半导体二极管(1)(1)
- 格式:ppt
- 大小:275.00 KB
- 文档页数:12
第一章 半导体二极管I 类题一、简答题1. 杂质半导体有哪些?与本征半导体相比导电性有什么不同?答杂质半导体有P 型半导体和N 半导体两种,比本征半导体导电性能增强很多。
2.什么是PN 结?PN 结最基本的特性是什么? 答;P 型半导体和N 型半导体采用特殊的加工工艺制作在一起,在其交界处产生的特殊薄层称为PN 结。
PN 结最基本的特性是单向导电性。
3. 什么是半导体?半导体有哪些特性?答:导电能力介于导体和绝缘体之间的物质称为半导体。
具有热敏特性、光敏特性和掺杂特性。
二、计算题1. 在下图所示电路中,哪一个灯泡不亮?答:b 不亮2.如图所示的电路中,试求下列两种情况下输出端Y 的电位U Y 及各元件(R ,VD A ,VD B )中通过的电流;(1)U A =U B =0V ;(2)U A =+3V ,U B =0V ;答:(1)V Y =0VmA 33.9K Ω12V ≈=R I mA5.1232R DB DA ≈===I I I (2)D B 导通,D A 截止 V Y =0VmA39.312≈=R I V 0DA =I mA 3DB =I 3. 在下图所示电路中,设二极管是理想二极管,判断各二极管是导通还是截止?并求U AO =?答:a)图中,二极管导通,U AO=-6V;b)图,二极管截止,U AO=-12V;c)图V1导通,V2截止,U AO=0V。
II类题一、简答题1.从晶体二极管的伏安特性曲线看,硅管和锗管有什么区别?答:硅管死区电压为0.5V左右而锗管为0.2V左右;硅管的正向管压降为0.7V左右而锗管为0.3V左右;硅管的反向饱和电流较小而锗管较大。
2.光电二极管和发光二极管有什么区别?答:发光二极管将电信号转化成光信号,工作时加正向电压;光电二极管将光信号转化成电信号,工作时加反向电压。
3.为什么用万用表的不同电阻档测量同一二极管的正偏内阻数值上差别很大?答:因二极管的非线性。
半导体二极管是怎样分类的?
(1)按材料分类
半导体二极管按其所用的半导体材料分类,可分为锗(Ge)二极管,硅(Si)二极管,磷化镓(GaP)二极管及砷化镓(GaAs)二极管等。
(2)按制造工艺分类
半导体二极管按制造工艺分类,可分为面接触型二极管和点接触型二极管。
(3)按用途不同分类
半导体二极管按用途不同分类,可分为整流二极管、检波二极管、稳压二极管、变容二极管、发光二极管、光电二极管、开关二极管、快恢复二极管、激光二极管、双向击穿二极管、磁敏二极管、肖特基二极管、温度效应二极管、隧道二极管、双向触发二极管、恒流二极管、体效应二极管等。
(4)按结构类型分类
半导体二极管按结构类型来分类,可分为半导体结型二极管,金属半导体接触二极管等。
(5)按封装形式分类
半导体二极管按封装形式分类,可分为常规封装二极管,特殊封装二极管等。
(6)按工作频率分类
半导体二极管按其工作频率分类,可分为高频二极管和低频二极管。
面接触型管子的特点是,PN 结的结面积大,能通过较大电流,但结电容也大,适用于低频较低整流电路。
半导体二极管半导体二极管是由一个PN 结构成的二端元件。
其端钮有确定的命名,即一端叫阳极a ,一端叫阴极k 。
1.2 半导体二极管1.2.1 半导体二极管结构和类型(1)点接触型二极管(2)面接触型二极管(3)平面型二极管点接触型管子的特点是,PN 结的结面积小,因而结电容小,主要用于高频检波和开关电路。
既不能通过较大电流,也不能承受高的反向电压。
平面型管子的特点是,PN 结的结面积大时,能通过较大电流,适用于大功率整流电路;结面积较小时,结电容较小,工作频率较高,适用于开关电路。
