实数指数与指数函数(教案)
- 格式:docx
- 大小:335.02 KB
- 文档页数:13
第四章指数函数、对数函数与幂函数4.1 指数与指数函数4.1.1 实数指数幂及其运算素养目标·定方向课程标准学法解读1.理解n次方根、n次根式的概念,能正确运用根式运算性质化简求值.2.理解有理数指数幂的含义,能正确运用其运算法则进行化简、计算.3.理解无理数指数幂,了解指数幂的拓展过程.4.掌握实数指数幂的运算法则.1.通过学习n次方根、n次根式概念及有理数指数幂含义,提升数学抽象素养.2.通过根式运算性质、有理数指数幂运算法则的应用,提升数学运算素养.3.通过学习无理数指数幂,了解无限逼近思想,提升数学抽象素养.4.通过实数指数幂运算法则的应用,提升数学运算素养.必备知识·探新知知识点n次方根(1)定义:给定大于1的正整数n和实数a,如果存在实数x,使得__x n=a__,则x称为a的n次方根.(2)表示:n为奇数n为偶数a∈R a>0a=0a<0x=__na__x=__±na__0不存在思考:对于式子na中a一定是非负数吗?如不是,其范围是什么?提示:不一定是非负数,其范围由n的奇偶决定;当n为奇数时,a∈R;当n为偶数时,a≥0.知识点根式(1)当n a 有意义时,na 称为根式,n 称为__根指数__,a 称为被开方数. (2)性质:①(na )n=__a __;②nan=⎩⎪⎨⎪⎧__a __,n 为奇数,__|a |__,n 为偶数.思考:(na )n与na n中的字母a 的取值范围是否一样?提示:取值范围不同.式子(na )n中隐含a 是有意义的,若n 为偶数,则a ≥0,若n 为奇数,a ∈R ;式子na n中,a ∈R .分数指数幂的意义 知识点正分数 指数幂n 为正整数,na 有意义,且a ≠0时,规定a 1n =__na __ 正分数m n,a m n =__(n a )m __=n a m负分数 指数幂s 是正分数,a s 有意义且a ≠0时,规定a -s =__1as __思考:分数指数幂中的m n有什么规定?提示:m n为既约分数,如果没有特殊说明,一般总认为分数指数中的分数都是既约分数. 知识点无理数指数幂当a >0且t 是无理数时,a t是一个确定的__实数__. 思考:当a >0时,式子a x 中的x 的范围是什么? 提示:x ∈R . 知识点实数指数幂的运算法则(a >0,b >0,r ,s ∈R )(1)a r a s=__ar +s__.(2)(a r )s =__a rs__. (3)(ab )r=__a r b r__.关键能力·攻重难题型探究题型n 次方根的概念及相关问题┃┃典例剖析__■典例1 (1)求使等式a -3a 2-9=(3-a )a +3成立的实数a 的取值范围;(2)设-3<x <3,求x 2-2x +1-x 2+6x +9的值. [分析] (1)利用a 2=|a |进行讨论化简. (2)利用限制条件去绝对值号. [解析] (1)a -3a 2-9=a -32a +3=|a -3|a +3,要使|a -3|a +3=(3-a )a +3成立,需⎩⎪⎨⎪⎧a -3≤0,a +3≥0,解得-3≤a ≤3,即实数a 的取值范围为[-3,3].(2)原式=x -12-x +32=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2;当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.规律方法:1.对于na ,当n 为偶数时,要注意两点:(1)只有a ≥0时才有意义;(2)只要na 有意义,na 必不为负.2.当n 为偶数时,na n先化为|a |,再根据a 的正负去绝对值符号. ┃┃对点训练__■1.(1)若4a -2+(a -3)0有意义,则a 的 取值范围是__[2,3)∪(3,+∞)__;(2)已知x ∈[1,2],化简(4x -1)4+6x -26=__1__.[解析] (1)由⎩⎪⎨⎪⎧a -2≥0,a -3≠0,得a ≥2,且a ≠3.(2)∵x ∈[1,2],∴x -1≥0,x -2≤0,∴(4x -1)4+6x -26=x -1+|x -2|=x -1-(x -2)=1.题型根式与分数指数幂的互化┃┃典例剖析__■典例2 (1)用根式表示下列各式:a 15 ;a 34 ;a -23 ;(2)用分数指数幂表示下列各式:3a 5;3a 6;13a2.[分析] 利用分数指数幂的定义求解.[解析] (1)a 15 =5a ;a 34 =4a 3;a -23 =1a 23 =13a 2.(2)3a 5=a 53 ;3a 6=a 63 =a 2;13a 2=1a 23=a -23 .规律方法:根式与分数指数幂互化的规律(1)根指数化为,分数指数的分母,被开方数(式)的指数――→化为分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算法则解题.┃┃对点训练__■2.(1)用根式表示下列各式:x 35 ;x -13 ; (2)用分数指数幂表示下列各式: ①b 3a 2·a 2b 6(a >0,b >0); ②a -4b 23ab 2(a >0,b >0).[解析] (1)x 35 =5x 3;x -13 =13x.(2)①b 3a 2·a 2b 6=b 3a 2·a b 3=a -12 . ②a -4b23ab 2=a -4b 2·ab213 =a -4b 2a 13 b 23 =a -113 b 83 =a -116 b 43 .题型有理(实数)指数幂的运算法则的应用┃┃典例剖析__■典例3 化简:(1)(5x -23 y 12 )·⎝ ⎛⎭⎪⎫-14x -1y 12 ·⎝ ⎛⎭⎪⎫-56x 13 y -16 (其中x >0,y >0);(2)0.064-13 -⎝ ⎛⎭⎪⎫-780+[(-2)3] -43 +16-0.75;(3)32+3×27-33; (4)(1+2)[(-2-1)-2(2)12 ]12 +(2)1-3×(2)1+3.[分析] 利用幂的运算法则计算.