电路基础-实验5 基本运算电路(操作实验)
- 格式:doc
- 大小:314.50 KB
- 文档页数:6
运算电路实验报告运算电路实验报告引言:运算电路是现代电子技术领域中的一项重要研究内容,它在各种电子设备中起着至关重要的作用。
本实验旨在通过实际操作,深入了解运算电路的原理和应用,并通过实验结果验证理论知识的正确性。
一、实验目的本实验的主要目的是熟悉运算电路的基本原理和性能特点,掌握运算放大器的基本参数测量方法,并通过实验验证运算电路的理论知识。
二、实验仪器和材料1. 运算放大器实验箱2. 电压源3. 电阻箱4. 示波器5. 多用电表6. 连接线等三、实验步骤1. 搭建基本的运算放大器电路,包括输入电阻、反馈电阻和输入信号源。
2. 调节电压源,使其输出为期望的输入电压。
3. 使用示波器观察输出信号,并记录相关数据。
4. 更换不同数值的电阻,观察输出信号的变化,并记录相关数据。
5. 根据实验数据,计算并分析运算放大器的放大倍数、输入电阻和输出电阻等参数。
四、实验结果与分析在实验中,我们搭建了基本的运算放大器电路,并通过调节电压源和改变电阻的数值,观察了输出信号的变化。
根据实验数据,我们计算出了运算放大器的放大倍数、输入电阻和输出电阻等参数。
通过实验数据的分析,我们发现运算放大器具有很高的放大倍数,能够将微弱的输入信号放大到较大的幅值。
同时,运算放大器的输入电阻很大,输出电阻很小,能够有效地隔离输入和输出电路,提高整个电路的稳定性和可靠性。
此外,我们还观察到当改变电阻的数值时,输出信号的幅值也会发生相应的变化。
这说明电阻在运算放大器电路中起到了重要的作用,可以通过调节电阻的数值来改变输出信号的幅值。
五、实验总结通过本次实验,我们对运算电路的原理和应用有了更深入的了解。
我们通过实际操作,深入体验了运算放大器的性能特点,并通过实验结果验证了理论知识的正确性。
在实验过程中,我们遇到了一些困难和问题,但通过不断的思考和探索,最终成功地完成了实验任务。
通过实验,我们不仅巩固了理论知识,还提高了实际操作的能力和解决问题的能力。
一、实验目的1. 熟悉常用电子元件(电阻、电容、电感)的特性和测量方法。
2. 掌握基本电路分析方法,如串联、并联电路的等效电阻、电压、电流的计算。
3. 培养动手能力和实验技能,提高对电路实验数据的处理和分析能力。
二、实验器材1. 实验电路板:1块2. 电阻:10kΩ、1kΩ、100Ω各1个3. 电容:0.1μF、10μF各1个4. 电感:100μH、10μH各1个5. 信号发生器:1台6. 示波器:1台7. 直流稳压电源:1台8. 万用表:1台9. 连接线:若干三、实验原理1. 串联电路:串联电路中,电流相等,电压分配与电阻成正比。
2. 并联电路:并联电路中,电压相等,电流分配与电阻成反比。
3. 电阻的串联和并联:串联电路的等效电阻等于各电阻之和;并联电路的等效电阻的倒数等于各电阻倒数之和。
四、实验内容1. 测量电阻、电容、电感的参数(1)将电阻、电容、电感分别接入电路,使用万用表测量其电阻、电容、电感值。
(2)将测量结果与元件标签上的标称值进行比较,分析误差产生的原因。
2. 分析串联电路(1)搭建串联电路,包括电阻、电容、电感。
(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。
(3)计算等效电阻,验证串联电路的电压、电流分配规律。
3. 分析并联电路(1)搭建并联电路,包括电阻、电容、电感。
(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。
(3)计算等效电阻,验证并联电路的电压、电流分配规律。
4. 电阻的串联和并联(1)搭建串联电路,包括电阻、电容、电感。
(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。
(3)计算等效电阻,验证串联电路的电压、电流分配规律。
五、实验步骤1. 测量电阻、电容、电感的参数(1)将电阻、电容、电感分别接入电路,使用万用表测量其电阻、电容、电感值。
(2)记录测量结果,与元件标签上的标称值进行比较。
2. 分析串联电路(1)搭建串联电路,包括电阻、电容、电感。
基本运算电路实验报告基本运算电路实验报告引言:基本运算电路是电子电路中最基础的一种电路,它能够对输入信号进行加法、减法、乘法和除法等数学运算。
本实验旨在通过搭建基本运算电路并进行实验验证,加深对基本运算电路的理解和掌握。
一、实验目的本实验的主要目的是:1. 了解基本运算电路的工作原理;2. 学习基本运算电路的搭建方法;3. 掌握基本运算电路的实验操作;4. 验证基本运算电路的运算功能。
二、实验器材和材料1. 实验板;2. 集成运算放大器(Op-Amp);3. 电阻、电容、二极管等元器件;4. 示波器、函数发生器等实验设备。
三、实验步骤1. 搭建加法器电路首先,根据加法器电路的原理图,使用实验板和元器件搭建加法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到加法器的输入端。
然后,使用示波器观察加法器的输出信号,并记录实验数据。
2. 搭建减法器电路接下来,根据减法器电路的原理图,使用实验板和元器件搭建减法器电路。
同样地,将电源连接到实验板上,并将函数发生器的输出信号接入到减法器的输入端。
使用示波器观察减法器的输出信号,并记录实验数据。
3. 搭建乘法器电路然后,根据乘法器电路的原理图,使用实验板和元器件搭建乘法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到乘法器的输入端。
使用示波器观察乘法器的输出信号,并记录实验数据。
