2013届新课标高中数学(文)第一轮总复习第3章第22讲 合情推理与演绎推理
- 格式:ppt
- 大小:580.00 KB
- 文档页数:30
人教版高中选修1-22.1合情推理与演绎推理课程设计一、课程背景根据《普通高中课程标准》,选修1-22.1是数学方面的必修课程之一,主要目的为使学生了解推理和演绎推理的原理,为日后的研究和应用打下基础。
本课程涉及的主题包括命题与联结词、命题公式、命题等价、命题推理、谓词与量词、命题函数、基本证明方法等。
二、教学目标1.理解推理和演绎推理的概念、原理和方法。
2.掌握命题联结词的概念和使用方法,能够通过命题公式进行等价变换和推理。
3.熟悉空间推理和谓词推理的基本方法,掌握常用的证明方法。
4.培养学生的逻辑思维和证明能力,为日后的研究和应用奠定基础。
三、教学内容1. 命题与联结词(1)命题的基本概念•什么是命题?•命题的分类和符号表示•命题联结词的定义及分类•命题联结词间的优先级(3)命题公式•什么是命题公式?•命题公式的转化与等价变换(4)命题等价•命题等价的定义和性质•命题等价式的构造方法(5)命题推理•什么是命题推理?•命题推理的三大定律及其运用2. 谓词与量词(1)谓词的概念和分类•什么是谓词?•谓词的分类及表示方法(2)量词的概念和分类•什么是量词?•量词的分类及表示方法•什么是谓词推理?•谓词推理的基本方法3. 命题函数(1)命题函数的定义和性质•什么是命题函数?•命题函数的定义和性质(2)命题函数的运算•命题函数间的基本运算及其性质•命题函数的运算法则和等价变换4. 基本证明方法(1)直接证明法•直接证明法的定义和基本用法•相关定理和运用(2)间接证明法•间接证明法的定义和基本用法•相关定理和运用(3)反证法•反证法的定义和基本用法•相关定理和运用四、教学方法本课程采用讲授、探究、问题解决等多种教学方法,重点培养学生的逻辑思维和解决问题的能力。
在教学过程中,将鼓励学生进行思考和讨论,引导学生自主学习和探究,培养学生的学习兴趣和学习能力。
五、教学评价通过教学评价,可以对学生的学习情况和教学效果进行综合评估,为教师调整教学方法和进一步提升教学质量提供重要依据。
演绎推理1.演绎推理【知识点的认识】1.演绎推理:根据一般性的真命题(或逻辑规则)导出特殊命题为真的推理,叫做演绎推理.规则符号表示为:若p⇒q,p 为真,则q 为真.*演绎推理是一种收敛性的思维方法,只要前提为真,推理形式正确,结论必正确,前提和结论之间存在必然关系,因此演绎推理是数学中严格证明的工具.2.三段论推理:是演绎推理的一般模式.可表示为:若b⇒c,而a⇒b,则a⇒c三段论包括三要素:(1)大前提:已知的一般原理(2)小前提:所研究的特殊情况(3)结论:根据一般原理,对特殊情况做出的判断.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理;(2)特点:演绎推理是由一般到特殊的推理;(3)演绎推理是一种收敛性的思维方法,只要前提为真,推理形式正确,结论必正确,前提和结论之间存在必然关系,因此演绎推理是数学中严格证明的工具.(4)模式:三段论.“三段论”是演绎推理的一般模式,包括:“三段论”的结①大前提﹣﹣已知的一般原理;构②小前提﹣﹣所研究的特殊情况;③结论﹣﹣根据一般原理,对特殊情况做出的判断.“三段论”的表①大前提﹣﹣M 是P.示②小前提﹣﹣S 是M.③结论﹣﹣S 是P.【例题解析】例:关于演绎推理的说法正确的是()A:演绎推理是由一般到一般的推理B:只要大前提正确,由演绎推理得到的结果必正确C:演绎推理在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确D:演绎推理不能用于命题的证明解答:解:演绎推理是由一般到特殊的推理,是一种必然性的推理,故A 不正确,演绎推理得到的结论不一定是正确的,还要取决于小前提是否真实,故B 不正确,演绎推理一般模式是“三段论”形式,即大前提小前提和结论,在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确,故C 正确,演绎推理不能用于命题的证明,故D 不正确,总上可知有C 是正确的,故选:C.本题考查演绎推理的意义,演绎推理是由一般性的结论推出特殊性命题的一种推理模式,演绎推理的前提与结论之间有一种蕴含关系.。
高考高三数学一轮热点、难点一网打尽第56讲由已知到未知的推理技巧与方法考纲要求:1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.基础知识回顾:一、合情推理1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)特点:由部分到整体、由个别到一般的推理.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)特点:类比推理是由特殊到特殊的推理.3.合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理二、演绎推理1.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.2.“三段论”是演绎推理的一般模式(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.应用举例:类型一、归纳推理1、形的推理例1.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是________.2、式的推理例2.已知f(x)=x1+x,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2 014(x)的表达式为__________________.例3.观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74……照此规律,第五个不等式为__________.3、数的推理例4.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.点评:运用归纳推理时的一般步骤:首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广到一个明确表述的一般命题(猜想);最后,对所得出的一般性命题进行检验.在数学上,检验的标准是能否进行严格的证明.类型二、类比推理例5.