[解析] (1)原式=⎣⎢⎡⎦⎥⎤5×-14×-56·x -23 +(-1)+13·y 12 +12 -16=2524x -43 y 56 .(2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716. (3)32+3×27-33 =32+3×(33)-33 =32+3×3-3=32+3-3=32=9.(4)(1+2)[(-2-1)-2(2)12 ]12 +(2)1-3×(2)1+3=(1+2)[(2+1)-2·(2)12 ]12 +(2)1-3+1+3=(1+2)[(2+1)-2×12(2)12 ×12 ]+(2)2=(1+2)·[(2+1)-1·(2)14 ]+2=(2)14 +2=2+218 .规律方法:指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.┃┃对点训练__■ 3.化简与求值(1)⎝ ⎛⎭⎪⎫-338 -23 +(0.002)-12 -10(5-2)-1+(2-3)0; (2)3a 32·a -3·a-5-12 ·a -1213.[解析] (1)原式=(-1) -23 ⎝ ⎛⎭⎪⎫338-23 +⎝ ⎛⎭⎪⎫1500-12-105-2+1=⎝ ⎛⎭⎪⎫278-23 +(500) 12 -10(5+2)+1=49+105-105-20+1=-1679. (2)原式=(a 32 ·a -23 )13 ·[(a -5)-12 ·(a -12 )13] 12 =(a 0) 13 ·(a 52 ·a -23 )12=(a -4) 12 =a -2.易错警示┃┃典例剖析__■典例4 化简(1-a )[(a -1)-2·(-a ) 12 ] 12 .[错解] 原式=(1-a )(a -1)-1·(-a ) 14 =-(-a ) 14 .[辨析] 误解中忽略了题中有(-a ) 12 ,即-a ≥0,a ≤0,则[(a -1)-2] 12 ≠(a -1)-1. [正解] ∵(-a ) 12 存在,∴-a ≥0,故a -1<0,原式=(1-a )·(1-a )-1(-a ) 14 =1 (-a)4.。
第五节 指数与指数函数[考纲传真] 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.3.体会指数函数是一类重要的函数模型.1.根式n 次方根概念 如果x n =a ,那么x 叫作a 的n 次方根,其中n >1,n ∈N *表示 当n 是奇数时,a 的n 次方根x =na当n 是偶数时,正数的n 次方根x =±n a ;负数没有偶次方根0的任何次方根都是0,记作n0=0根式概念 式子n a 叫作根式,其中n 叫作根指数,a 叫作被开方数性质 (na )n =a当n 为奇数时,na n =a当n 为偶数时,na n=|a |=⎩⎨⎧a ,a ≥0-a ,a <02.(1)分数指数幂①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质 ①a r ·a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a xa >10<a <1图象定义域 R 值域(0,+∞) 性质(0,1) 过定点当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1; x <0时,y >1在R 上是增函数在R 上是减函数[常用结论]指数函数的图象与底数大小的关系如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)4(-4)4=-4.( ) (2)(-1) 24=(-1) 12=-1. ( ) (3)函数y =2x-1是指数函数.( )(4)若a m <a n (a >0且a ≠1),则m <n . ( )[答案] (1)× (2)× (3)× (4)×2.化简[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .9 B [原式=(26) 12-1=8-1=7.]3.(教材改编)若函数f (x )=a x (a >0,且a ≠1)的图象经过点P ⎝ ⎛⎭⎪⎫2,12,则f (-1)等于( )A.22 B. 2 C.14D .4B [由题意知12=a 2,所以a =22,所以f (x )=⎝ ⎛⎭⎪⎫22x,所以f (-1)=⎝ ⎛⎭⎪⎫22-1= 2.]4.函数y =a x -a (a >0,且a ≠1)的图象可能是( )A B C DC [令y =a x -a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.] 5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (1,2) [由题意知0<2-a <1, 解得1<a <2.]指数幂的化简与求值1.A.⎝ ⎛⎭⎪⎫n m 7=n 7m 17 B.12(-3)4=3-3 C.4x 3+y 3=(x +y )34 D.39=33D [39=(913)12=916=313=33,故选D.]2.若a >0,b >0,则化简=________.ab -1 [原式===ab -1.]3.化简-10(5-2)-1+3π0+59=________.-16 [原式=⎝⎛⎭⎪⎫82723+50012-105-2+3+59 =49+105-10(5+2)+3+59 =-16.]4.若x 12+x -12=3,则=________.25[由x 12+x -12=3得x +x -1+2=9. 所以x +x -1=7.同理由x +x -1=7可得x 2+x -2=47.x 32+x -32=(x 12+x -12)(x +x -1-1)=3×6=18. 所以[规律方法] 指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解题. 易错警示:运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.