4. 搭建除法器电路最后,根据除法器电路的原理图,使用实验板和元器件搭建除法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到除法器的输入端。
使用示波器观察除法器的输出信号,并记录实验数据。
四、实验结果与分析根据实验数据,我们可以得出以下结论:1. 加法器能够对输入信号进行加法运算,输出结果为输入信号的和;2. 减法器能够对输入信号进行减法运算,输出结果为输入信号的差;3. 乘法器能够对输入信号进行乘法运算,输出结果为输入信号的积;4. 除法器能够对输入信号进行除法运算,输出结果为输入信号的商。
基本运算电路实验报告实验报告课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的:1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。
2、了解集成运算放大器在实际应用中应考虑的一些问题。
实验要求:1、实现两个信号的反向加法运算2、用减法器实现两信号的减法运算3、用积分电路将方波转化为三角波4、实现同相比例运算(选做)5、实现积分运算(选做) 双运算放大器LM358三、 实验须知:1.在理想条件下,集成运放参数有哪些特征?答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。
2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制(3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。
3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。
4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。
5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算?答:反相加法运算电路,反相减法运算电路,积分运算电路。
都为负反馈形式。
专业: 姓名:日期:地点:紫金港 东三--四、实验步骤:1.实现两个信号的反相加法运算实验电路:R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差输入信号v s1v s1输出电压v o0.1V,1kHz 0 1.01V0.1V 0.1V 2.03V2.减法器(差分放大电路)实验电路:R1=R2、R F=R3输入信号v s1v s1输出电压v o0.1V,1kHz 0 1.02V0 0.1V 1.03V0.1V 0.1V 0.12mV共模抑制比8503.用积分电路转换方波为三角波实验电路:电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。
实验报告课程名称:___模拟电子技术实验____________指导教师:_ _成绩:__________________ 实验名称:实验13 根本运算电路实验类型:__________ 同组学生**:__________ 一、实验目的和要求〔必填〕二、实验内容和原理〔必填〕三、主要仪器设备〔必填〕四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析〔必填〕七、讨论、心得一. 实验目的和要求1、研究集成运放组成的比例、加法和积分等根本运算电路的功能。
2、掌握集成运算放大电路的三种输入方式。
3、了解集成运算放大器在实际应用时应考虑的一些问题。
4、理解在放大电路中引入负反响的方法和负反响对放大电路各项性能指标的影响。
二. 实验内容和原理1.实现两个信号的反相加法运算。
2. 实现同相比例运算。
3. 用减法器实现两信号的减法运算。
4. 实现积分运算。
5. 用积分电路将方波转换为三角波。
运放μa741介绍:集成运算放大器〔简称集成运放〕是一种高增益的直流放大器,它有二个输入端。
根据输入电路的不同,有同相输入、反相输入和差动输入三种方式。
集成运放在实际运用中,都必须用外接负反响网络构成闭环放大,用以实现各种模拟运算。
μa741引脚排列:三. 主要仪器设备示波器、信号发生器、晶体管毫伏表运算电路实验电路板μa741、电阻电容等元件四. 操作方法和实验步骤1.实现两个信号的反相加法运算"rfrf v"""""v"vos1s2""r2 "r1"通过该电路可实现两个信号的反相加法运算。
为了消除运放输入偏置电流及其漂移造成的运算误差,需在运放同相端接入平衡电阻r3,其阻值应与运放反相端地外接等效电阻相等,即要求r3=r1//r2//rf。
测量出输入和输出信号的幅值,并记录示波器波形。
本卷须知:①被加输入信号可以为直流,也可以选用正弦、方波或三角波信号。
附录南京中医药大学信息技术学院电子技术课程实验报告〔实验性质:综合性及设计性□验证性□〕第 2 次实验实验名称根本运算电路专业班级组号小组人数 2实验报告人〔签名〕学号同组实验人〔签名〕学号同组实验人〔签名〕学号实验日期节次2021 年11 月 6 日第~ 节课成绩指导及审阅教师〔签名〕<第二局部实验预习要求和实验报告要求>实验预习要求和实验报告要求一.实验预习要求实验前阅读实验指导书有关内容并作好预习报告,上实验课时应携带预习报告,预习报告包括如下内容:1.实验原理电路及其有关参数。
2.与实验内容有关的分析、计算或准备的实验程序。
3.实验的测试方法以及本次实验所用仪器的使用方法和考前须知。
4.实验中所要填写的表格。
5.答复教师指定的预习思考题。
二.实验报告要求实验报告应简单明了,并包括如下内容:1.实验目的、内容、过程步骤。
2.实验原始记录:包括实验主要电路,实验程序或数据,波形,故障及其解决方法。
