ANSYS Workbench LS-DYNA流固耦合方法应用
- 格式:docx
- 大小:239.52 KB
- 文档页数:5
ls-dyna流固耦合命令LSDYNA流固耦合命令是指在使用LS-DYNA软件进行流体和固体物理现象的数值模拟中,通过特定的命令实现流体与固体之间的耦合。
在本文中,我们将一步一步回答关于LSDYNA流固耦合命令的问题,深入了解其原理和应用。
第一步:理解LSDYNA流固耦合命令的背景和概念流固耦合是指流体和固体之间相互作用的模拟方法,它模拟了流体对固体施加的压力和阻力以及固体对流体的运动造成的影响。
LSDYNA是一种先进的有限元分析软件,广泛应用于汽车碰撞、爆炸模拟、航空航天和材料科学等领域。
LSDYNA中的流固耦合命令允许工程师研究复杂问题,例如水对车辆的冲击造成的变形、海浪对海上平台的影响等。
第二步:介绍LSDYNA流固耦合命令的基本语法和用法在LSDYNA中,流固耦合问题既有流体(define_fluid)又有固体(define_solid),以及它们之间的边界条件(define_interface)。
流固耦合的基本语法如下:define_fluidflow、density、viscosity、elastic、cooling、surfactant等参数设置以及与流体网格相关的命令。
define_solidsolid、density、elastic等参数设置以及与固体网格相关的命令。
define_interface定义固液之间的接触模型、表面张力等参数。
以上是LSDYNA流固耦合命令的基本语法和用法,根据具体的应用需求,使用者可以根据自己的实际情况进行调整和设置。
第三步:详细阐述LSDYNA流固耦合命令的原理和模拟过程LSDYNA流固耦合命令的原理是根据流体动力学和固体力学的基本方程,将两种物理现象进行耦合计算。
具体的模拟过程包括以下几个主要步骤:1. 网格生成:首先,需要生成流体和固体的网格模型。
流体网格需要满足Navier-Stokes方程的离散形式,而固体网格则需要满足经典有限元的要求。
ANSYS流固耦合分析成功的条件1.首先在建模和条件设置方面要按照这样的设置顺序:(1)选取流体单元,(打开keyopt(4)选项),建立流体模型,注意此处挖去固体所占的空间,然后分区划分流体场网格(好像在ls_dyna里面不要挖去固体所占空间),注意靠近挖去空间的部分网格应该细小些,还有若要采用remesh在计算中重划网格,一定要使用三角形单元(所有流体场)(2)流体场模型建立完成后,首先要在流固耦合的边界上施加流体耦合标签FSI,然后在在流体场区域施加必要的边界条件,诸如位移约束,速度、压力等等。
然后设置求解流体场的时间步长、求解时间、流体属性,打开ALE选项(瞬态分析)网格重画属性等等(3)这样的工作完成后,进入/prep7,加入固体单元,设置固体材料属性,在挖去的部分建立固体模型,划分固体网格,在固体网格与流体场接触的固体边界上施加流体耦合标签FSI,注意要和前面的number相同。
(4)为固体实际必要的约束条件(看是固体推动流体还是流体推动固体)(5)设置固体求解的时间步长和求解结束时间(6)设置流固耦合属性,(看是固体推动流体还是流体推动固体),求解时间步长和求解时间,收敛准则,迭代次数等等。
(7)保存求解。
-----------------------------总之,在流固耦合分析中,你最好要按着先流体后固体再耦合的属性设置顺序,流固耦合标签FSI要分别加在流固耦合边界的流体边界上和固体边界上,加在的顺序要按照上面所述。
在实际的建模中,流固耦合的边界上由于建模的原因会出现节点的重合现象,注意一定不要使用捏合节点的命令来将重合的节点变成一个,这个很重要。
固体单元一定要设置求解的时间步长和求解中止时间,时间步长一般和求解流体场和流固耦合的时间步长相等。
ALE+remesh选项是解决瞬态流固耦合问题的一个很重要的方法,流固耦合一般要伴随着流体的形状改变和位置的移动,因此首先启动ALE选项使流体与固体的耦合边界保持一致并规则化流场内部由于挤压而畸变的网格,其次若网格畸变的过于严重,就要启动remesh选项重新划分网格单元。
dyna流固耦合方案
Dyna流固耦合方案是一种数值模拟方法,用于同时考虑流体和固体之间的相互作用。
这种方法可以模拟复杂的流体动力学和结构响应,适用于各种工程领域,如航空航天、船舶、汽车、能源等。
在Dyna流固耦合方案中,流体和固体被视为相互渗透的连续介质,通过求解流体动力学和结构动力学方程来模拟流体的运动和结构的变化。
这些方程通常包括流体动力学方程、结构动力学方程、热传导方程等。
为了实现流固耦合,需要将流体和固体之间的相互作用力传递到各自的边界上,并使用适当的算法将它们耦合在一起。
这通常需要开发特定的程序或软件来实现。
在实现Dyna流固耦合方案时,需要考虑以下关键因素:
1. 流体和固体之间的相互作用力,包括压力、剪切力和温度等。
2. 流体的流动特性和结构的变化,需要考虑流体的非牛顿行为和湍流模型以及结构的弹性和塑性行为等。
3. 流体和固体之间的界面条件,包括界面上的压力、剪切力和温度等。
4. 数值方法的稳定性和精度,需要选择合适的数值方法来求解流固耦合方程,并保证结果的准确性和可靠性。
总之,Dyna流固耦合方案是一种非常有用的数值模拟方法,可以用于模拟
复杂的流体动力学和结构响应,为工程设计提供重要的参考依据。
ANSYSWorkbench流-固耦合计算方法解析流-固耦合主要研究流体流动导致结构变形,而结构变形可能会影响流体流动。
基于ANSYS Workbench可以实现单向和双向流固耦合,而且可以处理结构发生大变形的双向流固耦合计算,流固耦合计算的典型应用包括,机翼颤振,管道振动,导线覆冰振动,含流体容器晃动,结构跌落入水冲击,柔性结构扰流振动等。
目前,ANSYS版本已经更新到了2023R1,各类流固耦合计算功能,更加完善,操作使用更加方便,对于流固耦合根据耦合方式可以分为:(1)单向耦合。
A场对B场有影响,而B场对A场没有影响,常见的问题就是热应力计算,一般的热应力计算中,只考虑温度对结构的影响,而忽律结构变形对温度场的影响;(2)双向耦合。
A场对B场有影响,而B场对A场也有影响,例如气动颤振问题,流场对结构的变形有影响,反过来结构变形也会影响流场。
ANSYS目前主要提供了四种流固耦合仿真策略:(1)Fluent+结构模块(稳态或瞬态)该方法可以完成各类稳态或瞬态的单向流固耦合计算,计算效率高,数据传递稳定,例如,各类流体载荷导致的结构变形和应力,结构在流体作用下的小变形振动等。
