art 1 半导体二极管(1)
- 格式:ppt
- 大小:1.79 MB
- 文档页数:43
半导体二极管半导体二极管是含有一个PN结的二端器件。
它是最简单的半导体器件。
P型材料一端称为正极,而N型材料一端称为负极。
二极管是只允许电流朝一个方向流动的半导体器件。
它能被用来把交流电转换成直流电。
二极管的两个引线被分为阳极和阴极。
当二极管的正极电位高于负极电位(其差值大于开启电压,对锗管近似为0.3V,对硅管近似为0.7V)时称二极管是正向偏置,这时二极管的内阻是很小的,有一个较大的电流流过二极管,流过电流的大小取决于外部电路的电阻。
当二极管的正极电压高于负极电位时称二极管反向偏置,这时二极管的内部电阻非常高,所以一个理想的二极管可以阻挡反向的电流而让正向的电流通过。
一个二极管的实际特性曲线并不是十分理想的,如图所示。
当理想二极管反向偏置时,电流不能通过,而实际二极管却有约10μA的电流通过(虽然很小,但仍不够理想)。
如果加上足够大的反向电压,PN结就会被击穿,让电流反向通过。
一般要选择二极管的反向击穿电压远大于电路中可能出现的电压,二极管才不会击穿。
齐纳二极管(稳压管)稳压管是一种特殊的二极管,在正偏的条件下,它与一般的二极管有相同的特性(可以流过一个大电流)。
但是,在反向偏置时,在外加电压低于稳压电压(UZ)时它不导通,在外加电压等于稳压电压(UZ)时稳压管反向导通,同时维持稳压管两端的电压为稳压值(如图)。
流过稳压管电流的大小由两个因子决定,一个为串联的(限流)电阻(RS),另一个为并联的负载电阻(RL)。
电阻RS由公式RS=URs/IZ确定,其中URs=Usource-UZ,在没有负载时,一个特定大小的电流(IZ=IRs)流过稳压二极管和RS,电压降URs加UZ等Usource,Usource至少要比UZ高1V。
当一个负载并连到稳压二极管,流过二极管的电流由于负载的分流而减小,所以通过RS的电流保持为常数(IZ=IRs-IRL)。
稳压管通过改变流过它的电流来维持稳压管两端的电压稳定。
半导体激光二极管的工作原理好嘞,今天咱们聊聊半导体激光二极管,听起来是不是有点高大上?别担心,其实它就像个科技界的小精灵,虽然名字听起来复杂,但说白了,它就是把电变成光的“魔术师”。
想象一下,你打开电脑,那个亮亮的光点,嘿,就是它在工作!这小家伙的工作原理其实没那么神秘,咱们来一探究竟。
半导体激光二极管,嗯,咱们简称“激光二极管”吧,顾名思义,它是一个用半导体材料做的小盒子。
它的内部有两个区域,一个叫“P型”,另一个叫“N型”。
P型就像个好心的邻居,随时准备分享电子;N型则像个个性十足的朋友,电子在这里跳跃得可欢了。
然后,这两种材料一接触,嘿,就形成了一个叫“结”的地方,聪明吧?在这里,电子和“空穴”(想象成缺少电子的小空位)开始了一场舞蹈,互相碰撞、结合,哇,真是热闹!说到这里,咱们得提提这个“能量”了。
当电子和空穴结合的时候,会释放出能量,以光的形式出现。
就像在迪斯科舞厅里,灯光闪烁,能量满满。
可是,光可不止是亮亮的,它还是单色的,意味着它只有一种颜色。
这也是激光二极管的一个特性,光线不仅亮,还可以精准得像激光笔一样,绝对不含糊。
再说说激光二极管的工作状态。
想象一下,你把电源插上,电流开始流动,激发出那些小电子,开始在P型和N型之间穿梭。
这可不是随便游玩的,电子们可有任务在身,要在“结”的地方跳舞。
只要电流足够,电子就会不断碰撞,产生越来越多的光子,慢慢地,这光子就像雪花一样,越来越多,最后形成了稳定的激光输出。
是不是挺神奇的?这过程中还有个很重要的角色,那就是“增益介质”。
这个增益介质就像是舞台上的聚光灯,能把那些光子聚拢,让激光变得更强、更集中。
在增益介质的帮助下,光子们的能量不断积累,最后形成了那种让人眼花缭乱的激光束。
就像那些疯狂的追星族,越聚越多,最后形成了巨大的光亮。
好啦,咱们再来聊聊激光二极管的应用。
这个小家伙可不止在电脑里混日子,它的身影几乎无处不在。
激光打印机、光纤通信、甚至是医疗设备,激光二极管都有贡献。