指数函数的图象及应用【例1】 (1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)已知函数f(x)=3+a2x-4的图象恒过定点P,则点P的坐标是________.(3)若曲线y=|3x-1|与直线y=k只有一个公共点,则实数k的取值范围为________.(1)D(2)(2,4)(3){0}∪[1,+∞)[(1)由f(x)=a x-b的图象可以观察出函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.(2)令2x-4=0得x=2,且f(2)=4,则点P的坐标为(2,4).(3)函数y=|3x-1|的图象是由函数y=3x的图象向下平移一个单位后,再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,函数图象如图所示.当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点.][规律方法]指数函数图象应用的4个技巧(1)画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)函数y=xa x|x|(a>1)的图象大致是()A B C D(2)函数f(x)=2|x-1|的图象是()A B C D(3)已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.(1)B (2)B (3)⎝ ⎛⎭⎪⎫0,23 [(1)y =⎩⎨⎧a x ,x >0,-a x ,x <0,又a >1,故选B.(2)函数f (x )=2|x -1|的图象可由y =2|x |的图象向右平移1个单位得到,故选B. (3)①当0<a <1时,如图①,所以0<3a <2,即0<a <23; ②当a >1时,如图②,而y =3a >1不符合要求.图① 图②所以0<a <23.]指数函数的性质及应用►考法1 比较指数式的大小【例2】 已知a =343,b =925,c =12113,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <bA [因为a =343=923>925=b ,c =12113=1123>923=a ,所以c >a >b .故选A.] ►考法2 解简单的指数方程或不等式 【例3】 (1)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)(2)已知实数a ≠1,函数f (x )=⎩⎨⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(1)C (2)12 [(1)当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a-7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).故选C.(2)当a <1时,41-a =21,解得a =12;当a >1时,代入不成立.故a 的值为12.]►考法3 与指数函数有关的函数的值域或最值问题【例4】 (1)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.(2)已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.(1)-32 (2)52[(1)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎨⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.(2)y =12(2x )2-3·2x +5.令t =2x ,由0≤x ≤2得1≤t ≤4,又y =12t 2-3t +5=12(t -3)2+12, ∴当t =1时,y 有最大值,最大值为52.] ►考法4 复合函数的单调性、值域或最值【例5】 函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间是________,值域是________.(-∞,1] ⎝ ⎛⎭⎪⎫14,+∞ [令u =-x 2+2x +1,则u =-(x -1)2+2.又y =⎝ ⎛⎭⎪⎫12u 在R 上是减函数,则函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间为函数u =-x 2+2x +1的增区间.由此函数f (x )的单调递减区间为(-∞,1].因为u ≤2,则f (x )≥⎝ ⎛⎭⎪⎫122=14,即函数f (x )的值域为⎣⎢⎡⎭⎪⎫14,+∞.] [规律方法]应用指数函数性质综合的常考题型及求解策略常考题型 求解策略比较幂值的大小 (1)能化成同底数的先化成同底数幂再利用单调性比较大小.(2)不能化成同底数的,一般引入“1”等中间量比较大小解简单指数不等式 先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致(1)(2019·信阳模拟)已知a =⎝ ⎛⎭⎪⎫35-12,b =⎝ ⎛⎭⎪⎫35-14,c =⎝ ⎛⎭⎪⎫32-34,则a ,b ,c 的大小关系是( )A .c <a <bB .a <b <cC .b <a <cD .c <b <a(2)(2019·长春模拟)函数y =4x +2x +1+1的值域为( ) A .(0,+∞) B .(1,+∞) C .[1,+∞) D .(-∞,+∞)(3)已知函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,则a 的取值范围为________.(4)函数y =2-x 2+2x的值域为________.(1)D (2)B (3)[6,+∞) (4)(0,2] [(1)c =⎝ ⎛⎭⎪⎫32-34=⎝ ⎛⎭⎪⎫278-14,则⎝ ⎛⎭⎪⎫35-13>⎝ ⎛⎭⎪⎫35-14>⎝ ⎛⎭⎪⎫278-14,即a >b >c ,故选D. (2)y =4x +2x +1+1=(2x )2+2·2x +1, 令t =2x ,则t >0,∴y =t 2+2t +1=(t +1)2>1,故选B.(3)由题意知,函数u=-x2+ax+1在区间(-∞,3)上单调递增,则a2≥3,即a≥6.(4)-x2+2x=-(x-1)2+1≤1,则0<y≤2.即函数y=2-x2+2x的值域为(0,2].]。