3.实验结果分析:对原始记录进展必要的分析,整理。
包括与估算结果的比拟,误差原因和实验故障原因的分析等。
4.总结本次实验中的1~2点体会和收获。
如实验中对所设计电路进展修改的原因分析,测试技巧或故障排除的方法总结,实验中所获得的经历或可引以为戒的教训等。
三.实验报告经同组实验人复核认同签字后,交给指导教师审阅。
<第三局部实验报告各栏目>一、实验目的:①掌握运算电路的测试方法②进一步熟悉运算电路的特点及性能二、 实验仪器设备及环境:三、 实验原理及电路:1. 反相求和电路原理:反相求和电路如下图,根据虚短和虚断的概念可得图中的运算关系:1212121212=()fo I I f f f o I I I I I u u u R R R R R u u u R R ++=-=-+当R1=R2时,121()f o I I R u u u R =-+,输出电压与Ui1,Ui2之和成正比,其比例系数为1fR R ,电阻R ’=R1//R2//Rf 。
一、实验目的1. 理解基础电路元件(电阻、电容、电感)的特性及其在电路中的作用。
2. 掌握电路基本分析方法,包括串联、并联、分压、分流等。
3. 学会使用万用表等常用电子仪器进行电路测量。
4. 培养实验操作技能和实验报告撰写能力。
二、实验原理1. 电阻、电容、电感是电路中的基本元件,它们在电路中分别起到限制电流、储存电荷和储存磁能的作用。
2. 串联电路中,电流处处相等,电压分配与电阻成正比;并联电路中,电压处处相等,电流分配与电阻成反比。
3. 分压、分流是电路分析中的重要概念,分别指电路中电压和电流的分配。
三、实验设备及器材1. 实验线路板1块2. 万用表1块3. 电阻、电容、电感元件若干4. 电池1节5. 连接线若干四、实验内容及步骤1. 电阻特性实验(1)将电阻元件按照要求连接在实验线路板上。
(2)使用万用表测量电阻元件的阻值,记录数据。
(3)分析电阻元件的阻值与温度、材料等因素的关系。
2. 电容特性实验(1)将电容元件按照要求连接在实验线路板上。
(2)使用万用表测量电容元件的电容值,记录数据。
(3)分析电容元件的电容值与材料、形状等因素的关系。
3. 电感特性实验(1)将电感元件按照要求连接在实验线路板上。
(2)使用万用表测量电感元件的电感值,记录数据。
(3)分析电感元件的电感值与材料、形状等因素的关系。
4. 串联电路实验(1)将电阻元件按照串联方式连接在实验线路板上。
(2)使用万用表测量电路中的电流、电压,记录数据。
(3)分析串联电路中电流、电压的分配情况。
5. 并联电路实验(1)将电阻元件按照并联方式连接在实验线路板上。
(2)使用万用表测量电路中的电流、电压,记录数据。
(3)分析并联电路中电流、电压的分配情况。
6. 分压、分流实验(1)将电阻元件按照分压、分流方式连接在实验线路板上。
(2)使用万用表测量电路中的电流、电压,记录数据。
(3)分析分压、分流电路中电流、电压的分配情况。
五、实验数据记录与分析1. 电阻特性实验数据:电阻元件编号:R1阻值:X1 Ω温度:T1℃2. 电容特性实验数据:电容元件编号:C1电容值:X2 F温度:T2℃3. 电感特性实验数据:电感元件编号:L1电感值:X3 H温度:T3℃4. 串联电路实验数据:电阻元件编号:R2电流:I2 A电压:U2 V5. 并联电路实验数据:电阻元件编号:R3电流:I3 A电压:U3 V6. 分压、分流实验数据:电阻元件编号:R4电流:I4 A电压:U4 V根据实验数据,分析电路中电流、电压的分配情况,验证分压、分流等基本概念。
基本运算电路——实验报告一、实验目的1.掌握集成运算放大器的正确使用方法。
2.掌握用集成运算放大器构成比例、加法、减法和积分等基本运算电路的功能。
3.正确理解运算电路中各元件参数之间的关系和概念。
二、实验仪器WLSY-I型数电模电实验箱、数字交流毫伏表、基本运算电路板三、实验原理1.理想运算放大器特性基本知识集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的元器件组成负反馈电路时,可以实现比例、加法、减法、积分、微分等模拟运算电路。
理想运放,是将运放的各项技术指标理想化。
满足下列条件的运算放大器成为理想运放。
开环电压增益A Vd=∞输入阻抗r i=∞输出阻抗r0=0带宽f WW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U0与输入电压之间满足关系式U0=A Vd(U+-U-)由于A Vd=∞,而U0为有限值,因此,U+-U-≈0。
即U+= U-,称为“虚短”。
(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。
这说明运放对其前级吸取电流较小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
本实验采用LM358或LM324集成运算放大器和外接电阻、电容等构成基本运算电路。
运算放大器具有高增益、高输入阻抗的直接耦合放大器。
它外加反馈网络后,可实现不同的电路功能。
如果反馈网络为线性电路,运算放大器可实现加、减、微分、积分运算;如果反馈网络为非线性电路,则可实现对数、乘法、除法等运算;除此之外还可组成各种波形发生器,如正弦波、三角波、脉冲波发生器等。
2.反相比例运算电路反相比例运算电路如图1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为u0=-R f/R1*u iA vf=-R f/R1图1 反相比例运算电路为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R’=R1//R f。
