新课标高中数学必修二导学案
- 格式:doc
- 大小:3.33 MB
- 文档页数:111
第一章第一节柱锥台球的结构特征第二课时三维目标1.了解圆柱、圆锥、圆台、球的定义,认识圆柱、圆锥、圆台、球的结构特征;2. 会用柱、锥、台、球的结构特征描述简单组合体的结构特征;3. 了解柱、锥、台体的关系.________________________________________________________________________________ 目标三导学做思1问题1. (1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.(3)图③中的几何体叫做________,SB为叫它的________.(4)图④中的几何体叫做________,AA′叫它的________,⊙O′及其内部叫它的________,⊙O及其内部叫它的________,它还可以看作直角梯形OAA′O′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.(5).什么是简单组合体?简单几何体有哪几种基本形式?指出下图中的组合形式.【学做思2】1.如图,AB为圆弧»BC所在圆的直径,45BAC∠=o.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.2.已知圆台的两底半径分别为2和3,母线长为5,求展开后的弧所对的圆心角度数.3.圆锥底面半径为1cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长. 【变式】已知球的内接正方体棱长为2,求球的半径.达标检测1.如图所示的四个几何体中,是圆柱的为________;是圆锥的为________.2.说出如图所示几何体的主要结构特征.3.如图所示,下列几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.4.如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为______.5.一个圆台的母线长为12cm,两底面面积分别为4πcm2和25πcm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.。
9.2.4 总体离散程度的估计【学习目标】1.会求样本的标准差、方差;2.理解离散程度参数的统计含义;3.会应用相关知识解决实际统计问题.【知识梳理】一、请同学们预习课本9.2.4节(第209-213页),完成下列知识梳理。
1、预习课本中的问题3,回答下列问题(1)计算甲乙两名运动员射击成绩的平均数、中位数、众数是、、。
(2)作出两名运动员射击成绩的频率图(如下)甲的成绩比较,乙的成绩相对,即甲的成绩波动幅度比较大,而乙的成绩比较稳定。
可见,他们的射击成绩是存在差异的。
2、度量数据离散程度的方法-极差度量数据程度的一种方法是用极差。
极差在一定程度上刻画了数据的程度.但因为极差只使用了数据中、两个值的信息,对其他数据的取值情况没有涉及,所以极差所含的信息量很少。
3、平均距离的一种表示形式假设一组数据是x1,x2,⋯,x n,用x̅表示这组数据的平均数. 我们用每个数据与平均数的差的绝对值作为“距离”,即|x i−x̅|(i=1,2,⋯,n)作为x i到x̅的“距离”.可以得到这组数据x1,x2,⋯,x n到x̅的“平均距离”为1 n ∑|x i−x| ni=14、方差和标准差(1)一组数据是x1,x2,⋯,x n,这组数据的方差是1 n ∑(x i−x)2ni=1,或1n∑x i2ni=1−x̅2,(你能证明两者是相等的吗?)(2)由于方差的单位是原始数据的单位的,为了使二者数据单位一致,我们取方差的算术平方根,得到这组数据的标准差√1n∑(x i−x)2ni=1,或 √1n∑x i2ni=1−x̅2,(3)总体方差S2和总体标准差S=√S2S2=1N∑(Y i−Y)2Ni=1=1N∑Y i2Ni=1−Y̅2,也可以写成加权的形式S2=1N∑f i(Y i−Y)2ki=1,(4)样本方差s2和样本标准差s=√s2s2=1n∑(y i−y)2ni=1(5)标准差刻画了数据的程度或幅度,标准差越大,数据的离散程度越;标准差越小,数据的离散程度越。