指数函数教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!指数函数教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
§3.1指数与指数函数3.1.1实数指数幂及其运算(一)学习目标1.理解正整指数幂的含义,掌握正整指数幂的运算法则.2.了解根式与方根的概念.3.掌握根式的性质,并能进行简单的根式运算.知识点一整数指数思考1 n个相同因数a相乘的结果怎么表示?这个结果叫什么?答案a n,叫幂.思考2 零指数幂和负整指数幂是如何规定的?答案规定:a0=1 (a≠0),零的零次幂无意义;a-n=1a n(a≠0,n∈N+).梳理 整数指数幂的概念及性质 (1)有关幂的概念a n =···n a a a 个,a n 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,n ∈N +,并规定a 1=a .(2)零指数幂与负整指数幂规定:a 0=1(a ≠0),a -n=1an (a ≠0,n ∈N +).(3)整数指数幂的运算法则a m ·a n =a m +n .(a m )n =a mn .a m an =a m -n (m >n ,a ≠0).(ab )m =a m b m. 知识点二 n 次方根、n 次根式思考 若x 2=3,这样的x 有几个?它们叫做3的什么?怎么表示? 答案 这样的x 有2个,它们都称为3的平方根,记作± 3. 梳理 根式的概念 (1)a 的n 次方根定义如果存在实数x ,使得x n =a ,那么x 叫做a 的n 次方根,其中a ∈R ,n >1,且n ∈N +. (2)a 的n 次方根的表示(3)根式当n a有意义的时候,n a叫做根式,这里n叫做根指数,a叫做被开方数.知识点三根式的性质一般地,有(1)n0=0(n∈N+,且n>1).(2)(n a)n=a(n∈N+,且n>1).(3)n a n=a(n为大于1的奇数).(4)na n=|a|=⎩⎨⎧a,a≥0,-a,a<0(n为大于1的偶数).1.a0一定等于1.( ×)2.实数a的n次方根有且只有一个.( ×)3.当n 为偶数,a ≥0时,na ≥0.( √ )4.na n =⎝⎛⎭⎫n a n .( × )类型一 根式的意义 例1 求使等式a -3a 2-9=(3-a )a +3成立的实数a 的取值范围. 解a -3a 2-9=a -32a +3=|a -3|a +3,要使|a -3|a +3=(3-a )a +3,需⎩⎨⎧a -3≤0,a +3≥0,解得a ∈[-3,3].反思与感悟 对于n a ,当n 为偶数时,要注意两点:(1)只有a ≥0才有意义;(2)只要na有意义,na 必不为负.跟踪训练1 若a 2-2a +1=a -1,求a 的取值范围.解 ∵a 2-2a +1=|a -1|=a -1, ∴a -1≥0,∴a ≥1.类型二 利用根式的性质化简或求值 例2 化简:(1)43-π4;(2)a -b2(a >b );(3)(a -1)2+1-a2+31-a3.解 (1)43-π4=|3-π|=π-3.(2)a -b 2=|a -b |=a -b .(3)由题意知a -1≥0,即a ≥1.原式=a -1+|1-a |+1-a =a -1+a -1+1-a =a -1.反思与感悟 n 为奇数时,⎝⎛⎭⎫n a n =na n =a ,a 为任意实数;n 为偶数时,a ≥0,⎝⎛⎭⎫n a n 才有意义,且⎝⎛⎭⎫n a n =a ;而a 为任意实数n a n 均有意义,且na n =|a |. 跟踪训练2 求下列各式的值:(1)7-27;(2)43a -34(a ≤1);(3)3a 3+41-a4.解 (1)7-27=-2.(2)43a -34=|3a -3|=3|a -1|=3-3a .(3)3a 3+41-a4=a +|1-a |=⎩⎨⎧1,a ≤1,2a -1,a >1.类型三 有限制条件的根式的化简例3 设-3<x <3,求x 2-2x +1-x 2+6x +9的值. 解 原式=x -12-x +32=|x -1|-|x +3|,∵-3<x <3, ∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎨⎧-2x -2,-3<x <1,-4,1≤x <3.引申探究本例中,若将“-3<x <3”变为“x ≤-3”,则结果又是什么? 解 原式=x -12-x +32=|x -1|-|x +3|.∵x ≤-3,∴x -1<0,x +3≤0,∴原式=-(x -1)+(x +3)=4.反思与感悟 n 为偶数时,na n 先化为|a |,再根据a 的正负去绝对值符号.跟踪训练3 已知x∈[1,2],化简(4x-1)4+6x2-4x+43=________.答案1解析∵x∈[1,2],∴x-1≥0,x-2≤0,∴(4x-1)4+6x2-4x+43=x-1+6x-26=x-1-(x-2)=1.1.已知x5=6,则x等于( )A. 6B.56C.-56 D.±56答案B2.m是实数,则下列式子中可能没有意义的是( )A.4m2B.3mC.6mD.5-m答案C3.(42)4运算的结果是( )A.2 B.-2 C.±2D.不确定答案A4.3-8的值是( )A.2 B.-2 C.±2D.-8答案B5.化简1-2x2(2x>1)的结果是( ) A.1-2x B.0C.2x-1 D.(1-2x)2答案C1.如果x n =a ,n 为奇数时,x =n a ,n 为偶数时,x =±na (a >0);负数没有偶次方根,0的任何次方根都是0.2.