运算方法电路实验报告实验目的本实验旨在通过搭建运算方法电路,进一步了解电路的基本原理和运算方法的应用,同时培养实验操作和报告撰写能力。
实验设备和材料- 面包板- 运算放大器- 电阻- 电压源- 电线实验原理运算方法电路是利用运算放大器(Operational Amplifier, 简称Op-Amp)实现各种基本的数学运算方法。
运算放大器是一种高增益、差分输入的电压放大器,常用于模拟电路中。
运算放大器有两个输入端和一个输出端,其中一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。
当两个输入电压相等时,输出电压为零,其差分增益较高,一般可达数十万倍以上。
根据运算放大器的基本原理,可以实现加法、减法、乘法、除法等运算。
实验步骤1. 搭建加法器电路首先,将运算放大器和电阻等材料准备好,并依次连接如下电路:输入端A > 电阻R1 > \ 输入端C输入端B > 电阻R2 > /运算放大器虚拟地-> \ 输出端> 运算放大器虚拟地-> /运算放大器输入端D > 电阻Rf(反馈电阻)2. 测量电路参数使用万用表或示波器等仪器,对电路各个参数进行测量和记录:输入电流、输出电流、放大倍数等。
3. 测试电路功能通过输入不同的电压值,测试电路的加法运算功能。
首先令输入端A为2V,输入端B为3V,当输入端D为1kΩ时,记录输出电压。
4. 搭建其他运算电路利用相同的原理和方法,搭建减法、乘法、除法等运算电路,并测试其功能。
实验结果与分析通过测量,我们得到了加法器电路的输出电压为5V。
此时我们可以得出结论:加法器电路能够正确进行加法运算,并通过反馈电阻调节输出电压。
同样的方法,我们搭建了减法器、乘法器和除法器电路,并测试它们的功能。
实验结果表明,这些电路能够正确地进行相应的运算操作。
总结与心得通过本次实验,我们进一步了解了运算放大器的基本原理和应用。
我们学会了搭建加法器、减法器、乘法器和除法器电路,并能够利用它们进行相应的运算操作。
基本运算器实验报告计算机的一个最主要的功能就是处理各种算术和逻辑运算,这个功能要由CPU 中的运算器来完成,运算器也称作算术逻辑部件 ALU。
本次试验首先做一个基本的运算器实验,了解运算器的基本结构。
一、实验目的(1) 了解运算器的组成结构。
(2) 掌握运算器的工作原理。
二、实验设备PC 机一台,TD-CMA 实验系统一套。
三、实验原理四、实验步骤(1) 按图 1-1-5 连接实验电路,并检查无误。
图中将用户需要连接的信号用圆圈标明(其它实验相同)。
图 1-1-5 实验接线图(2) 将时序与操作台单元的开关 KK2 置为‘单拍’档,开关 KK1、KK3 置为‘运行’档。
(3)打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。
然后按动 CON 单元的 CLR 按钮,将运算器的 A、B 和 FC、FZ 清零。
(4) 用输入开关向暂存器 A 置数①拨动 CON 单元的 SD27…SD20 数据开关,形成二进制数 01100101(或其它数值),数据显示亮为‘1’,灭为‘0’。
②置 LDA=1,LDB=0,连续按动时序单元的 ST 按钮,产生一个 T4 上沿,则将二进制数 01100101置入暂存器 A 中,暂存器 A 的值通过 ALU 单元的A7…A0 八位 LED 灯显示。
(5) 用输入开关向暂存器 B 置数。
①拨动 CON 单元的 SD27…SD20 数据开关,形成二进制数(或其它数值)。
②置 LDA=0,LDB=1,连续按动时序单元的 ST 按钮,产生一个 T4 上沿,则将二进制数置入暂存器 B 中,暂存器 B 的值通过 ALU 单元的 B7…B0 八位 LED 灯显示。
(6) 改变运算器的功能设置,观察运算器的输出。
置 ALU_B=0、 LDA=0、LDB=0,然后按表 1-1-1置 S3、S2、S1、S0 和 Cn 的数值,并观察数据总线 LED 显示灯显示的结果。
基本运算器实验实验报告一、实验目的本次基本运算器实验的主要目的是深入理解计算机中基本运算的原理和实现方式,通过实际搭建和测试运算器电路,掌握加法、减法、乘法和除法等基本运算的逻辑实现,以及运算过程中的进位、借位和溢出等概念。
同时,通过实验培养我们的动手能力、逻辑思维能力和问题解决能力,为进一步学习计算机组成原理和数字电路等相关课程打下坚实的基础。
二、实验设备与环境1、实验设备数字电路实验箱示波器逻辑分析仪万用表2、实验环境实验室提供稳定的电源和良好的通风条件。
三、实验原理1、加法器半加器:只考虑两个一位二进制数相加,不考虑低位进位的加法电路。
其逻辑表达式为:和= A ⊕ B,进位= A ∧ B。
全加器:考虑两个一位二进制数相加以及低位进位的加法电路。
其逻辑表达式为:和= A ⊕ B ⊕ C_in,进位=(A ∧ B) ∨(A ∧C_in) ∨(B ∧ C_in)。
多位加法器:通过将多个全加器级联可以实现多位二进制数的加法运算。
2、减法器利用补码原理实现减法运算。
将减数取反加 1 得到其补码,然后与被减数相加,结果即为减法的结果。
3、乘法器移位相加乘法器:通过将被乘数逐位与乘数相乘,并根据乘数对应位的值进行移位相加,得到乘法结果。
4、除法器恢复余数法除法器:通过不断试商、减去除数、恢复余数等操作,逐步得到商和余数。
四、实验内容与步骤1、加法器实验按照实验原理图,在数字电路实验箱上连接全加器电路。
输入不同的两位二进制数 A 和 B 以及低位进位 C_in,观察输出的和 S 和进位 C_out。
使用示波器和逻辑分析仪监测输入和输出信号的波形,验证加法器的功能。
2、减法器实验按照补码原理,设计减法器电路。
输入被减数和减数,观察输出的差和借位标志。