新教材高中数学湘教版必修第二册:第2课时和差化积与积化和差公式教材要点要点状元随笔(1)这两组公式均可由和差角公式推导得到,而这两组公式亦可以互推.(2)和差化积公式可由以下口诀记忆“正弦和正弦在前;正弦差余弦在前;余弦和只见余弦;余弦差负不见余弦”.(3)两组公式中的倍数关系可通过值域(最值)的对比发现,y=sinα±sinβ与cos α±cosβ的值域应为[-2,2]而y=sinαsinβ等的值域应为[-1,1],所以应给积乘2或者和(差)乘1.2基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)sin (A+B)+sin (A-B)=2sin A cos B.( )(2)sin (A+B)-sin (A-B)=2cos A sin B.( )(3)cos (A+B)+cos (A-B)=2cos A cos B.( )(4)cos (A+B)-cos (A-B)=2sin A cos B.( )2.把2sin 10°cos 8°化成和或差的形式为( )A.sin 18°-sin 2° B.sin 18°+cos 2°C.sin 18°+sin 2° D.cos 18°+cos 2°3.把sin 15°+sin 5°化成积的形式为( )A.sin 5°sin 15° B.2cos 10°cos 5°C.2sin 10°sin 5° D.2sin 10°cos 5°4.cos 37.5°cos 22.5°=______.题型 1 和差化积公式的应用例1 把下列各式化成积的形式.(1)cos 3x+cos x;(2)cos 40°-cos 52°;(3)sin 15°+sin 35°;(4)sin 6x-sin 2x.方法归纳套用和差化积公式的关键是记准、记牢公式,有时函数不同名,要先化为同名再化积,化积的结果能求值则尽量求出值来.跟踪训练1 把下列各式化成积的形式.(1)cos 8+cos 2;(2)cos 100°-cos 20°;(3)sin 40°+sin 150°;(4)sin (x+2)-sin x.题型 2 积化和差的应用例2 把下列各式化成和或差的形式.(1)2sin 64°cos 10°;(2)sin 80°cos 132°;(3)cos π6cos π4;(4)sin 2sin 1.方法归纳积化和差公式可以把某些三角函数的积化为和或差的形式.需要注意三角函数名称的变化规律.跟踪训练2 (1)sin 15°cos 165°的值是( )A .14B .12C .-14D .-12(2)sin (π4+α)cos (π4+β)化成和差的形式为( )A .12sin (α+β)+12cos (α-β)B .12cos (α+β)+12sin (α-β) C .12sin (α+β)+12sin (α-β)D .12cos (α+β)+12cos (α-β)题型 3 和差化积与积化和差公式的综合应用 角度1 化简与求值 例31sin 40°+cos 80°sin 80°=________.方法归纳当条件或结论式比较复杂时,往往先将它们化为最简形式,再求解.角度2 证明恒等式例4 求证:sin αsin (60°+α)sin (60°-α)=14sin 3α.方法归纳当要证明的不等式一边复杂,另一边非常简单时,我们往往从复杂的一边入手证明,类似于化简.跟踪训练3 (1)计算:sin 70°+sin 50°sin 80°=________.(2)求证:2cos 20°+2sin 20°−12cos 20°−2sin 20°−1·tan 25°=cos 15°sin 15°.课堂十分钟1.sin 75°-sin 15°的值为( ) A .12 B .√22 C .√32 D .-122.cos 72°-cos 36°的值为( ) A .3-2√3 B .12 C .-12D .3+2√33.sin 37.5° cos 7.5°等于( ) A .√22 B .√24 C .√2+14 D .√2+244.求证:sin 15°sin 30°sin 75°=18.第2课时 和差化积与积化和差公式新知初探·课前预习[基础自测]1.答案:(1)√ (2)√ (3)√ (4)× 2.解析:2sin10°cos 8°=sin (10°+8°)+sin (10°-8°)=sin 18°+sin 2°. 答案:C3.解析:sin 15°+sin 5°=2sin 15°+5°2cos15°−5°2=2sin 10°cos 5°答案:D4.解析:cos 37.5°cos 22.5°=12(cos 60°+cos 15°) =14+12cos 15°=2+√6+√28.答案:2+√6+√28题型探究·课堂解透例1 解析:(1)cos 3x +cos x =2cos 3x+x 2cos3x−x 2=2cos 2x cos x .(2)cos 40°-cos 52°=-2sin 40°+52°2sin40°−52°2=-2sin 46°sin (-6°)=2sin 46°sin 6°.