掌握两个公式:(1)(n a )n =a ;(2)n 为奇数,n a n =a ,n 为偶数,na n =|a |=⎩⎨⎧a , a ≥0,-a , a <0.一、选择题1.已知m 10=2,则m 等于( )A.102 B .-102 C.210 D .±102 答案 D 解析 ∵m 10=2,∴m 是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数. ∴m =±102.故选D.2.计算2122242+-⨯的结果是( ) A .32B .16C .64D .128答案 B 3.化简3-8125的值是( ) A.25 B .-25C .±25D .-35 答案 B解析 3-8125=3⎝ ⎛⎭⎪⎫-253=-25. 4.化简e -1+e 2-4等于( )A .e -e -1B .e -1-eC.e+e-1D.0答案A解析e-1+e2-4=e-2+2e-1e+e2-4=e-2-2+e2=e-1-e2=|e-1-e|=e-e-1.5.若2<a<3,化简2-a2+43-a4的结果是( ) A.5-2a B.2a-5C.1 D.-1答案C解析∵2<a<3,∴a-2>0,a-3<0,∴2-a2+43-a4=|2-a|+|3-a|=a-2+3-a=1. 6.5-26的平方根是( )A.3+ 2B.3-2C.2- 3D.3-2,2-3答案D解析±5-26=±3-26+2=±3-22=±(3-2).二、填空题7.化简π-42+3π-43的结果为________.答案 0解析 原式=|π-4|+π-4=4-π+π-4=0.8.若x <0,则|x |-x 2+x 2|x |=________. 答案 1 解析 ∵x <0,∴原式=-x -(-x )+-x -x=-x +x +1=1. 9.3-223+22=________.答案 3-22解析 方法一 3-223+22= 2-122+12=2-12+1=2-122+12-1=3-2 2. 方法二 3-223+22=3-2223+223-22=3-2 2.10.把a -1a根号外的a 移到根号内等于________. 答案 --a解析 要使 -1a有意义,需a <0. ∴a -1a =-|a | -1a=- |a |2·⎝ ⎛⎭⎪⎫-1a =--a .三、解答题11.求3-63+45-44+35-43的值. 解 ∵3-63=-6,45-44=|5-4|=4-5,35-43=5-4,∴原式=-6+4-5+5-4=-6.12.设f (x )=x 2-4,若0<a ≤1,求f ⎝ ⎛⎭⎪⎫a +1a . 解 f ⎝ ⎛⎭⎪⎫a +1a = ⎝ ⎛⎭⎪⎫a +1a 2-4= a 2+1a 2-2 =⎝ ⎛⎭⎪⎫a -1a 2=⎪⎪⎪⎪⎪⎪a -1a , 因为0<a ≤1,所以a ≤1a, 故f ⎝ ⎛⎭⎪⎫a +1a =1a-a . 13.化简x 2-2xy +y 2+7y -x 7. 解 原式=x -y 2+y -x =|x -y |+y -x . 当x ≥y 时,原式=x -y +y -x =0;当x <y 时,原式=y -x +y -x =2(y -x ).∴原式=⎩⎨⎧0,x ≥y ,2y -x ,x <y .四、探究与拓展 14.化简(1-a )·41a -13=________.答案 -4a -1解析 要使代数式有意义需a -1>0. (1-a ) 41a -13=-|a -1| 41a -13 =-4a -14·1a -13=-4a -1. 15.计算: (1)614- 3338+30.125; (2)3-83+43-24-32-33;(3)3⎝ ⎛⎭⎪⎫34-143·(3+1)+( 2 015- 2 014)0. 解 (1)原式=254-3278+318 =52-32+12=32. (2)原式=-8+|3-2|-(2-3)=-8+2-3-2+3 =-8.(3)原式=⎝ ⎛⎭⎪⎫34-14·(3+1)+1 =12(3-1)·(3+1)+1 =12(3-1)+1=1+1=2.。
指数函数教案指数函数教案(通用3篇)指数函数教案1教材分析(一)本课时在教材中的地位及作用:指数函数的教学共分两个课时完成。
第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。
指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
(二)教学目标:1、知识目标:掌握指数函数的概念,图像和性质。
2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。
3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
(三)教学重点,难点和关键:1、重点:指数函数的定义、性质和图象。
2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。
3、关键:能正确描绘指数函数的图象。
教学基本思路:在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
一、学法指导:1、学情分析:大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。
2、学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。
并逐步学会独立提出问题、解决问题。
总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
指数函数教案2教学目标:1、进一步理解指数函数的性质。
指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。
我将以此为根底对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。
通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。
三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。
