验设计表[1]正交试验因素水平表正交试验设计方案及试验结果极差分析表(或指标与因素关系图) 方差分析表(简单分析时可无)正交表的性质(1)每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。
例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。
每种对数出现次数相等。
在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、 1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
正交试验设计及其应用正交试验设计是一种高效合理的研究手段,广泛应用于自然科学、社会经济等领域。
本文将介绍正交试验设计的基本概念、类型及其应用,旨在帮助读者更好地了解这一重要的研究方法。
1、什么是正交试验设计正交试验设计是一种试验设计方法,它通过运用正交表来安排多因素多水平的试验,以实现对各因素效应的快速、准确地检测。
正交试验设计具有均衡分散、整齐可比、易于操作等优点,因此被广泛应用于各种科学研究中。
在正交试验设计中,试验的因素和水平通常是已知的,试验者需要选择合适的正交表来安排试验。
通过正交试验设计,可以有效地减少试验次数,同时保证试验结果的准确性和可靠性。
2、正交试验设计的类型正交试验设计可以根据不同的标准进行分类。
其中,最常见的分类方式是根据试验的完整性和验证方式不同来进行区分。
完全正交试验设计是一种完整的正交试验设计,它对所有可能的组合都进行了试验。
这种设计方法适用于试验因素和水平都不太多,且对所有组合都进行试验可行的情况。
部分正交试验设计则是对完全正交试验设计的一种简化。
它通过选取部分代表性组合进行试验,以达到在减少试验次数的同时,仍能有效地获取各因素效应的目的。
部分正交试验设计通常适用于因素和水平较多,不可能对所有组合都进行试验的情况。
交叉验证是另一种常见的正交试验设计类型。
它主要用于对新模型或新方法的性能进行评估。
在交叉验证中,将数据集分成若干份,每次使用不同的数据份来训练和验证模型或方法,以获取更准确的性能指标。
3、正交试验设计的应用正交试验设计的应用范围非常广泛,以下列举几个主要领域:自然科学领域:在自然科学领域,正交试验设计常被用于研究物理、化学、生物等实验科学。
例如,在化学反应中,通过正交试验设计可以快速找到最佳的反应条件;在生物学研究中,正交试验设计可以用于筛选最优的实验条件或寻找某些生物因素之间的相互作用。
社会经济领域:在社会经济领域,正交试验设计也发挥着重要作用。
例如,政府和企业可以利用正交试验设计进行政策制定和决策分析;在金融领域,正交试验设计可以用于风险评估和投资组合优化;在市场营销中,正交试验设计可以帮助企业了解客户需求,优化产品设计和营销策略。
正交实验法的由来一、正交表的由来拉丁方名称的由来古希腊是一个多民族的国家,国王在检阅臣民时要求每个方队中每行有一个民族代表,每列也要有一个民族的代表。
数学家在设计方阵时,以每一个拉丁字母表示一个民族,所以设计的方阵称为拉丁方。
什么是n阶拉丁方?用n个不同的拉丁字母排成一个n阶方阵(n<26 ),如果每行的n个字母均不相同,每列的n个字母均不相同,则称这种方阵为n*n拉丁方或n阶拉丁方。
每个字母在任一行、任一列中只出现一次。
什么是正交拉丁方?设有两个n阶的拉丁方,如果将它们叠合在一起,恰好出现n2个不同的有序数对,则称为这两个拉丁方为互相正交的拉丁方,简称正交拉丁方。
例如:3阶拉丁方(图1)用数字替代拉丁字母:(图2)二、正交实验法正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(33) 正交表按排实验,只需作9次,按L18(37) 正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
利用因果图来设计测试用例时, 作为输入条件的原因与输出结果之间的因果关系,有时很难从软件需求规格说明中得到。
往往因果关系非常庞大,以至于据此因果图而得到的测试用例数目多的惊人,给软件测试带来沉重的负担,为了有效地,合理地减少测试的工时与费用,可利用正交实验设计方法进行测试用例的设计。
正交实验设计方法:依据Galois理论,从大量的(实验)数据(测试例)中挑选适量的、有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法。
第6章正交试验设计主要内容:一、概述二、正交试验设计结果的直观分析法三、正交试验设计结果的方差分析法正交试验法:在优选区内利用正交表科学地安排试验点,通过试验结果的数据分析,缩小优选范围,或者得到较优点的多因素试验方法。
6.1 概述引例—多因素的试验设计问题•指标—收率•因素—(1)原料A的用量 (2)原料B的用量(3)液固比C (4)反应温度D(5)反应压力E (6)催化剂的用量F(7)反应时间G (8)搅拌强度H•水平—8个因素各取3个水平•进行全面搭配的试验次数为: 38=6561 次•科学问题:能否只做其中一小部分试验,通过数据分析来达到全面试验的效果呢?6.1.1 正交表(一)正交表的代号及含义常用正交表的形式为:L(r m)n式中,L ──正交表的符号;n ──要做的试验次数;r ──因素的水平数;m ── 最多允许安排的因素个数。
(27)完全试验次数:128如:L8L(313)完全试验次数:1594323(二)正交表的形式(1)等水平正交表:指各个因素的水平数都相等的正交表。
如L8(27),L27(313)(2)混合水平正交表:指试验中各因素的水平数不相等的正交表如L8(41×24),L24(3×4×24)(三)正交表的特点(1)每一列中,不同的数字出现的次数相等,即对任何一个因素,不同水平的试验次数是一样的。
(2)任意两列中,同一横行的两个数字构成有序数对,每种数对出现的次数是相同,即任何两个因素之间都是交叉分组的全面试验。
(三)正交试验设计的分类6.1.2 正交试验设计的优点①能在所有试验方案中均匀地挑选出代表性强的少数试验方案。
②通过对这些少数试验方案的结果进行统计分析,可以推出较优的方案,而且所得到的较优方案往往不包含在这些少数试验方案中。
③对试验结果作进一步的分析,可以得到试验结果之外的更多信息。
例如,各试验因素对试验结果影响的重要程度、各因素对试验结果的影响趋势等。