(3)sin 15°+sin 35°=2sin15°+35°2cos15°−35°2=2sin 25°cos (-10°)=2sin 25°cos 10°. (4)sin 6x -sin 2x =2cos 6x+2x 2sin6x−2x 2=2cos 4x sin 2x .跟踪训练1 解析:(1)cos 8+cos 2=2cos 8+22cos8−22=2cos 5cos 3.(2)cos 100°-cos 20°=-2sin 100°+20°2sin100°−20°2=-2sin 60°sin 40°=-√3sin 40°.(3)sin 40°+sin 150°=2sin40°+150°2cos40°−150°2=2sin 95°cos (-55°)=2cos 5°cos 55°. (4)sin (x +2)-sin x =2cosx+2+x 2sinx+2−x 2=2cos (x +1)sin 1.例2 解析:(1)2sin 64°cos 10°=sin (64°+10°)+sin (64°-10°) =sin 74°+sin 54°.(2)si n 80°cos 132°=cos 132°sin 80°=12[sin (132°+80°)-sin (132°-80°)]=12(sin 212°-sin 52°) =-12(sin 32°+sin 52°).(3)cos π6cos π4=12[cos (π6+π4)+cos (π6−π4)] =12[cos 5π12+cos (−π12)]=12(cos 5π12+cos π12).(4)sin 2sin 1=-12[cos (2+1)-cos (2-1)]=-12(cos 3-cos 1).跟踪训练2 解析:(1)sin 15°cos 165°=12[sin (15°+165°)+sin (15°-165°)]=12sin 180°-12sin 150°=-14.(2)sin (π4+α)cos (π4+β) =12[sin (π4+α+π4+β)+sin (π4+α−π4−β)]=12[sin (π2+α+β)+sin(α−β)] =12cos (α+β)+12sin (α-β).答案:(1)C (2)B 例3 解析:原式=2cos 40°+cos 80°sin 80°=cos 40°+2cos 60°cos 20°sin 80°=cos 40°+cos 20°sin 80°=2cos 30°cos 10°sin 80°=2cos 30°=√3.答案:√3例4 证明:左边=sin α·(−12)(cos 120°-cos 2α) =14sin α+12sin αcos 2α=14sin α+14[sin 3α+sin (-α)]=14sin α+14sin 3α-14sin α=14sin 3α=右边. 跟踪训练3 解析:(1)sin 70°+sin 50°sin 80°=sin (60°+10°)+sin (60°−10°)sin 80°=2sin 60°cos 10°cos 10°=2sin 60°=√3. (2)证明:左边=2cos 20°sin 25°+2sin 20°sin 25°−sin 25°2cos 20°cos 25°−2sin 20°cos 25°−cos 25° =sin 45°−sin (−5°)−cos 45°+cos (−5°)−sin 25°cos 45°+cos (−5°)−sin 45°−sin (−5°)−cos 25° =sin 5°+cos 5°−sin 25°sin 5°+cos 5°−cos 25° =sin 5°+sin 85°−sin 25°cos 85°+cos 5°−cos 25° =sin 5°+2cos 55°sin 30°−2sin 55°sin 30°+cos 5°=sin 5°+cos 55°cos 5°−sin 55°=sin 5°+sin 35°cos 5°−cos 35° =sin 20°cos (−15°)−sin 20°sin (−15°) =cos 15°sin 15°=右边所以原等式成立. [课堂十分钟]1.解析:sin 75°-sin 15°=2cos 45°sin 30°=2×√22×12=√22.答案:B2.解析:原式=-2sin72°+36°2sin72°−36°2=-2sin 54°·sin 18°=-2cos 36°cos 72° =-2·sin 36°cos 36°cos 72°sin 36°=-sin 72°cos 72°sin 36°=-sin 144°2sin 36°=-12. 答案:C3.解析:sin 37.5°cos 7.5°=12[sin (37.5°+7.5°)+sin (37.5°-7.5°)]=12(sin 45°+sin 30°)=12×(√22+12)=√2+14. 答案:C4.证明: sin 15°sin 30°sin 75°=12sin 15°sin 75°=-14[cos (15°+75°)-cos (15°-75°)]=-14(cos 90°-cos 60°)=-14×(−12)=18.。