半导体二极管基本知识1概述二极管又称晶体二极管,简称二极管(diode),半导体二极管是指利用半导体特性的两端电子器件。
最常见的半导体二极管是PN结型二极管和金属半导体接触二极管。
它们的共同特点是伏安特性的不对称性,即电流沿其一个方向呈现良好的导电性,而在相反方向呈现高阻特性。
可用作为整流、检波、稳压、恒流、变容、开关、发光及光电转换等。
利用高掺杂PN结中载流子的隧道效应可制成超高频放大或超高速开关的隧道二极管。
2结构PN结两端各引出一个电极并加上管壳,就形成了半导体二极管。
PN结的P型半导体一端引出的电极称为阳极,PN结的N型半导体一端引出的电极称为阴极。
半导体二极管按结构不同可分为点接触型、面接触型和平面型。
图1 二极管结构示意图及电路符号2.1点接触型半导体二极管由一根金属丝与半导体表面相接触,经过特殊工艺,在接触点上形成PN结,作出引线,加上管壳封装而成,见图2。
点接触型二极管的PN结面积小,高频性能好,适用于高频检波电路、开关电路。
图2 点接触型二极管示意图2.2面接触型半导体二极管,它的PN结是用合金法工艺制作而成的,见图3。
面接触型二极管的PN结面积大,可通过较大的电流,一般用于低频整流电路中。
图3 面接触型二极管示意图2.3平面型半导体二极管,它的PN结是用扩散法工艺制作的,见图4。
平面型二极管常用硅平面开关管,其PN结面积较大时,适用于大功率整流;其PN结面积较小时,适用于脉冲数字电路中做开关管使用。
图4 平面型二极管示意图2.4台面型半导体二极管,PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。
其剩余的部分便呈现出台面形,因而得名。
初期生产的台面型,是对半导体材料使用扩散法而制成的。
因此,又把这种台面型称为扩散台面型。
对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。
3主要参数3.1二极管(通用)开启电压V on:使二极管开始导通的临界电压称为开启电压V on。
面接触型管子的特点是,PN 结的结面积大,能通过较大电流,但结电容也大,适用于低频较低整流电路。
半导体二极管半导体二极管是由一个PN 结构成的二端元件。
其端钮有确定的命名,即一端叫阳极a ,一端叫阴极k 。
1.2 半导体二极管1.2.1 半导体二极管结构和类型(1)点接触型二极管(2)面接触型二极管(3)平面型二极管点接触型管子的特点是,PN 结的结面积小,因而结电容小,主要用于高频检波和开关电路。
既不能通过较大电流,也不能承受高的反向电压。
平面型管子的特点是,PN 结的结面积大时,能通过较大电流,适用于大功率整流电路;结面积较小时,结电容较小,工作频率较高,适用于开关电路。
1.结构2. 分类普通二极管特殊二极管变容二极管发光二极管光电二极管激光二极管二极管稳压二极管稳压光电转换调谐按材料的不同,常用的二极管有硅管和锗管两种;按其用途二极管分为普通二极管和特殊二极管两大类:整流、滤波、限幅、钳位、检波及开关等。
忽略正向导通压降和电阻,二极管相当短路;二极管反向截止时忽略反向饱和电流,反向电阻无穷大,二极管相当开路路。
I S uiU R 二极管是一种非线性元件,其特性就是PN 结的特性,而电流i D 与两端的电压u D 的关系近似为:1.2.2 二极管的伏安特性普通二极管是应用PN 结的饱和区、死区和导通区的特性制成的二端元件。
电路符号为:(1)伏安关系(2)理想二极管)(1-=T D V u S D e I i I S —反向饱和电流;V T —温度的电压当量,当常温(T=300K )时,V T =26mV 。
在正常工作范围内,当电源电压远大于二极管正向导通压降时,可将二极管当作理想二极管处理,其伏安特性如图示。
k a D最大整流电流又称为额定正向平均电流,是指二极管长时间使用时,允许通过的最大正向平均电流。
此值取决于PN 结的面积、材料和散热情况。
1.2.3 二极管的主要电参数1)最大整流电流I F2)最高反向工作电压U R3)最大反向电流I RM I F I RM ui U R 最大反向电流是指二极管加上最高反向工作电压时的反向电流值。