1.结构2. 分类普通二极管特殊二极管变容二极管发光二极管光电二极管激光二极管二极管稳压二极管稳压光电转换调谐按材料的不同,常用的二极管有硅管和锗管两种;按其用途二极管分为普通二极管和特殊二极管两大类:整流、滤波、限幅、钳位、检波及开关等。
忽略正向导通压降和电阻,二极管相当短路;二极管反向截止时忽略反向饱和电流,反向电阻无穷大,二极管相当开路路。
I S uiU R 二极管是一种非线性元件,其特性就是PN 结的特性,而电流i D 与两端的电压u D 的关系近似为:1.2.2 二极管的伏安特性普通二极管是应用PN 结的饱和区、死区和导通区的特性制成的二端元件。
电路符号为:(1)伏安关系(2)理想二极管)(1-=T D V u S D e I i I S —反向饱和电流;V T —温度的电压当量,当常温(T=300K )时,V T =26mV 。
在正常工作范围内,当电源电压远大于二极管正向导通压降时,可将二极管当作理想二极管处理,其伏安特性如图示。
k a D最大整流电流又称为额定正向平均电流,是指二极管长时间使用时,允许通过的最大正向平均电流。
此值取决于PN 结的面积、材料和散热情况。
1.2.3 二极管的主要电参数1)最大整流电流I F2)最高反向工作电压U R3)最大反向电流I RM I F I RM ui U R 最大反向电流是指二极管加上最高反向工作电压时的反向电流值。
第2篇电子学第10章半导体及二极管大纲要求:掌握二极管和稳压管特性、参数了解载流子,扩散,漂移;PN结的形成及单向导电性10.1 半导体的基本知识10.1.1 本征半导体本征半导体是一种完全纯净的、结构完整的半导体晶体。
当电子挣脱共价键的束缚成为自由电子后,就同时在原来的共价键的相应位置上留下一个空位,这个空位称为空穴空穴的出现是半导体区别于导体的一个重要特点。
显然,自由电子和空穴是成对出现的,所以称它们为电子空穴对。
10.1.2 杂质半导体在本征半导体中掺入微量的杂质,就会使半导体的导电性能发生显著改变。
根据掺入杂质的化合价不同,杂质半导体分为N型和P型两大类。
(1)N型半导体在4价元素的硅(或锗)晶体中,掺入微量的5价元素磷(或砷、锑等)后,磷原子将散布于硅原子中,且替代了晶体点阵中某些位置上的硅原子。
通常,掺杂所产生的自由电子浓度远大于本征激发所产生的自由电子或空穴的浓度,所以杂质半导体的导电性能远超过本征半导体。
显然,这种半导体中自由电子浓度远大于空穴浓度,所以称电子为多数载流子(majority carrier,简称多子),空穴为少数载流子(minority carrier,简称少子)。
因为这种半导体的导电主要依靠电子,所以称为N型半导体或电子型半导体。
(2)P型半导体在硅(或锗)的晶体中掺入微量的3价元素硼(或铝、铟等)后,杂质原子也散布于硅原子中,且替代了晶体点阵中某些位置上的硅原子。
在这种半导体中,空穴是多子,自由电子是少子,它的导电主要依靠空穴,因此称为P 型半导体或空穴型半导体。
10.1.3 半导体中的两种电流(1)漂移电流:自由电子和空穴在电场作用下的定向运动所形成的电流。
(2)扩散电流:同一种载流子从浓度高处向浓度地处扩散所形成的电流称为扩散电流。
10.1.4 PN结(1)PN结的形成P区和N区交界面处形成的区域称为P N结。
形成原因主要有以下三个:①载流子的浓度差引起多子的扩散;②复合使交界面形成空间电荷区 (耗尽层)③扩散和漂移达到动态平衡(2)PN结的单向导电性加在PN结上的电压称为偏置电压。
半导体二极管二极管是由一个PN结、电极引线以及外壳封装构成的。
二极管的最大特点是:单向导电性。
其主要包括:稳压、整流、检波、开关、光/电转换等。
1.二极管的分类(1)按材料来分,可分为:硅二极管、锗二极管。
(2)按结构来分,可分为:点接触型二极管、面接触型二极管。
(3)按用途来分,可分为:稳压二极管、整流二极管、检波二极管、开关二极管、发光二极管、光电二极管等。