人教A版高中数学必修二全册精品导学案高中数学必修导学案§1.1 空间几何体的结构【使用说明及学法指导】1.结合问题导学自已复习课本必修2的P2页至P4页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。
2.针对问题导学及小试牛刀找出的疑惑点,课上讨论交流,答疑解惑。
3. 感受空间实物及模型,增强学生直观感知;能根据几何结构特征对空间物体进行分类;4.理解多面体的有关概念;会用语言概述棱柱、棱锥、棱台的结构特征.5. 在科学上没有平坦的道路,只有不畏劳苦,敢于沿着陡峭山路攀登的人才有希望达到光辉的顶点。
【重点难点】重点是棱柱、棱锥、棱台结构特征.难点是棱柱、棱锥、棱台的结构特征一【问题导学】探索新知探究1:几何体的相关概念(1)预习课本第2页的观察部分,试着将所给出的16幅图片进行分类,并说明分类依据。
(2)空间几何体的概念:(3探究2新知1:(1)多面体:(2)多面体的面:(3)多面体的棱:(4 指出右侧几何体的面、棱、顶点探究2:旋转体的相关概念新知2:旋转体旋转体的轴 探究31、 棱柱:2、棱柱的分类:(1)按侧棱及底面垂直及否,分为:(2)按底面多边形的边数,分为:注:底面是正多边形的直棱柱叫做正棱柱。
3、棱柱的表示:4、补充:平行六面体——底面是平行四边形的四棱柱探究41、棱锥:2、棱锥的分类:注:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.3、棱锥的表示:探究5:(三)棱台1、棱台:2、棱台的分类:3、棱台的表示:二【小试牛刀】1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A.棱锥 B.棱柱 C.平面 D.长方体2. 棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点三【合作、探究、展示】例1、根据右边模型,回答下列问题:(1)观察长方体模型,有多少对平行平面?能作为棱柱底面的有多少对?(2) 如右图,长方体''''中被截去一部ABCD A B C D分,其中''EH A D。
人教版高中数学必修2全册导学案及答案全文表达流畅,无影响阅读体验的问题。
为了确保文章的质量,我认为在回答你的提问之前,有必要对导学案和答案的特点进行一下了解。
人教版高中数学必修2全册导学案是教师在备课过程中为了引导学生自主学习而准备的一份辅助教材。
它通常包含了本课时的学习目标、学习内容的整理、学习方法指导和相关习题等。
这些内容对于学生来说是非常重要的,因为通过导学案,学生可以在自主学习的过程中得到更好的指导和帮助。
作为导学案的一部分,答案的提供也是非常重要的。
学生在自学过程中,可以通过对答案的核对来检验自己的学习情况,找出自己的问题所在,并及时进行纠正和补充学习。
根据题目要求,我将按照导学案的格式布局,提供必修2全册的导学案及答案。
这样你可以更方便地进行自主学习,并通过对答案的核对来加深对数学知识的理解。
导学案及答案第一章函数与导数1.1 函数的概念与表示学习目标:1. 了解函数的基本概念;2. 掌握用集合、映射等方法表示函数的方法。
学习内容:1. 函数的定义;2. 函数的表示方法;3. 函数的性质。
学习方法指导:1. 仔细阅读教材相关内容,理解函数的定义;2. 注意区分自变量和因变量的概念;3. 多做一些例题,加深对函数表示方法的理解。
习题:1. 设函数f(x) = 2x + 3,求f(1)的值;2. 函数y = x^2的图象为抛物线,确定该函数的定义域和值域。
答案:1. 将x = 1带入函数f(x),得到f(1) = 2(1) + 3 = 5。
2. 函数y = x^2的定义域为全体实数集R,值域为非负实数集[0,+∞)。
......根据上述导学案的格式,我将为你提供人教版高中数学必修2全册的导学案及答案。
由于篇幅限制,本文无法将全册的导学案及答案一一列出。
但你可以根据此示例并借鉴此格式,自行拟定其他章节的导学案及答案。
希望上述内容对你有所帮助,祝你学习顺利!。
C B
A
O O'
第一章第三节球的表面积与体积
三维目标
1.了解球的表面积和体积公式;
2. 能运用球的表面积和体积公式解决简单实际问题.