2.1.2 指数函数及其性质(1)三维目标一、知识与技能1.掌握指数函数的概念、图象和性质..能借助计算机或计算器画指数函数的图象. 3.能由指数函数图象探索并理解指数函数的性质. 二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段. 教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体、学案. 教学过程(一)新课导学探究一:指数函数的概念问题1:细胞分裂时,第一次由1个分裂成2个(即 12),第2次由2个分裂成4个(即 ),第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得到 个细胞,那么细胞个数y 与次数x 的关系式是问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。
”请你写出截取x 次后,木棰剩余量y 关于x 的关系式是【讨论】:(1)这两个关系式是否构成函数?我们发现:在两个关系式中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式2x y= 和 1()2xy = 都是函数关系式。
(2)这是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?我们发现: 函数2x y= 和 1()2xy =在在形式上是是相同的,解析式的右边都是指数式,且自变量都在指数位置上。
底数是常数,指数是自变量。
结论:函数2x y= 和 1()2x y =都是函数y =a x 的具体形式.函数y =a x是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数. (引入新课,书写课题)(二)概念讲解指数函数的概念:一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 思考:1、指数函数解析式的结构特征: ①xa 前面的系数为:1 ②a 的取值范围:a >0,a ≠1③指数只含x2:为什么规定10≠>a a 且呢?否则会出现什么情况呢?①当0=a ,ⅰ若0>x ,则00=xⅱ若0≤x ,则x0无意义,如:21-=x ,则010102121===-y 无意义。
指数函数教案(精选多篇)第一篇:指数函数教案.doc一.思考题1.来回答其变化的过程和答案2.过ppt来讲解思考题二、问题1.接说出指数函数2.学来思考问题23.出指数函数的概念三.例题1.下题目,叫学生思考几秒钟,请学生来回答。
2.学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.学生来画出4个图像3.图像进行补充4.函数的三要素来分析图像的性质5.图像上的到恒过的点及单调性6.行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。
天下篇》中写到:“一尺之棰,日取其半,万世不竭”。
请写出取x次后,木棰的剩留量与y与x的函数关系式。
2、形成概念:形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈r。
提出问题:为什么要限制a>0且a≠1?这一点让学生分析,互相补充。
分a﹤=0,a=1讨论。
1)a<0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。
2)a=0时,x>0时,ax=0;x≤0时无意义。
3)a=1时,a= 1=1是常量,没有研究的必要。
(二)发现问题、深化概念问题:判断下列函数是否为指数函数。
1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax的前面系数为1; 2)自变量x在指数位置; 3)a>0且a≠1。
2、问题中4)y=(-3)x的判定,引出上面讨论的问题:即指数函数的概念中为什么要规定a>0且a≠1。
2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。
教学过程一、知识讲解考点1 根式的概念(1)定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称为a 的n 次方根.即,若a x n =,则x 称a 的n 次方根(*∈>N n n 且1).①当n 为奇数时,n a 的次方根记作na ;②当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n .(2)性质:①a a n n =)(; ②当n 为奇数时,a a nn =;③当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n n .考点2幂的有关概念(1)规定:①)(*∈⋅⋅⋅=N n a a a a n;②)0(10≠=a a , ③∈=-p aa p p (1Q ) ④m a a an m n m ,0(>=、*∈N n ,且)1>n(2)性质:①r a a a a sr sr,0(>=⋅+、∈s Q ),②r a aa sr sr ,0()(>=⋅、∈s Q ),③∈>>⋅=⋅r b a b a b a rrr ,0,0()( Q )(注)上述性质对r 、∈s R 均适用. 考点3 指数函数定义:函数)1,0(≠>=a a a y x且叫做指数函数. 图象与性质:二、例题精析【例题1】【题干】求下列各式的值:(1)21100; (2)328; (3)239-; (4)4381-.【答案】(1)2110010=)10(=212.(2)3284=2=)2(=2323.(3)239-271=3=)3(=3232--. (4)4381-271=3=)3(=3434--. 【解析】同答案 【例题2】【题干】用分数指数幂的形式表示下列各式(a >0)(1)a a3; (2)322a a ·; (3)3a a ·【答案】(1)117333222a a a aa +=⋅==.