使用万用表测量相关节点的电压,验证减法器的正确性。
3、乘法器实验搭建移位相加乘法器电路。
输入两位二进制被乘数和乘数,观察输出的乘积。
通过逻辑分析仪分析乘法运算过程中的信号变化。
电路基础实验报告电路基础实验报告引言:电路是电子学的基础,通过实验探究电路的特性和行为对于学习电子学至关重要。
本实验旨在通过搭建简单的电路,观察和分析电流、电压和电阻等基本电路参数的变化,并通过实验结果验证欧姆定律和基尔霍夫定律。
实验一:串联电路在本实验中,我们搭建了一个串联电路,将两个电阻依次连接在一起,然后接入电源。
通过测量电压和电流的变化,我们验证了欧姆定律。
实验结果表明,串联电路中电流保持不变,而电压按照电阻大小分配。
实验二:并联电路在本实验中,我们搭建了一个并联电路,将两个电阻并联连接在一起,然后接入电源。
通过测量电压和电流的变化,我们再次验证了欧姆定律。
实验结果表明,并联电路中电压保持不变,而电流按照电阻大小分配。
实验三:基尔霍夫定律在本实验中,我们搭建了一个复杂的电路,包含多个电阻和电源。
通过应用基尔霍夫定律,我们分析了电路中的电流和电压分布。
实验结果表明,基尔霍夫定律能够准确描述电路中电流和电压的关系,为电路分析提供了重要的工具。
实验四:电路中的电容和电感在本实验中,我们引入了电容和电感元件,研究了它们在电路中的行为。
通过测量电容和电感的电压和电流变化,我们观察到电容器能够储存电荷,而电感器能够储存能量。
这些观察结果对于理解电路中的能量转换和储存机制具有重要意义。
实验五:交流电路在本实验中,我们研究了交流电路的行为。
通过接入交流电源,我们观察到电压和电流的周期性变化。
通过测量交流电路中的电压和电流的相位差,我们可以确定电路中的电感和电容元件的特性。
这些实验结果对于理解交流电路的工作原理和应用具有重要意义。
结论:通过实验,我们深入了解了电路基础的概念和原理。
我们验证了欧姆定律和基尔霍夫定律,并研究了电容和电感元件的行为。
我们还研究了交流电路的特性和行为。
这些实验结果为我们进一步学习和应用电子学提供了坚实的基础。
未来展望:电路基础是电子学的重要组成部分,对于电子工程师和科学家来说,深入理解电路的行为和特性至关重要。
基本运算电路实验报告基本运算电路实验报告一、引言在现代电子技术领域中,基本运算电路是非常重要的组成部分。
它们能够执行加法、减法、乘法和除法等基本运算,为计算机和其他电子设备提供了强大的计算能力。
本实验旨在通过搭建基本运算电路并进行实验验证,加深对其原理和应用的理解。
二、实验目的1. 掌握基本运算电路的搭建方法;2. 验证基本运算电路的功能;3. 分析基本运算电路的特点和应用。
三、实验器材与原理1. 实验器材:电路板、电源、电阻、电容、运算放大器等;2. 实验原理:基本运算电路由运算放大器、电阻和电容等元件组成。
通过运算放大器的放大作用,输入信号经过电阻和电容的处理,实现加法、减法、乘法或除法运算。
四、实验步骤1. 搭建加法器电路:将两个输入信号分别连接到运算放大器的两个输入端,通过合适的电阻网络将两个输入信号相加,输出信号连接到运算放大器的输出端。
2. 搭建减法器电路:将两个输入信号分别连接到运算放大器的两个输入端,通过合适的电阻网络将一个输入信号与另一个输入信号取反相加,输出信号连接到运算放大器的输出端。
3. 搭建乘法器电路:将两个输入信号分别连接到运算放大器的两个输入端,一个输入信号经过电阻网络到运算放大器的反馈端,另一个输入信号经过电阻网络到运算放大器的非反馈端,输出信号连接到运算放大器的输出端。
4. 搭建除法器电路:将两个输入信号分别连接到运算放大器的两个输入端,一个输入信号经过电阻网络到运算放大器的反馈端,另一个输入信号经过电阻网络到运算放大器的非反馈端,输出信号连接到运算放大器的输出端。
五、实验结果与分析1. 加法器电路实验结果:通过输入不同的信号,观察输出信号的变化。
实验结果表明,加法器电路能够将两个输入信号相加,并输出它们的和。
2. 减法器电路实验结果:通过输入不同的信号,观察输出信号的变化。
实验结果表明,减法器电路能够将两个输入信号相减,并输出它们的差。
3. 乘法器电路实验结果:通过输入不同的信号,观察输出信号的变化。
电路基础实验报告一、实验目的二、实验器材三、实验原理四、实验步骤及结果五、实验分析六、实验结论一、实验目的:本次电路基础实验的主要目的是让学生掌握基础电路的搭建和测量技能,了解电路中基本元件的特性,以及理解并应用欧姆定律和基尔霍夫定律。
二、实验器材:1.数字万用表;2.直流电源;3.面包板;4.电阻(1kΩ,10kΩ);5.开关;6.LED灯。
三、实验原理:1.欧姆定律:在一个导体两端施加电压时,通过导体的电流与导体两端施加的电压成正比例关系。
即I=V/R。
2.基尔霍夫定律:在一个封闭回路中,各个支路中电流代数和等于零;在一个节点处,进入该节点的电流等于从该节点出去的电流之和。
四、实验步骤及结果:1.搭建简单串联电路,并测量各个元件之间的电压和总电压。
结果表明,在串联电路中各个元件之间的总电压等于各个元件电压之和。
2.搭建简单并联电路,并测量各个元件之间的电流和总电流。
结果表明,在并联电路中各个元件之间的总电流等于各个元件电流之和。
3.搭建简单开关控制LED灯的电路,并测量LED灯亮度随着不同电阻值的变化情况。
结果表明,当电阻值增大时,LED灯亮度降低。
五、实验分析:1.在串联电路中,各个元件之间的总电压等于各个元件电压之和,这是因为在串联电路中,整个回路中只有一个路径可以通行,因此通过每个元件的电流相同,而根据欧姆定律可知,通过每个元件的电压与其阻值成正比例关系,因此总电压等于各个元件之间的累加和。
2.在并联电路中,各个元件之间的总电流等于各个元件之间的累加和。
