07网壳结构
- 格式:ppt
- 大小:1.93 MB
- 文档页数:50
网壳结构
一、简介
1.1 何为网壳结构
网壳结构是曲面型的网格结构,兼有杆系结构和薄壳结构的固有特性,受力合理,覆盖跨度大,其外形为壳,是格构化的壳体,也是壳形的网架。
它是以杆件为基础,按一定规律组成网格,按壳体坐标进行布置的空间构架,其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。
它既有靠空间体形受力的优点,又有工厂生产构件现场安装的施工简便、快速的长处,而且他以结构受力合理,刚度大,自重轻,体形美观多变,技术经济指标好,而成为大跨结构中备受关注的一种结构形式。
1.2 网壳的形式与分类
(1)按网壳的层数来分,有单层网壳和双层网壳,其中双层网壳通过腹杆把内外两层网壳杆件连接起来,因而可把双层网壳看作由共面与不共面的拱桁架系或大小相同与不同的角锥系(包括四角锥系、三角锥系和六角推系)组成。
(一般来说,中小跨度(一般为40m以下)时,可采用单层网完,跨度大时,则采用双层网壳。
)如图1
图1 单层网壳与双层网壳
(2)按网壳的用材分,主要有木网壳、钢网壳、钢筋混凝土网壳以及钢网壳与钢筋混凝土屋面板共同工作的组合网壳等四类。
(3)按曲面的曲率半径分,有正高斯曲率网壳、零高斯曲率网壳和负高斯曲率网壳等三类。
(4)按曲面的外形分,主要有球面网壳、圆柱面网壳、扭网壳(包括双曲抛物面鞍型网壳、单块扭网壳、四块组合型扭网壳)等。
(5)按网壳网格的划分来分,有以下两类。
对于圆柱面网壳主要有单向斜杆型、交叉斜杆型、联方网格型、三向型,如图2所示。
对于球面网壳主要有肋环型、Schwedler型、联方网格型、三向网格型,如图3所示。
结构设计攻略之网壳结构完美设计法1、网壳是什么网壳是一种与平板网架类似的空间杆系结构,系以杆件为基础,按一定规律组成网格,按壳体结构布置的空间构架,它兼具杆系和壳体的性质。
其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。
此结构是一种国内外颇受关注、有广阔发展前景的空间结构。
网壳结构又包括单层网壳结构、预应力网壳结构、板锥网壳结构、肋环型索承网壳结构、单层叉筒网壳结构等。
2、网壳的发展史网壳结构的雏形——穹顶结构。
在人类社会的发展历程中,大跨度空间结构常常是建筑人员追求的梦想和目标。
其中,网壳结构的发展经历了一个漫长的历史演变过程。
古代的人类通过详细观察,利用仿生原理,为了有一个更好的生存空间,常常以树枝为骨架、以稻草为蒙皮来模仿如蛋壳、鸟类的头颅、山洞的,搭造穹顶结构,即最初的帐篷。
随着建筑材料的发展,穹顶的石料,后面逐渐被砖石取代。
穹顶的跨度一般不大,在30m~40m左右,其中建于公元120~124年的罗马万神庙是早期穹顶的典型代表。
到19世纪,铁的应用为穹顶的发展开创了一个新纪元,近代钢筋混凝土结构理论的出现及应用开辟了大跨度薄壳穹顶的新领域。
1922年在德国耶拿建造了土木工程史上第一座钢筋混凝土薄壳结构———耶拿天文馆。
耶拿天文馆随着铁、钢材、铝合金等轻质高强材料出现及应用,富有想象力的工程师开始了对穹顶结构使用各种杆件形式。
公认的“穹顶结构之父”—德国工程师施威德勒对穹顶网壳的诞生与发展起了关键性的作用, 他在薄壳穹顶的基础上提出了一种新的构造型式,即把穹顶壳面划分为经向的肋和纬向的水平环线,并连接在一起,而且在每个梯形网格内再用斜杆分成两个或四个三角形,这样穹顶表面的内力分布会更加均匀,结构自身重量也会进一步降低,从而可跨越更大空间。
这样的穹顶结构实际上已是真正的网壳结构,即沿某种曲面有规律的布置大致相同的网格或尺寸较小的单元,从而组成空间杆系结构。
施威德勒网壳3、已建成的网壳赏析富勒球1962年11月13日,经过百般周折,加拿大终于获得1967年蒙特利尔世博会的举办权。
第七章网壳结构⏹2008.8.月启用全国最大跨度的青岛火车站网壳结构无柱风雨棚。
⏹中央电视台一号演播大厅工程二、网壳的分类:1、按材料分:(1)、钢筋混凝土网壳:(3)、铝合金网壳自重轻,耐腐蚀,强度高,易制作和安装,欧美国家大量采用。
单层网壳双层网壳⏹例1同济大学礼堂:平面尺寸40X56m,矢高8~8.5m⏹例2:上海某中学体育馆:30mx50m,矢高8m。
采用了三向单层筒网壳结构。
网壳沿波长方向划分14格,形成的网格为等腰三角形。
网壳两端山墙处及离一端10m处共有三列柱子,作为网壳的支承,在纵向40m长度内,每隔10m,增加一道由杆件组成的加强拱肋,以提高结构稳定性。
网壳的水平推力依靠建筑物自身的刚度和适当放大檐口断面尺寸来承受,通过设置大天沟,,把网壳的水平推力集中传到两端山墙。
2、按弦杆布置方向分类A、正交类双层筒网壳B、斜交类双层筒网壳:C、混合类双层筒网壳:三、筒网壳的受力特性1、双层筒网壳的传力--与上下弦杆的布置方向有关1)正交类:外荷主要由波长方向的弦杆承担,纵向弦杆内力小,以拱作用为主,网壳内的内力分布均匀,传力路线短。