________________________________________________________________________________ 目标三导 学做思1
问题1. 如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,冰淇淋会从杯子溢出吗?请说明理由.
【学做思2】
1.一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm 2
)
2.已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且
2AB BC CA ===,求球的表面积.
3.有三个球123O O O 、、,球1O 切于正方体的各面,球2O 切于正方体的各侧棱,球3O 过正方体的各顶点,
求这三个球的表面积以及体积之比.
*4.已知球的半径为R ,在球内作一个内接圆柱,当这个圆柱底面半径为何值时,它的侧面积最大,并求出最大值。
达标检测
1.如图,求图中阴影部分绕AB 旋转一周所形成的几何体的表面积和体积.
A
B
C
D
O R
r
O 1
2.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.
===,求这个球的体积.
3. 在球面上有四个点P、A、B、C,如果PA、PB、PC两两垂直且PA PB PC a。
平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。
【学习目标】 1、知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法:在已知直角坐标系内确定一条直线的几何要素----直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
3、情感态度与价值观:通过让体会直线的斜截式方程与一次函数的关系,进一步培养数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
【重点难点】(1)重点:直线的点斜式方程和斜截式方程。
(2)难点:直线的点斜式方程和斜截式方程的应用。
【学法指导】1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、牢记直线的点斜式方程形式,注意适用条件。
3、要求小班、重点班学生全部完成,平行班学生完成A 、B 类问题。
【知识链接】1.直线倾斜角的概念 2. 直线的斜率两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 【学习过程】A 问题1、在直角坐标系内确定一条直线,应知道哪些条件?yxOP P 0B 问题2、直线l 经过点),(000y x P ,且斜率为k 。
设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。
A 问题3、(1)过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程(1)(2)坐标满足方程(1)的点都在经过),(000y x P ,斜率为k 的直线l 上吗?B 问题4、直线的点斜式方程能否表示坐标平面上的所有直线呢?B 问题5、(1)x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?yP 0(2)经过点),(000y x P 且平行于x 轴(即垂直于y 轴)的直线方程是什么?(3)经过点),(000y x P 且平行于y 轴(即垂直于x 轴)的直线方程是什么?.l l l α︒A 例1直线经过点P(-3,2),且倾斜角为=45,求直线的点斜式方程,并画出直线A 问题7、已知直线l 的斜率为k ,且与y 轴的交点为),0(b ,求直线l 的方程。
3.2.2直线的两点式方程【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲; 2.学会用联系的观点看问题; 3.小组讨论,合作探究。
【学习目标】1.掌握直线方程的两点的形式特点及适用范围; 2.了解直线方程截距式的形式特点及适用范围. 3. 认识事物之间的普遍联系与相互转化;. 【重点】直线方程两点式。
【难点】两点式推导过程的理解 一、自主学习(一)预习教材P 95~ P 96,找出疑惑之处)复习1:直线过点(2,3)-,斜率是1,则直线方程为 ;直线的倾斜角为60ο,纵截距为3-,则直线方程为 .2.与直线21y x =+垂直且过点(1,2)的直线方程为 . 3.方程()331--=+x y 表示过点______,斜率是______,倾斜角是______,在y 轴上的截距是______的直线. 4.已知直线l 经过两点12(1,2),(3,5)P P ,求直线l 的方程.(二)学习探究新知1:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为 ,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式.问题1:哪些直线不能用两点式表示?例 已知直线过(1,0),(0,2)A B -,求直线的方程并画出图象.新知2:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程 叫做直线的截距式方程.注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线 ;直线与y 轴交点(0,b )的纵坐标b 叫做直线 .问题3:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?二、典型例题例1. 求过下列两点的直线的两点式方程,再化为截距式方程. ⑴ (2,1),(0,3)A B -; ⑵ (4,5),(0,0)A B --.例2. 已知三角形的三个顶点(5,0),(3,3)A B --,(0,2)C ,求BC 边所在直线的方程,以及该边上中线所在直线的方程.变式1:求出下列直线的方程,并画出图形.⑴ 倾斜角为045,在y 轴上的截距为0;⑵ 在x 轴上的截距为-5,在y 轴上的截距为6; ⑶ 在x 轴上截距是-3,与y 轴平行; ⑷ 在y 轴上的截距是4,与x 轴平行.变式2:教材P97练习1-3题(拓展)例3.在ABC ∆中,两条中线所在直线的方程分别是0223=+-y x 和01253=-+y x ,顶点)2,4(-A ,求BC 边所在的直线方程。