这是因为在并联电路中,整个回路中有多条路径可以通行,因此通过每个元件的总电流相同,而根据欧姆定律可知,在每条支路上通过不同元件的总阻值相同,则通过每条支路的电流与支路上电阻成反比例关系,因此总电流等于各个元件之间的累加和。
3.在控制LED灯亮度的电路中,通过改变电阻值可以改变LED灯亮度。
这是因为LED灯是一种非线性元件,其亮度与通过其的电流成正比例关系,而根据欧姆定律可知,通过一个电阻的电流与其阻值成反比例关系,因此改变电阻值可以改变通过LED灯的电流大小,从而控制LED灯亮度。
电路基础实验引言电路是电子技术的基础,而电路基础实验则是学习电路理论的必备环节。
通过实践操作电路,我们可以更好地理解电路原理,掌握电路分析和设计的方法。
本文将介绍几个常见的电路基础实验,帮助读者入门电子技术领域。
实验一:串联电路实验目的通过构建串联电路,了解串联电路的特性和基本原理。
实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将一个电阻器和一个电池串联连接,在电路中间连接一个电压表,用来测量电压。
2.将一个电流表与电阻器并联连接,用来测量电流。
3.打开电源,记录电压表和电流表的读数。
4.改变电阻器的阻值,再次记录电压表和电流表的读数。
5.绘制电压-电流曲线图,并分析实验结果。
实验结果与分析通过实验,我们可以得到串联电路中电压和电流之间是成正比关系的。
当电阻器的阻值增大时,电流减小,电压增大;当电阻器的阻值减小时,电流增大,电压减小。
这是因为串联电路中电流在各个元件中是相同的,而电压在各个元件上之和等于电源电压。
实验二:并联电路实验目的通过构建并联电路,了解并联电路的特性和基本原理。
实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将两个电阻器并联连接,并将它们与一个电池串联连接,在并联电路两端连接一个电压表,用来测量电压。
2.将两个电流表分别与电阻器并联连接,用来测量电流。
3.打开电源,记录电压表和电流表的读数。
4.改变电阻器的阻值,再次记录电压表和电流表的读数。
5.绘制电压-电流曲线图,并分析实验结果。
实验结果与分析通过实验,我们可以得到并联电路中电压和电流之间是成反比关系的。
当电阻器的阻值增大时,电流减小,电压不变;当电阻器的阻值减小时,电流增大,电压不变。
这是因为并联电路中电流在各个元件中之和等于电源电流,而电压在各个元件上是相同的。
实验三:电路的欧姆定律实验目的通过测量电阻器的电压和电流,验证欧姆定律的准确性。
实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将一个电阻器与一个电池串联连接,在电路中间连接一个电压表,用来测量电压。
基本运算电路实验报告一、实验目的:1.电子仪器仪表的熟练使用;学会合理选用示波器的直流、交流耦合方式观察不同波形的方法。
2.集成运算放大器的基本应用电路原理;3.集成运算放大器基本参数含义与应用要点。
4.简单电子电路的设计、安装、调试与参数测量。
二、实验原理:1.反相比例运算(图1)V0=-R f V1/R1其中输入电阻R≈R1根据增益,确定R f和R1的比值,得出一般取R f几十千欧到几百千欧2.反相比例加减法运算图23.反相比例积分电路(图3)R1–+AR FR2R3 =100KΩ100KΩ10KΩR P 1KΩ10KΩv i1v i2vo Vi10k9kVo10k100k0.01uR1Rf三、实验仪器集成运算放大器LM324 1片电位器1KΩ1只电阻100kΩ2只;10kΩ3只;5.1kΩ1只;9kΩ1只电容0.01μF 1只四、实验内容1.反相比例运算(1)设计并安装反相比例运算电路,要求输入阻抗R i=10 kΩ, 闭环电压增益|A vf|=10 (2)在该放大器输入端加入f=1kHZ的正弦电压,峰峰值自定,测量放大器的输出电压值;改变v I峰峰值大小,再测v O,研究v I和v O的反相比例关系,填入自拟表格中。
2.比例积分运算在反相比例电路的基础上,在R f的两端并联一个容量为0.01μF的电容,构成积分运算电路。
输入端加入f=500HZ、幅值为1V的正方波,用双踪示波器同时观察、记录v I和v O的波形,标出幅值和周期。
3.反相比例加减法运算图3所示电路可分别实现加法和减法运算。
当开关置于A点时为加法运算;开关置于B 点时为减法运算。
将开关置于A点,接入f=1kHZ的正弦波,调节电位器R P,测量v i1和v i2的大小,然后再测v O的大小。
改变R P,改变v i2的值,分别记录相应的v i1、v i2和v O的数值,填入自拟表格中(此时R’=R f//R1//R2)。
研究加法运算关系。
实验集成运算放大电路一、实验目的1.进一步理解运算放大器的基本原理,熟悉运算放大器平衡的调整方法。
2.掌握由运算放大器组成的比例、加法运算等电路和的调试方法。
二、预习内容1.课前预习本实验习题,查找集成运算放大器LM741的有关资料,熟悉其内部电路组成和外围电路的接法。
2.复习教材中有关运算放大器比例、加法器等电路的基本理论,掌握几种基本运算的调试方法。
3.根据实验习题和实验电路图中给定参数,估算反相比例放大器、同相比例放大器的放大倍数和反相比例加法器、减法器的输出电压值。
4.课下在万能板上按实验电路图焊好电路,注意,为变换测试电路应留出足够的空间。
5.根据实验内容,自己设计实验数据表格,供测试时使用。
6.课下试做有关实验,修改实验数据表格,带问题来上课,边做边讨论。
三、实验电路及测量原理图1是LM741(或747)集成运放的外引线图,各引脚功能如下:图12--反相输入端3--同相输入端7--电源电压正端4--电源电压负端6--输出端1、5--调零端集成运算放大器是一种高放大倍数、高输入阻抗、低输出阻抗的直接耦合多级放大电路,具有两个输入端和一个输出端,可对直流信号和交流信号进行放大。