(2)322a a ·3832+2322===a aa a .(3)3a a ·323431===a a aa .【解析】同答案【例题3】【题干】计算: 25.02121325.0320625.0÷])32.0(×)02.0(÷)008.0(+)945()833[(----. 【答案】92【解析】 原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+- 922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=. 【例题4】【题干】化简:.)2(2485332332323323134aa a a ab aaab b b a a ⋅⋅⨯-÷++--【答案】a ²【解析】原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.提示:这是一组很基本的指数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.根式运算或根式与指数混合运算时将根式化为指数式运算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,可根据要求写出结果,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【例题5】【题干】比较下列各组数的大小(1)2277.0与 (2)32与3)21( (3)5.02与25.0 (4)3121⎪⎭⎫ ⎝⎛,3221⎪⎭⎫⎝⎛,3251⎪⎭⎫ ⎝⎛ 【答案】323231)51(>)21(>)21(.【解析】(1)由2x 在)+∞,0[上是增函数,∵7<7.0,∴227<7.0.(2)由x2在R 上是增函数,∵3<3-,∴332<2-,即3321<2)(.(3)由x2在R 上是增函数,∵2>5.0-,∴25.02<2-,即225.05.0=21<2)(.(4)由x )21(在R 上是减函数,∵32<31,∴3231)21(>)21(,又32x 在)+∞,0[上是增函数,∵51>21,∴3232)51(>)21(;故323231)51(>)21(>)21(.【例题6】【题干】已知函数11)(+-=x x a a x f ,)0(>a(1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数.【答案】(1)奇函数 (2))1,1(- (3)见解析【解析】(1)∵定义域为x R ∈,且11)(+-=---x x a a x f =xx a a --+-11=)(x f -∴ )(x f 是奇函数;(2)121)(+-+=x x a a x f =121+-x a ∵ 1+xa >1, ∴ 0<12+xa <2 即函数11)(+-=x x a a x f 的值域为)1,1(-;(3)设1x ,2x R ∈,且1x <2x ,则21x x a a<)(1x f -)(2x f =1111+-x x a a -1122+-x x a a =)1)(1(222121+--x x x x a a a a <0, ∴()f x 是R 上的增函数.提示:函数的性质综合问题,需要准确把握定义域、值域、奇偶性、单调性等基本概念,充分运用数形结合、分类讨论、等价转换等数学思想,灵活运用通性通法.三、课堂运用【基础】1. 求值下列各式的值:①238;②1225-;③51()2-;④3416()81- 【答案】①4 ②51 ③32 ④827 【解析】① 2223323338(2)224⨯====.② 1112()21222125(5)555--⨯--====. ③ 5151(5)1()(2)2322----⨯-===.④334()344162227()()()81338-⨯--===.2.化简46394369)()(a a ⋅的结果为( )A .a 16B .a 8C .a 4D .a 2【答案】C .【解析】原式=461319431619)))((()))(((a a ⋅=22a a ⋅=4a ,故选C .lg10==;【巩固】 1.若122-=xa,则xx xx a a a a --++33等于( )A .22-1B .2-22C .22+1D . 2+1【答案】A . 【解析】注意到122+=-xa.∴ x x x x a a a a --++33=x x x x aa a a --++33)()(=xx x x x x a a a a a a ---++-+)1)((22 =x x a a 221-+-=122-. 选A .2.在下列图象中,二次函数c bx ax y ++=2与函数x aby )(=的图象可能是( )【答案】A .【解析】由函数x aby )(=知ab >0,于是抛物线c bx ax y ++=2的对称轴应在y 轴左边,B 、D 两个答案被排除.对于答案C , 显然12-=-a b ,a b =2,函数x aby )(=为增函数,图象与之不符,被淘汰.故选A .提示: 从图象看,c =0,关键由a 与b 大小决定.重要的条件是指数函数x ab y )(=的底a b >0,使得对称轴与x 轴的交点横坐标a b 2-<0.再由0<a b <1,便定出ab 2-的位置. 【拔高】1.设5.1344.029.01)21(,8,4-===y y y ,则( )A .3y >1y >2yB .2y >1y >3yC .1y >2y >3yD .1y >3y >2y【答案】D .【解析】 化为同底,再利用单调性即可.∵ 8.112=y ,32.122=y ,5.132=y ,又 ∵ 函数xy 2=是单调增函数,∴ 1y >3y >2y ,故选D . 2.求函数y =3322++-x x 的定义域、值域和单调区间.【答案】定义域(-∞,+∞) 值域 ]81,0( 单调减区间[1,+∞) 【解析】 (1)定义域显然为(-∞,+∞).