图1常用二极管的外形和电路符号2.二极管性能的检测(1)外观判别二极管的极性二极管的正、负极性一般都标注在其外壳上。
有时会将二极管的图形直接画在其外壳上如图2(a)示。
对于二极管引线是轴向引出的,则会在其外壳上标出色环(色点),有色环(色点)的一端为二极管的负极端,如图2(b)所示。
若二极管引线是同向引出,其判断如图2 (c)所示。
若二极管是透明玻瑞壳,则可直接看出极性,即二极管内部连触丝的一端为正极。
图2根据判断外观二极管极性(2)万用表检测二极管的极性与好坏检测原理:根据二极管的单向导电性这一特点,性能良好的二极管,其正向电阻小,反向电阻大;这两个数值相差越大越好。
若相差不多,说明二极管的性能不好或已经损坏。
测量时,选用万用表的“欧姆”档。
一般用Rx100或Rx lk档。
而不用Rx1或Rx10k 档。
因为Rx l档的电流太大,容易烧坏二极管。
Rx 10k档的内电源电压太大,易击穿二极管。
测量方法:将两表棒分别接在二极管的两个电极上,读出测量的阻值;然后将表棒对换,再测量一次。
记下第二次阻值。
若两次阻值相差很大,说明该二极管性能良好;并根据测. 量电阻小的那次的表棒接法(称之为正向连接),判断出与黑表棒连接的是二极管的正极。
与红表榜连接的是二极管的负极。
因为万用表的内电源的正极与万用表的“一”插孔连通,内电源的负极与万用表的“ + ”插孔连通。
如采两次测量的阻值都很小,说明二极管己经击穿;如果两次测量的阻值都很大,说明二极管内部己经断路;两次测量的阻值相差不大,说明悦极管性能欠佳。
半导体二极管半导体二极管是由PN结加上引出线和管壳构成的。
一、二极管的分类1、按照所用的半导体材料:可分为锗管和硅管。
2、根据其不同用途:可分为检波二极管、整流二极管、稳压二极管、开关二极管等。
3、按照管芯结构:可分为点接触型二极管(电流小,高频应用)、面接触型二极管(电流大,用于整流)及平面型二极管。
二、二极管图形符号①整流二极管:利用单向导电性把交流电变成直流电的二极管。
②稳压二极管:利用反向击穿特性进行稳压的二极管。
③发光二极管:利用磷化镓把电能转变成光能的二极管。
④光电二极管:将光信号转变为电信号的二极管。
⑤变容二极管:利用反向偏压改变 PN 结电容量的二极管三、型号命名整流二极管——2CZ82B稳压二极管——2CW50变容二极管——2AC1 等等。
四、二极管的特性单向导电性。
正向导通反向载止。
五、二极管的参数1、最大整流电流(IF) (由于电流通过PN结,使得管子发热,电流达到一定程度,管子因过热而烧坏。
)指管子长期运行时,允许通过的最大正向平均电流。
2、反向击穿电压 (VBR)指管子反向击穿时的电压。
3、最大反向工作电压VRM在实际工作时,最大反向工作电压VRM一般只按反向击穿电压VBR的一半计算。
4、反向电流IR(由于反向电流与温度有关,所以使用二极管时注意温度的影响。
)5、正向压降VF在规定的正向电流下,二极管的正向电压降。
小电流硅二极管的正向压降在中等电流水平下,约0.6V~0.8V;锗二极管约0.1V~0.3V。
6、最高工作频率fM二极管工作的上限频率,超过该频率,结电容起作用,二极管将不能很好的体现单向导电性。
六、二极管的检测1、判别正负极性万用表:R ×100 或 R×1 k 挡;将红、黑表笔分别接二极管两端。
所测电阻小时,黑表笔接触处为正极,红表笔接触处为负极。
2、质量好坏判别万用表:R 1k。
(1)若正反向电阻均为零,二极管短路;(2)若正反向电阻非常大,二极管开路。
模拟电子技术主编第1章半导体二极管及其基本应用1.1.1 半导体的基础知识本证半导体1.定义:纯净的单晶半导体称为本征半导体。
2.本征半导体的原子结构及共价键:共价键内的两个电子由相邻的原子各用一个价电子组成,称为束缚电子。