目录第一章空间几何体1.1空间几何体的结构1.1.1多面体的结构特征 (1)1.1.2旋转体与简单组合体的结构特征 (6)1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图 (10)1.2.3空间几何体的直观图 (15)§1.3空间几何体的表面积与体积第1课时柱体、锥体、台体的表面积 (19)第2课时柱体、锥体、台体、球的体积与球的表面积 (23)习题课空间几何体 (27)第二章点直线平面之间的位置关系2.1.1平面 (29)2.1.2空间中直线与直线之间的位置关系 (33)2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系 (37)2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定 (40)2.2.3直线与平面平行的性质 (44)2.2.4平面与平面平行的性质 (47)2.3.1直线与平面垂直的判定 (50)2.3.2平面与平面垂直的判定 (53)2. 3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质 (57)第二章复习课 (60)第三章直线与方程3.1.1 倾斜角与斜率 (64)3.1.2两条直线平行与垂直的判定 (67)3.2.1直线的点斜式方程 (70)3.2.2直线的两点式方程 (73)3.2.3直线的一般式方程 (76)3.3.1两条直线的交点坐标3.3.2两点间的距离 (79)3.3.3点到直线的距离3.3.4两条平行直线间的距离 (82)第四章圆与方程4.1.1圆的标准方程 (85)4.1.2圆的一般方程 (88)4.2.1直线与圆的位置关系 (91)4.2.2圆与圆的位置关系 (94)4.2.3直线与圆的方程的应用 (97)4.3.1空间直角坐标系 (100)4.3.2 空间两点间的距离公式 (103)章末复习 (106)第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征【学习目标】1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.【知识梳理】1.空间几何体(1)概念:如果只考虑物体的__和__,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)特殊的几何体①多面体:一般地,由若干个围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.②旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的叫做旋转体,这条定直线叫做旋转体的2.多面体的结构特征(1)棱柱的结构特征:一般地,有两个面,其余各面都是,并且每相邻两个四边形的公共边都,由这些面所围成的多面体叫做棱柱.(2)棱锥的结构特征:一般地,有一个面是,其余各面都是,由这些面所围成的多面体叫做棱锥.(3)棱台的结构特征:用一个于棱锥底面的平面去截棱锥,之间的部分,这样的多面体叫做棱台.思考探究[情境导学]在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.本节课我们主要从结构特征方面认识最基本的空间几何体.探究点一空间几何体的类型思考1观察下列图片,你知道这图片在几何中分别叫什么名称吗?答:思考2如果将这些几何体进行适当分类,你认为可以分成哪几种类型?答:思考3观察图(2)(5)(7)(9)(13)(14)(15)(16)中组成几何体的每个面的特点,以及面与面之间的关系,你能归纳出它们有何共同特点吗?答:[小结]我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.思考4观察图(1)(3)(4)(6)(8)(10)(11)(12)中组成几何体的每个面有何共同特点?答:[小结]由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.探究点二棱柱的结构特征思考1我们把下面的多面体取名为棱柱,据此你能给棱柱下一个定义吗?图1图2答:思考2为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出上面棱柱的底面、侧面、侧棱、顶点吗?答:思考3棱柱上、下两个底面的形状大小如何?各侧面的形状如何?答:思考4一个棱柱至少有几个侧面?一个N棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?答:[小结]在棱柱中,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……;思考1图1中的六棱柱用各顶点字母可表示为棱柱ABCDEF—A′B′C′D′E′F′.例1试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧棱都相等,侧面是平行四边形.答:[反思与感悟]概念辨析题常用方法:(1)利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进行判断.跟踪训练1根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.答:探究点三棱锥的结构特征思考1我们把下面的多面体取名为棱锥,据此你能给棱锥下一个定义吗?答:思考2参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?你能作图加以说明吗?答:思考3类比棱柱的分类,棱锥如何根据底面多边形的边数进行分类?如何用棱锥各顶点的字母表示思考1中的三个棱锥?答:思考4一个棱锥至少有几个面?一个N棱锥分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?答:思考6棱柱、棱锥分别具有一些什么几何性质?答:例2如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2,CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.答:[反思与感悟]认识一个几何体,要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.(过顶点向底面作垂线,顶点与垂足的距离)答:探究点四棱台的结构特征思考1用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成另一个多面体,这样的多面体叫做棱台.那么棱台有哪些结构特征?答:思考2仿照棱锥中关于底面、侧面、侧棱、顶点的定义,如何定义棱台的底面、侧面、侧棱、顶点呢?答:思考3根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱台、四棱台、五棱台……?如何用字母表示棱台?