(2) ∵ 4)1(423)(22≤--=-+==x x x x f u , ∴ uy 3=是u 的增函数,∴4330≤<u , 即函数的值域为 ]81,0(.(3) 当x ≤1 时, u =)(x f 为增函数, uy 3=是u 的增函数,y 由x ↑→u ↑→y ↑∴ 原函数单调增区间为(-∞,1];当x >1时,u =)(x f 为减函数,uy 3=是u 的增函数,由x ↑→u ↓→y ↓∴ 原函数单调减区间为[1,+∞).提示:这是复合函数的典型例子.是指数函数与二次函数的复合,由于外层指数函数u y 3=是u 的增函数,所以该函数的单调性由内层函数也就是二次函数223)(x x x f u -+==决定.另一类由基本初等函数经过四则运算而形成的函数,其单调性和奇偶性的判定需采用前面所学办法.课程小结(1)指数运算常规方法将小数化为分数,带分数化为假分数,负指数化为正指数,根指数化为分数指数. (2)1,0≠>a a 时,xa y -=与xa y =的图象关于y 轴对称,即x ay )1(=与xa y =的图象关于y 轴对称.(3)指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴). (4)比较大小问题的处理方法①看类型 ②化为同底用单调性 ③其它类型找中间量. (5)复合函数的单调性对于复合函数的单调性,可以根据各层函数单调性去判别.课后作业【基础】1. 求值(1)2325 (2)21)425(- (3)41)0081.0(-【答案】(1)125=5=)5(=25323223;(2) 52=)25(=])25[(=)425(121221---;(3) 310=)103(=)1000081(=)0081.0(14141---; 【解析】同答案2. 指数函数xa x f )1()(2-=是减函数,求实数a 的取值范围. 【答案】)2,1()1,2( --. 【解析】同答案3. 已知指数函数xa x f =)((a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f-的值.【答案】1==)0(0πf 331==)1(ππf ππ1==)3(1--f 【解析】由π=)3(f ,得π=3a ,即31=πa ,3=)(x x f π,∴1==)0(0πf ;331==)1(ππf ;ππ1==)3(1--f .4. 求函数151-=xy 的定义域.【答案】)+∞,0( 【巩固】1. 计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b -÷-; (2)31884()m n -. 【答案】(1)原式=211115326236[2(6)(3)]ab+-+-⨯-÷-=04ab =4a ;(2)原式=318884()()m n -=23m n -. 【解析】同答案 2.计算下列各式(1) (22(a >0). 【答案】(1)原式= 111324(25125)25-÷= 231322(55)5-÷= 2131322255---= 1655-=5;(2)原式=125222362132a aa a a--===⋅.【解析】同答案3.已知44221)31)(21(,31aa aa aa a a aa +++++=+求的值.【答案】5200550205)347()218(=⨯=+⨯+=∴原式【解析】719)1(312=+⇒=+⇒=+aa aa aa , 47149)1(222=+⇒=+∴aa a a ,])())[((1221212122121212323a aa a a a aa aa a a +⋅-+=+=+∴---1863)11)(1(=⨯=+-+=a a aa ,而512)1(124444=++=+=+aa aa aa ,5200550205)347()218(=⨯=+⨯+=∴原式.4.函数xa y =在]1,0[上的最大值与最小值的和为3,则=a .【答案】=a 2; 5.函数y =121+x的值域是_ ____. 【答案】(0,1)【拔高】1.若∈n N *,则=+-+++----12412411n n nn ( )A .2B .n-2C .n-12D .n22-【答案】A2.下列各式中正确的是( )A B C D .<<.<<.<<.<<()()()()()()()()()()()()121512121215151212151212232313132323231323232313【答案】D .【解析】由x y )21(=是减函数,得32)21(<31)21(,答案B 、C 被淘汰.又 32)51(<32)21(,故选D .3.函数()xa y 1-=与x a y ⎪⎭⎫ ⎝⎛=1具有不同的单调性,则()311-=a m 与31⎪⎭⎫⎝⎛=a n 的大小关系是( )A . m <nB . m =nC . m >nD .不能确定 【答案】 D .【解析】 ⇒<<⇒⎩⎨⎧<<<⇒⎪⎩⎪⎨⎧><-101021111a a a a a m <n ;或⇒>⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<<>-21211011a a a a a m >n .故选D . 4.已知函数2)(x x e e x f --=,2)(x x e e x g -+=(1)判断函数)(x f 、)(x g 的奇偶性; (2) 证明()f x 是R 上的增函数;(3) 证明:①)2(x f =2)(x f )(x g ; ②1)]([)]([22=-x f x g . 【答案】(1)(略))(x f 为奇函数,)(x g 为偶函数;(2) xe 是R 上的增函数,xe-是R 上的减函数,∴()f x 是R 上的增函数;(3) 证明:①)2(x f =222xx e e --,2)(x f )(x g =222x x x x e e e e --+⋅-=222xx e e --, ∴ )2(x f =2)(x f )(x g ;②22)]([)]([x f x g -=22]2[]2[x x x x e e e e ----+ =42422222-+-++--x x x x e e e e =1.【解析】同答案。