半导体二极管、发光二极管和稳压二极管:特性异同点晓谕半导体二极管、发光二极管和稳压二极管都是由半导体材料制成的电子元器件,具有共性,也具有各自的特性。
本文从三方面对它们进行比较,希望对读者有所帮助。
1. 工作原理半导体二极管是一种具有单向导电特性的二极管,正电压下通电,反电压下不导电。
当二极管上加正向电压,P型材料被注入大量的自由载流子,N型材料被抽取大量自由载流子,电子从N区向P区扩散,空穴从P区向N区扩散,两者在P区和N区的结合区域重新结合,放出多余的能量,使得结合区域内电子浓度和空穴浓度明显增加,导致二极管具有单向导电的特性。
发光二极管是一种特殊的二极管,通过在P区和N区之间引入夹杂的少量杂质(如镓、氮等),形成一个带隙结构,使杂质电子激发到导带中形成自由电子,结合区域是可以辐射出特定颜色的光。
它是一种集发光和导电于一体的器件,可以广泛应用于数字显示、光通信、路灯等领域。
稳压二极管也是一种二极管,主要用于电压稳定器中,是一种依靠Zener效应来维持电压稳定的二极管。
当稳压二极管正向电压(即输入电压)小于谷值电压时,稳压二极管表现为半导体二极管的特性,不导电。
当正向电压大于谷值电压时,稳压二极管进入谷值电流区域,稳压二极管上提供了恒定的电压(即稳压电压),进而起到维持电压稳定的作用。
2. 特点半导体二极管具有单向导电特性,在电路中主要用作整流、开关等。
由于不需要加热就能工作,因此被广泛应用于各种电子设备中。
发光二极管主要特点是具有发光效应,可以吸收电子的能量而发出光。
稳压二极管主要特点是它可以抵御电源电压的变化,在输入电压波动时起到维持稳定电压的作用。
3. 应用半导体二极管广泛应用于电路中的整流、开关、逆变等领域。
发光二极管被广泛应用于指示灯、显示屏、光通信、人工光源等领域。
稳压二极管则广泛应用于稳压器、电源为以及仪器仪表中的输出稳定电压的调节和涟漪的滤波。
其在各自的应用领域都具有不可替代的作用。
半导体二极管结构嘿,大家好!今天咱们来聊聊半导体二极管这玩意儿。
说起这个,我可是头都大了,因为光是这个名字就够绕的,更别提它里面的那些门道了。
不过,我这人就是不信邪,不信咱们这小小的半导体二极管里头还有什么我不知道的。
你瞧,这半导体二极管,听起来就像是个二流子,但人家可不一样,它可是电子世界里的大将。
先得说说这半导体,其实它就是硅、锗这些材料。
这些材料好就好在它们不是导体,也不是绝缘体,就是介于两者之间的那种。
这就好比是个中间派,有点像咱中国的李鸿章,你说他是个好人吧,他也没怎么坏,你说他是坏人吧,他也没那么坏,就这么个意思。
再说说二极管,它就像是两个半导体拼在一起。
一个半导体是P 型,一个半导体是N型。
P型半导体就像是个大肚子,里面都是空空的,而N型半导体就像是个小肚子,里面都是满满的。
当这两个半导体放在一起的时候,就好像是两个小家伙拥抱在一起,形成一个PN 结。
这个PN结可了不得,它就像是电子世界的“门”,电流要想过去,就得有“钥匙”。
这个钥匙就是电压。
当电压大到一定程度,PN结就打开了,电流就能过去,二极管就导通;当电压小的时候,PN结就关闭了,电流就过不去,二极管就截止。
哎呀,说着说着,我有点饿了。
咱们换个话题,来点实际的。
你想想,咱们手机里的充电器,电脑里的显卡,哪一个少了这半导体二极管?它们就像是个个“守门员”,保证了电流的有序流动,让电子设备正常工作。
不过,这半导体二极管也有它的弱点。
它不能承受太大的电压,一但电压超过它的承受范围,它就会烧坏。
这就好比是个小孩子的玩具,你不能给他太大的压力,否则他就会崩溃。
哎,说了这么多,我算是把半导体二极管的结构大概讲完了。
虽然这东西听起来复杂,但只要用心去理解,其实还是挺有意思的。
你看,我都能讲得头头是道,是不是说明这玩意儿也没那么难呢?哈哈!。
1.反向饱和漏电流IR指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。
在常温下,硅管的IR为纳安(10-9A)级,锗管的IR为微安(10-6A)级。
2.额定整流电流IF指二极管长期运行时,根据允许温升折算出来的平均电流值。