外接负反馈电路后,输出电压V o与输入电压V i的运算关系仅取决于外接反馈网络与输入的外接阻抗,而与运算放大器本身无关。
1.反相比例运算及倒相器实验图2为反相比例运算电路。
LM741按理想运放处理,其运算关系为若R F=R1则为倒相器,即图 22.反相加法运算电路实验图3为反相法器电路,其运算关系为图4 图53.同相比例运算及跟随器实验图4为同相比例运算电路。
其运算关系为若不接R1,或将R F短路,可实现同相跟随功能,即减法运算电路实验图5为减法运算电路,其运算关系为四、实验内容用万用表调整直流稳压电源,使输出为±15V ,接入实验电路2中。
1.集成运算放大器的调零:接入调零电位器,当输入信号V i=0时,调整R P,使输出电压V o=0。
电路基础实验报告电路基础实验报告引言电路基础实验是电子工程专业学生必不可少的一门课程,通过实验,我们可以更好地理解电路的原理和特性。
本次实验主要涉及直流电路和交流电路的基本原理与实验操作。
通过实验,我们将学习如何搭建电路、测量电路参数以及分析电路特性。
实验一:直流电路的搭建与测量直流电路是电子工程中最基础的电路之一,它由直流电源、电阻、电容和电感等元件组成。
在这个实验中,我们首先需要搭建一个简单的直流电路,然后使用万用表测量电路中的电压和电流。
实验二:欧姆定律的验证欧姆定律是电学中最基本的定律之一,它描述了电流、电压和电阻之间的关系。
在这个实验中,我们将通过测量电路中的电流和电压,验证欧姆定律的准确性。
实验中我们会改变电阻的阻值,观察电流和电压的变化情况,并绘制电流-电压曲线。
实验三:电容充放电实验电容是一种能够存储电荷的元件,它在电子电路中起到了重要的作用。
在这个实验中,我们将学习如何使用电容器,并观察电容器在充电和放电过程中的电压变化。
通过实验,我们可以了解电容的特性以及电容充放电的时间常数。
实验四:交流电路的搭建与测量交流电路是电子工程中常见的电路形式,它由交流电源、电阻、电容和电感等元件组成。
在这个实验中,我们将学习如何搭建一个简单的交流电路,并使用示波器测量电路中的电压和电流。
通过观察示波器上的波形,我们可以了解交流电路中电压和电流的变化规律。
实验五:电感的测量与应用电感是电子电路中常用的元件之一,它能够存储电磁能量。
在这个实验中,我们将学习如何使用电感器,并测量电感的电感值。
同时,我们还将观察电感在电路中的应用,如振荡电路和滤波电路等。
结论通过这些实验,我们对电路的基本原理和特性有了更深入的了解。
我们学会了搭建电路、测量电路参数以及分析电路特性。
这些基础的实验为我们今后的学习和研究打下了坚实的基础。
在以后的学习中,我们将进一步深入研究电路的高级原理和应用,为电子工程的发展做出更大的贡献。
实践操作:测量电路的电位、电压实践要求:先按照如图1-1-4组装连接电路,再分别测试A、B、C各点的电位,以及相互间的电压,并做好记录。
实践器材:电池一个,开关一个,小灯泡两个,导线若干,万用表一个。
图1-1-4 测试电路图实践步骤:1.量程的选择将红、黑表插入对应的插孔中,选择开关旋至直流电压挡相应的量程进行测量,如图1-1-5所示。
如果不知道被测电压的大致数值,需将选择开关旋至直流电压挡最高量程上预测,然后再旋至直流电压挡相应的量程上进行测量。
图1-1-5 表笔接入与量程选择示意图2.开始电位测量电路中某点对于参考点的电压称为该点的电位,此处选择C点为电位参考点,将指针式万用表与被测电路并联,黑表笔接参考点,红表笔接被测量点,如图1-1-6所示。
图1-1-6 测量A点电位示意图3.读数要根据所选择的量程来选择刻度读数!4.档位复位.将档位开关打在OFF位置或打在交流电压1000V档。
5.电位测量将测量的A、B、C、三点的电位值记入表1-1-1中。
表1-1-1 测试交流电压记录表测试对象VA VB VC测量电位值电压测试时,红表笔接高电位、黑表笔接低电位(不清楚情况下,可以先接好其中任意一表笔,另一表笔轻轻碰一下测量点,看表笔的偏转情况,如果反偏,表示接反)。
将AB、AB、BC测量结果记录表1-1-2中。
表1-1-1 测试交流电压记录表测试对象VAB VBCVAC测量电压值实践操作:RC电路的瞬态过程分析实践要求:测绘RC电路充电和放电曲线;测量RC电路的时间常数,测量、分析RC电路的瞬态过程。
实践器材:可调电源一台,常用电阻、电容若干,开关一个,导线若干。
实践步骤:1.按照如图5-2-6所示电路进行连接。
图5-2-6 RC瞬态分析电路图2.断开K并起始记时,电压表指到1V时停止记时,测量时间记入下表,然后闭合K使电容的电压重新为零。
3.第二次断开K并记时时,电压表上升到2V时停止记时,所测时间记入表格,依次上述方法,逐次测出电容的电压由零上升到3V,4V,5V,6V,7V,8V时所需的时间,并将测得的数据填入表5-2-1中。
实验五 集成运算放大器的基本应用
——模拟运算电路
一、 实验目的
1、 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、 了解运算放大器在实际应用时应考虑的一些问题。
二、 实验原理
集成运算放大器是一种具有高电压放大倍数的直接耦合放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性
在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:
(1) 输出电压U o 与输入电压之间满足关系式
U o =A ud (U +—U _ )
由于A ud =∞,而U o 为有限值,因此,U +—U -≈0。
即U +≈U _,称为“虚短”。