2)斜交类:外荷载沿着与波长有夹角的斜向拱卸荷。
通常,最大内力集中在对角线方向的“主拱”上。
3)混合类:受力复杂。
2、结构的受力—与其支承条件有关(1)对边支承时:A、跨度方向支承时,即成为筒拱结构。
B、波长方向支承时,网壳以纵向梁的作用为主。
梁式筒网壳的纵向两侧边应设侧边构件(2)四边支承或多点支承:拱式受压与梁式受弯的受力状态同时出现。
⏹短网壳时,拱式受压作用明显;⏹长网壳时,梁式受弯的特征明显;⏹中长网壳,则介于两者之间。
⏹由于拱的受力比梁的受力性能好,因此,工程中多采用短网壳,若必须是长网壳时,可沿筒网壳的纵向的中间加设加强肋,把长网壳分成若干个短网壳。
网壳结构设计简介戚 豹徐州建筑职业技术学院土木工程系第五章网壳结构设计简介网架结构是一个以受弯为主体的平板,可以看作是平板的格构化形式。
而网壳结构则是壳体结构格构化的结果,以其合理的受力形态,成为较为优越的结构体系。
可以说,网壳结构不仅仅依赖材料本身的强度,而且以曲面造型来改变结构的受力,成为以薄膜内力为主要受力模式的结构形态,能够跨越更大的跨度。
不仅如此,网壳结构以其优美的造型激发了建筑师及人们的想象力,随着结构分析理论以及试验研究的不断深入,计算技术的不断提高和增强,越来越多的建筑采用了这种结构型式。
5.1 网壳结构的常用形式5.1.1 网壳结构的基本曲面及形成1.网壳的型体网壳结构的型体是指网壳的形状、曲面形式和杆件的布置。
如果型体设计合理,可以使得结构在已知条件下可能达到最大的规模,受力合理、安全储备高、美观、制造和安装简易、节省材料、经济实用等。
国际薄壳与空间结构协会(IASS)创始人、西班牙著名结构工程师托罗哈认为:“最佳结构有赖于其自身受力之型体,而非材料之潜在强度。
”也就是说,网壳结构凭借其型体的合理性,才能成为一种最为优越的结构。
因此,网壳结构的型体已经成为当今建筑师与结构工程师的重要研究课题。
在进行网壳结构设计和型体创新时,首先必须了解曲面的几何形式、物理性质及其工作特性。
通常,我们把曲面分为两大类:1)典型曲面典型曲面,也称几何学曲面。
某些曲面不管其形式如何,也不管它是如何形成的,总可以用几何学方程表示出来。
比如,用圆弧线、双曲线、抛物线、椭圆线和直线等表示出的曲面并可以用微分方程求解的,都属于典型曲面。
国内外采用这种曲面已经建造了大量形体优美、经济合理的建筑。
如果再将这些曲面进行适当的切割或组合,还可以构成更多的型体,创造出新颖的网壳结构。
2)非典型曲面非典型曲面,亦称非几何学曲面。
某些曲面不能以简单的几何学方程来表示。
非典型曲面最初是建筑师为了使空间结构的型体有所创新,达到建筑造型能自由地发挥而发展起来的,最早应用于钢筋混凝土薄壳结构。
网壳结构一、简介1.1 何为网壳结构网壳结构是曲面型的网格结构,兼有杆系结构和薄壳结构的固有特性,受力合理,覆盖跨度大,其外形为壳,是格构化的壳体,也是壳形的网架。
它是以杆件为基础,按一定规律组成网格,按壳体坐标进行布置的空间构架,其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。
它既有靠空间体形受力的优点,又有工厂生产构件现场安装的施工简便、快速的长处,而且他以结构受力合理,刚度大,自重轻,体形美观多变,技术经济指标好,而成为大跨结构中备受关注的一种结构形式。
1.2 网壳的形式与分类(1)按网壳的层数来分,有单层网壳和双层网壳,其中双层网壳通过腹杆把内外两层网壳杆件连接起来,因而可把双层网壳看作由共面与不共面的拱桁架系或大小相同与不同的角锥系(包括四角锥系、三角锥系和六角推系)组成。
(一般来说,中小跨度(一般为40m以下)时,可采用单层网完,跨度大时,则采用双层网壳。
)如图1图1 单层网壳与双层网壳(2)按网壳的用材分,主要有木网壳、钢网壳、钢筋混凝土网壳以及钢网壳与钢筋混凝土屋面板共同工作的组合网壳等四类。
(3)按曲面的曲率半径分,有正高斯曲率网壳、零高斯曲率网壳和负高斯曲率网壳等三类。
(4)按曲面的外形分,主要有球面网壳、圆柱面网壳、扭网壳(包括双曲抛物面鞍型网壳、单块扭网壳、四块组合型扭网壳)等。
(5)按网壳网格的划分来分,有以下两类。
对于圆柱面网壳主要有单向斜杆型、交叉斜杆型、联方网格型、三向型,如图2所示。
对于球面网壳主要有肋环型、Schwedler型、联方网格型、三向网格型,如图3所示。
(a)(b)(c)(d)图2 圆柱面单层网壳网格(a)单向斜杆型(b)交叉斜杆型(c)联方型(d)三向网格型图3单层球面网壳网格类型二、受力特点和典型工程应用1、圆柱面网壳受力特点1.1两对边支撑对于以跨度方向为支座,拱脚常支撑于圈梁、柱顶或基础上产生推力。
对于以波长方向为支座,柱面网壳端支座若为墙,则为受拉构件,若端支座为边高度梁,则为拉弯构件,此时应设边梁。