目前大功率整流二极管的IF值可达1000A。
3.最大平均整流电流IO在半波整流电路中,流过负载电阻的平均整流电流的最大值。
这是设计时非常重要的值。
4.最大浪涌电流IFSM允许流过的过量的正向电流。
它不是正常电流,而是瞬间电流,这个值相当大。
5.最大反向峰值电压VRM即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。
这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。
因给整流器加的是交流电压,它的最大值是规定的重要因子。
最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。
目前最高的VRM值可达几千伏。
6.最大直流反向电压VR上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。
用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的.7.最高工作频率fM由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。
点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千赫。
8.反向恢复时间Trr当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。
实际上,一般要延迟一点点时间。
决定电流截止延时的量,就是反向恢复时间。
虽然它直接影响二极管的开关速度,但不一定说这个值小就好。
也即当二极管由导通突然反向时,反向电流由很大衰减到接近IR时所需要的时间。
大功率开关管工作在高频开关状态时,此项指标至为重要。
9.最大功率P二极管中有电流流过,就会吸热,而使自身温度升高。
最大功率P为功率的最大值。
具体讲就是加在二极管两端的电压乘以流过的电流。
这个极限参数对稳压二极管,可变电阻二极管显得特别重要。
半导体二极管和发光二极管概述及解释说明1. 引言1.1 概述半导体二极管和发光二极管是两种常见的电子元件,它们在现代电子技术领域发挥着重要的作用。
半导体二极管是一种基本的电子器件,具有良好的整流特性,可以将电流只在一个方向上进行传导,被广泛应用于电源、通信和计算机等领域。
而发光二极管则是在半导体二极管基础上进一步演化而来的元件,在通常情况下能够将电能转化为光能,并在光学显示、照明和通信等领域有广泛应用。
1.2 文章结构本文将分为五个主要部分对半导体二极管和发光二极管进行概述和解释说明。
首先,在引言部分对这两种元件做总体概述,并介绍文章的结构安排。
接下来,第二部分将详细阐述半导体二极管的基本原理、结构和工作方式,并探讨其广泛应用的领域。
第三部分将解释发光二极管的工作原理,介绍其不同的结构和分类,并探讨它在不同应用范围内的使用情况和未来发展趋势。
第四部分将比较分析半导体二极管和发光二极管的特点和区别,包括理论性能差异、应用场景选择比较以及技术发展前景对比评估。
最后,结论与展望部分将总结概括文章要点,并提出对未来发展的展望和建议。
1.3 目的本文旨在全面了解和阐述半导体二极管和发光二极管这两种重要电子元件的概念、原理、结构以及广泛应用领域。
通过对它们进行详细解释说明和比较分析,可以帮助读者更好地理解它们在现代电子技术中扮演的角色,并为相关领域中的技术研究和应用提供参考依据。
此外,还将对未来这两种元件的发展进行展望,并提出相关建议,旨在促进电子技术领域的进一步创新与发展。
2. 半导体二极管:2.1 基本原理:半导体二极管是一种基于半导体材料制造的电子器件。
它由两个不同掺杂的半导体材料构成,通常是P 型(正负载) 和N 型(负载) 的硅或锗晶体。
当二极管处于正向偏置状态时,即正压施加在P 区域上,而负压施加在N 区域上,电子会从N 区流向P 区,同时空穴从P 区流向N 区。
这种电荷移动形成了一个电流,在此过程中,在PN 结处生成一个电势垒。