(2) 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路
1) 反相比例运算电路
电路如图5-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为
1
o F R U U i R =-
为了减少输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻21//F R R R =
图5-1 反相比例运算电路 图5-2 反相加法运算电路
2) 反相加法电路
电路如图5-2所示,输出电压与输入电压之间的关系为
012
1
2
()F F i i R R U
U U R
R
=-+ 3
1
2
////F
R R
R R =
3) 同相比例运算电路
图5-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系
1
(1)F
i R U U R
=+ 2
1
//F
R
R R =
当1
R →∞时,U U i =0,即得到如图5-3(b )所示的电压跟随器。
图中2
1
R R =用以
减小漂移和起保护作用。
一般F
R
取10K Ω,
F
R
太小起不到保护作用,太大则影响跟随性。
(a )同比例运算电路 (b )电压跟随器
图5-3 同相比例运算电路
4) 差动放大电路(减法器)
对于图5-4所示的减法运算电路,当
1
2
R R
=,
3
F
R R
=时,有如下关系
)(1
2
1
0U U R
R U i i F -
=
图5-4 减法运算电路 5-5 积分运算电路
5)
积分运算电路
反相积分电路如图5-5所示。
在理想化条件下,输出电压
U
等于
010
()1/(0)t
i c u t R C u dt u =-+⎰
式中(0)c u 是t=0时刻电容C 两端的电压值,即初始值。
如果)(t u i 是幅值为E 的阶跃电压,并设(0)0c u =,则
C R Et Edt C R t u t
10
10//1)(-=-=⎰
即输出电压)(0t u 随时间增长而线性下降。
显然RC 的数值越大,达到给定的0u 值所需的时间就越长。
积分输出电压所能达到的最大值受集成运放最大输出范围的限值。
在进行积分运算之前,首先应对运放调零。
为了便于调节,应将1K 闭合,即通过电阻2R 的负反馈作用帮助实现调零。
但在完成调零后,应将1K 打开,以免因2R 的接入造成积分误差。
2K 的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压(0)0c u =,另一方面,可控制积分起始点,即在加入信号i u 后,只要2K 一打开,电容就将被恒流充电,电路也就开始进行积分运算。
三、 实验设备与器件
1. 12±V 直流电源
2. 函数信号发生器
3. 交流毫伏表
4. 直流电压表
5. 集成运算放大器1741⨯A μ 电阻器、电容器若干
四、 实验内容
实验前要看清运放组件各管脚的位置:切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。
1. 反相比例运算电路
1) 按图5-1连接实验电路,接通12±V 电源,输入端对地短路,进行调零和消振。
2) 输入f=100Hz,, U i =0.5V 的正弦交流信号,测量相应的 U 0,并用示波器观察0U 和i U 的相位关系,记入表5-1。
表5-1 i U =0.5V f=100Hz
2、同相比例运算电路
1)按图5-3(a)连接实验电路。
实验步骤同内容1,将结果记入表5-2。
2)将图5-3(a)中的1R 断开,得图5-3(b)电路重复内容1)。
表5-2 i U =0.5V f=100Hz
3、反相加法运算电路
1)按图5-2连接实验电路。
调零和消振。
2)输入信号采用直流信号,图5-6所示电路为简易直流信号源,由实验者自行完成。
实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性区。
用直流电压表测量输入电压U 1i 、i2U 输出电压0U ,记入表5-3。
图5-6 简易可调直流信号源
表5—3
4、减去运算电路
1) 按图5—4连接实验电路。
调零和消振。
2) 采用直流输入信号,实验步骤同内容3,记入表5—4。
5、积分运算电路
实验电路如图5—5所示。
1) 打开2K ,闭合1K ,对运放输出进行调零。
2) 调零完成后,再打开1K ,闭合2K ,使C U (o)0 。
3) 预先调好直流输入电压1U =0.5V ,接入实验电路,再打开2K ,然后用直流电压表测量
输出电压0U ,每隔5秒读一次0U ,记入表5—5,直到0U 不继续明显增大为止。
表5—5
t(S) 0 5 10 15 20 25 30 ……
U(V)
五、实验总结
1、整理实验数据,画出波形图(注意波形间的相位关系)。
2、将理论计算结果和实测数据相比较,分析产生误差的原因。
3、分析讨论试验中出现的现象和问题。
六、预习要求
1、复习集成运放线性应用部分内容,并根据实验电路参数计算各电路输出电压的理论值。
2、在反相加法器中,如U
1i 和U
2i
均采用直流信号,并选定U
2i
=-1V,当考虑到运算放
大器的最大输出幅度(±12V)时,︱U
1i
︱的大小不应超过多少伏?
3、在积分电路中,如R i=100KΩ,C=4.7μ F ,求时间常数。
假设U i=0.5V,问要使
输出电压U
0达到5V,需要多长时间(设U
c
(0)=0)?
4、为了不损坏集成块,实验中应注意什么问题?
μA741作为要求一般的场合,使用该运算放大器可以胜任。
它具有失调量小,温漂小,功耗低,输入阻抗高共模抑制比CMRR高等优点。
电路引脚参见图。
图μA741通用运算放大器。