答:思考4既然棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否相互转化?答:例3有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个[反思与感悟]一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.跟踪训练3 已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均相等,且侧棱长为17,求四棱台的高.答:【随堂练习】1.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2.下列说法中,正确的是()A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面都是全等的平行四边形3.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形4.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱.【课堂小结】1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.第2课时旋转体与简单组合体的结构特征【学习目标】 1.认识组成我们生活的世界的各种各样的旋转体;2.认识和把握圆柱、圆锥、圆台、球体的几何结构特征.【知识梳理】1.圆柱及其有关的概念以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做.叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的.2.圆锥的概念以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做_3.圆台的概念用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做.与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线.4.球及其有关的概念以半圆的直径所在直线为,半圆面旋转一周形成的旋转体叫做,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的.球常用表示球心的字母O 表示.5.简单组合体(1)概念:由组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2)基本形式:一种是由简单几何体而成,另一种是由简单几何体或一部分而成.思考探究[情境导学]举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物和它一样,也都是由一些简单几何体组合而成的组合体.本节我们就来学习旋转体与简单组合体的结构特征.探究点一圆柱的结构特征思考1如图所示的空间几何体叫做圆柱,那么圆柱是怎样形成的呢?与圆柱有关的几个概念是如何定义的?答:思考2如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图形?答:探究点二圆锥的结构特征思考1类比圆柱的定义,结合下图你能给圆锥下个定义吗?答:思考2类比圆柱的轴、底面、侧面、母线的定义,如何定义圆锥的轴、底面、侧面、母线?答:思考3经过圆锥的任意两条母线的截面是什么图形?圆锥如何用字母表示?答:探究点三圆台的结构特征思考1用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做圆台.圆台可以由什么平面图形旋转而形成?答:思考2与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如何?圆台如何用字母表示?答:思考3圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:例1用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.答:[反思与感悟]用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程组而解得.跟踪训练1将例1中“截去的圆锥的母线长是3 cm”改为“圆锥SO的母线长为16 cm”其余条件不变,则结果如何?答:探究点四球的结构特征思考类比圆柱、圆锥、圆台的定义,球是如何定义的?球心及球半径是指什么?如何用字母表示球?答:例2判断下列各命题是否正确:(1)三棱柱有6个顶点,三棱锥有4个顶点;(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(5)到定点的距离等于定长的点的集合是球.答:跟踪训练2 下列叙述中正确的个数是()①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.3探究点五简单组合体的结构特征思考1现实生活中的物体多数是由柱体、锥体、台体、球体等简单几何体组合而成的,这些几何体叫做简单组合体.那么这些组合体是怎样构成的?答:思考2观察教材图1.1-11中(1)、(3)两物体所示的几何体,你能说出它们各由哪些简单几何体组合而成吗?答:例3描述下列几何体的结构特征.答:跟踪训练3数学奥林匹克竞赛中,若你获得第一名,被授予如图所示的奖杯,那么,请你介绍一下你所得的奖杯是由哪些简单几何体组成的?答:【随堂练习】1.下图是由哪个平面图形旋转得到的()2.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心3.下面几何体的截面一定是圆面的是()A.圆台B.球C.圆柱D.棱柱4.以下说法中:①圆台上底面的面积与下底面的面积之比一定小于1.②矩形绕任意一条直线旋转都可以围成圆柱.③过圆台侧面上每一点的母线都相等.正确的序号为________.5.如图所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?【课堂小结】(1)圆台、棱台可以看作是用一平行于底面的平面去截圆锥、棱锥得到的底面与截面之间的部分;圆台的母线、棱台的侧棱延长后必交于同一点,若不满足该条件,则一定不是圆台或棱台.(2)球面与球是两个不同的概念,球面是半圆以它的直径所在直线为轴旋转一周形成的曲面,也可以看作与定点(球心)的距离等于定长(半径)的所有点的集合.而球体不仅包括球的表面,同时还包括球面所包围的空间.§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图【学习目标】 1.了解投影、中心投影和平行投影的概念;2.能画出简单几何体的三视图,能识别三视图所表示的立体模型.