3.本征激发和两种载流子:——自由电子和空穴受温度的影响,束缚电子脱离共价键成为自由电子,在原来的位置留有一个空位,称此空位为空穴。
在本征半导体中,自由电子和空穴成对出现,数目相同。
复合现象:空穴出现以后,邻近的束缚电子可能获取足够的能量来填补这个空穴,而在这个束缚电子的位置又出现一个新的空位,另一个束缚电子又会填补这个新的空位,这样就形成束缚电子填补空穴的运动。
为了区别自由电子的运动,称此束缚电子填补空穴的运动为空穴运动。
4. 结论(1)半导体中存在两种载流子,一种是带负电的自由电子,另一种是带正电的空穴,它们都可以运载电荷形成电流。
(2)本征半导体中,自由电子和空穴相伴产生,数目相同。
(3)一定温度下,本征半导体中电子空穴对的产生与复合相对平衡,电子空穴对的数目相对稳定。
(4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。
这是半导体和导体在导电机制的本质差异。
另一方面,空穴的出现是半导体导电区别导体导电的一个主要特征。
杂质半导体1.定义:为了提高半导体的导电能力可在本征半导体中掺入微量杂质元素,该半导体称为杂质半导体。
2.半导体分类在本征半导体中有意识加入微量的三价元素或五价元素等杂质原子,可使其导电性能显著改变。
根据掺入杂质的性质不同,杂质半导体分为两类:电子型(N 型)半导体和空穴型(P 型)半导体。
(1)N 型半导体在硅(或锗)半导体晶体中,掺入微量的五价元素,如磷(P)、砷(As)等,则构成N 型半导体。
五价的元素具有五个价电子,它们进入由硅(或锗)组成的半导体晶体中,五价的原子取代四价的硅(或锗)原子,在与相邻的硅(或锗)原子组成共价键时,因为多一个价电子不受共价键的束缚,很容易成为自由电子,于是半导体中自由电子的数目大量增加。
半导体二极管的基本原理及应用半导体二极管是一种最简单的电子器件,它在现代电子技术中起着至关重要的作用。
本文将介绍半导体二极管的基本原理、工作方式以及常见的应用。
1. 基本原理半导体二极管由N型半导体和P型半导体组成,其中N型半导体富含自由电子,而P型半导体则富含空穴。
当两种半导体材料通过P-N结(P-N Junction)连接时,便形成了一个二极管。
P-N结的形成是通过掺杂过程实现的,也即将掺杂少量的杂质元素(如硼、磷等)加入到纯净的半导体材料中。
半导体二极管正常工作时,其中的P区域称为“阳极”或“正极”,而N区域则称为“阴极”或“负极”。
在正向偏置情况下,即阳极电压高于阴极,电子从N区域进入P区域,而空穴从P区域进入N区域。
这使得电流流过二极管,形成正向导通。
相反,在反向偏置情况下,即阳极电压低于阴极,由于P-N结的电子云和空穴云相互吸引,电流被阻止,二极管呈现高阻抗状态,称为反向截止。
2. 工作方式半导体二极管具有直流和交流两种工作方式。
在直流工作中,二极管起到整流器的作用,将交流信号转化为直流信号。
在正向偏置时,直流电流通过二极管,而在反向偏置时,几乎没有电流通过。
这一特性使得二极管非常适合用于电源电路的整流器。
在交流工作中,二极管被用作开关或者调制器件。
通过正向偏置或反向偏置,可以实现二极管的导通和截止。
当二极管处于导通状态时,信号可以流过,而在截止状态时,信号被阻断。
这使得二极管在数字与模拟信号处理系统中发挥重要作用,例如在计算机中的逻辑门电路和通信系统中的调制解调器。
3. 应用领域半导体二极管广泛应用于各种电子设备和领域,下面是几个典型的应用示例:3.1 整流器我们在家庭中常用的电源适配器和电池充电器中常会见到二极管的身影。
在这些设备中,二极管被用作整流器,将交流电转换为直流电,以供电子器件正常工作。
由于二极管具有单向导通特性,可以保证电流仅在一个方向上流动,从而实现直流电的获取。
3.2 发光二极管(LED)发光二极管(LED)是一种将电能转换为光能的电子器件。