弹塑性力学第二章 矢量和张量
- 格式:ppt
- 大小:467.00 KB
- 文档页数:41
弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。
2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。
一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。
3.体积力:作用在物体每一点的外力。
比如每一点都有的重力。
4.面力:作用在物体表面的外力。
比如水给大坝表面的压力。
5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。
物体表面的任一点的应力和该点的面力是相同的大小和方向。
6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。
直角坐标下的方程形式上简单,其它坐标的复杂些。
7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。
8.位移:分析一点:一点变形前后的位置差值。
变形体研究的位移是该点空间位置的连续函数。
9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。
直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。
10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。
直角坐标下的方程形式上简单,其它坐标的复杂些。
11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。
12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。
13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。
应用弹塑性力学习题解答Revised on November 25, 2020应用弹塑性力学习题解答目录第二章习题答案设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。
解该平面的法线方向的方向余弦为而应力矢量的三个分量满足关系而法向分量满足关系最后结果为利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。
解求出后,可求出及,再利用关系可求得。
最终的结果为已知应力分量为,其特征方程为三次多项式,求。
如设法作变换,把该方程变为形式,求以及与的关系。
解求主方向的应力特征方程为式中:是三个应力不变量,并有公式代入已知量得为了使方程变为形式,可令代入,正好项被抵消,并可得关系代入数据得,,已知应力分量中,求三个主应力。
解在时容易求得三个应力不变量为,,特征方程变为求出三个根,如记,则三个主应力为记已知应力分量,是材料的屈服极限,求及主应力。
解先求平均应力,再求应力偏张量,,,,,。
由此求得然后求得,,解出然后按大小次序排列得到,,已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。
解特征方程为记,则其解为,,。
对应于的方向余弦,,应满足下列关系(a)(b)(c)由(a),(b)式,得,,代入(c)式,得,由此求得对,,代入得对,,代入得对,,代入得当时,证明成立。
解由,移项之得证得第三章习题答案取为弹性常数,,是用应变不变量表示应力不变量。
解:由,可得,由,得物体内部的位移场由坐标的函数给出,为,,,求点处微单元的应变张量、转动张量和转动矢量。
解:首先求出点的位移梯度张量将它分解成对称张量和反对称张量之和转动矢量的分量为,,该点处微单元体的转动角度为电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。
如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。
第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, 0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。