【知识梳理】投影(1)投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的,这种现象叫做投影.其中,我们把光线叫做,把留下物体影子的屏幕叫做.(2)投影的分类①中心投影:光由向外散射形成的投影,叫做中心投影.中心投影的投影线交于.②平行投影:在一束光线照射下形成的投影,叫做平行投影.平行投影的是平行的.在平行投影中,投影线正对着投影面时,叫做,否则叫做.2.三视图(1)三视图的分类①正视图:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的②侧视图:光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的③俯视图:光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的(2)三视图的画法要求①三视图的正视图、俯视图、侧视图分别是从物体的、、看到的物体轮廓线的正投影围成的平面图形.②一个物体的三视图的排列规则是:俯视图放在正视图的,长度与的长度一样,侧视图放在正视图的右边,高度与的高度一样,宽度与的宽度一样.③在绘制三视图的时候,分界线和可见轮廓线都用实线画出,被遮挡部分用虚线画出.思考探究[情境导学]从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.”对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的基础知识,请先阅读教材第11页,然后思考下列问题.思考1什么是投影、投影线、投影面吗?答:思考2不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答:[小结]我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?答:思考4用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答:思考5用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答:思考6一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答:例 1 如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图中的________.(填序号)[反思与感悟]画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1如图(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,则四边形BFD′E 在该正方体的各个面上的投影可能是图(2)中的________.探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答:思考2三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?答:[小结]一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高,正俯等长,侧俯等宽.思考3圆柱、圆锥、圆台的三视图分别是什么?答:思考4球的三视图是什么?下列三视图表示一个什么几何体?答:探究点三简单组合体的三视图思考1在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎样处理?思考2如图所示,将一个长方体截去一部分,这个几何体的三视图如何画出?(标出字母)答:例 2 如图,设所给的方向为物体的正前方,试画出它的三视图.(单位:cm)答:[反思与感悟](1)在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视图)侧(视图)宽相等.(2)习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()探究点四将三视图还原成几何体思考下图是简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.答:例3说出下面的三视图表示的几何体的结构特征.答:[反思与感悟]通常要根据俯视图判断几何体是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.跟踪训练3下图是一个物体的三视图,试说出物体的形状.答:【随堂练习】1.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平2.某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()4.一个几何体的三视图如图所示,则该几何体可以是()5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.【课堂小结】1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相2.几何体的三视图的画法为:先画出两条互相垂直的辅助坐标轴,在第二象限画出正视图;根据“正、俯两图长对正”的原则,在第三象限画出俯视图;根据“正、侧两图高平齐”的原则,在第一象限画出侧视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.1.2.3空间几何体的直观图目标 1.掌握斜二测画法的作图规则;2.会用斜二测画法画出简单几何体的直观图.【知识梳理】1.画平面图形直观图的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度为原来的.2.立体图形的直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′.且平行于O′z的线段长度.其他同平面图形的画法.思考探究[情境导学]空间几何体除了用三视图表示外,更多的是用直观图来表示.空间图形能否在平面中画出来,使得既富有立感,又能表达出图形各主要部分的位置关系和度量关系呢?这就是空间几何体的直观图.本节我们就来研究这个问题.探究点一水平放置的平面图形的画法导引用来表示空间图形的平面图叫空间图形的直观图,要画空间几何体的直观图,先要学会水平放置的平面图形的画法.思考1把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考2把一个直角梯形水平放置得其直观图如下,比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考3阅读教材16页中的例1,然后自主作出水平放置的正六边形的直观图.答:。