已知点A(x 1,ax 1),B(x 2,ax 2)是函数y =a x(a>1)的图象上任意不同两点,依据图象(图略)可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A(x 1,sin x 1),B(x 2,sin x 2)是函数y =sin x(x ∈(0,π))的图象上任意不同两点,则类似地有________成立.例6.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.点评:(1)类比推理是由特殊到特殊的推理,其一般步骤为:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥的各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.类型三、演绎推理例7.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .点评:演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成方法、规律归纳:类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.比如 :①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥的各面的面积是类比对象; ③三角形边上的高与三棱锥面上的高是类比对象; ④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.实战演练:1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确B .大前提不正确C .小前提不正确D .全不正确2.在等差数列{a n }中,若a n >0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( ) A .b 4+b 8>b 5+b 7 B .b 4+b 8<b 5+b 7 C .b 4+b 7>b 5+b 8D .b 5·b 8<b 4·b 73.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( ) A .22项 B .23项 C .24项D .25项4.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( ) A .(7,5) B .(5,7) C .(2,10)D .(10,1)5.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则第n 个式子是( ) A .n +(n +1)+(n +2)+…+(2n -1)=n 2 B .n +(n +1)+(n +2)+…+(2n -1)=(2n -1)2 C .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)26.对于命题:若O 是线段AB 上一点,则有|OB →|·OA →+|OA →|·OB→=0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有__________. 7.将全体正整数排成一个三角形数阵 12 34 5 67 8 9 1011 12 13 14 15…根据以上排列规律,数阵中第n(n≥3)行的从左至右的第3个数是________.8.把正整数排列成如下图甲的三角形数阵,然后擦去第偶数行的奇数和第奇数行中的偶数,得到如图乙的三a,若a n=2015,则n _________.角数阵,再把图乙中的数按从小到大的顺序排成一列,得到数列{}n9.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°c os 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+co s248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.10.观察下列各式:C01=40;C03+C13=41;C05+C15+C25=42;C07+C17+C27+C37=43;…照此规律,当n∈N*时,=________.C02n-1+C12n-1+C22n-1+…+C n-12n-1。
第二章 推理与证明第一课时2.1.1 合情推理(一)教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.教学重点:能利用归纳进行简单的推理.教学难点:用归纳进行推理,作出猜想.教学过程:一、新课引入:1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:对所有的自然数n ,任何形如221nn F =+的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.二、讲授新课:1. 教学概念:① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.② 归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii )观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论? ③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定)2. 教学例题:① 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n n na a n a +==+,试归纳出通项公式. (分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构造新数列) ② 思考:证得某命题在n =n 0时成立;又假设在n =k 时命题成立,再证明n =k +1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系)③ 练习:已知(1)0,()(1)1,f af n bf n ==-= 2,0,0n a b ≥>>,推测()f n 的表达式.3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.三、巩固练习:1. 练习:教材P381、2题.2. 作业:教材P44习题A组1、2、3题. 第二课时。