(2)Fluent+结构模块(稳态或瞬态)该方法在Fluent中完成流场求解,获得流场的压力;在结构模块(稳态或瞬态)完成固体场求解,获得变形,然后通过系统耦合器完成数据的交互传递,该方法,即可以完成单向流固耦合计算,也可以完成双向流固耦合计算,但是在同一时刻,只有一个场在求解,双向流固耦合的求解时间较长。
(3)基于LS-DYNA软件完成流固耦合计算LS-DYNA支持ICFD求解器与其自身的固体力学求解器之间的耦合。
ICFD求解器适用于五大行业多物理场应用:•汽车行业,LS-DYNA传统应用领域,ICFD可针对热-结构耦合的外部空气动力学分析提供解决方案;•制造行业,ICFD可应用于冷却相关分析,例如金属冲压,电池组的冷却等;•能源行业,尤其是风能行业。
ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。
由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。
.贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。
下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA分析此类型跌落问题的方法和步骤:1.建立几何模型调用ANSYS Workbench中的LS-DYNA模块,如图1所示。
然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。
图1 调用Workbench LS-DYNA 图2 DesignModeler中建立几何模型2.生成K文件双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。
设置完成后点击“solve”求解,生成K文件,如图4所示。
图3 调用Workbench LS-DYNA 图4 DesignModeler中建立几何模型3.编辑K文件通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。
K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。
3.1 重要关键字释义(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系*ALE_REFERENCE_SYSTEM_NODE*ALE_REFERENCE_SYSTEM_GROUP(2)定义空材料和状态方程的关键字*MAT_NULL *EOS(3)初始化空白域的关键字*INITIAL_VOID_PART(4)结构和流体之间耦合的关键字*CONSTRAINED_LAGRANGE_IN_SOLID(5)单元算法定义(单点积分的单物质加空白材料)的关键字*SECTION_SOLID_ALE ELF0RM=12(6)在重力作用下产生下落的关键字*LOAD_BODY……3.2关键字编辑方法关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。
ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。
由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。
.贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。
下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA分析此类型跌落问题的方法和步骤:1.建立几何模型调用ANSYS Workbench中的LS-DYNA模块,如图1所示。
然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。
图1 调用Workbench LS-DYNA 图2 DesignModeler中建立几何模型2.生成K文件双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。
设置完成后点击“solve”求解,生成K文件,如图4所示。
图3 调用Workbench LS-DYNA 图4 DesignModeler中建立几何模型3.编辑K文件通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。
K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。
3.1 重要关键字释义(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系*ALE_REFERENCE_SYSTEM_NODE*ALE_REFERENCE_SYSTEM_GROUP(2)定义空材料和状态方程的关键字*MAT_NULL *EOS(3)初始化空白域的关键字*INITIAL_VOID_PART(4)结构和流体之间耦合的关键字*CONSTRAINED_LAGRANGE_IN_SOLID(5)单元算法定义(单点积分的单物质加空白材料)的关键字*SECTION_SOLID_ALE ELF0RM=12(6)在重力作用下产生下落的关键字*LOAD_BODY……3.2关键字编辑方法关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。
基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟康德;严平【摘要】基于大型有限元分析软件ANSYS/LS-DYNA,建立三维长方体高速破片在水介质中运动的有限元动力分析模型,采用ALE方法对破片在水下运动过程进行流固耦合数值模拟,获得了破片的速度衰减曲线.研究了速度衰减规律、破片墩粗变形规律以及冲击波传播过程.得到高速破片的侵彻能力随速度的变化规律:当初速度大于910~1115 m/s时破片头部将产生显著变形,并大大影响其侵彻阻力;当破片速度较小时,水中侵彻距离随破片初速的增大而增大,当破片速度达到某临界值以后,侵彻距离将随初始速度的增大而逐渐减小.【期刊名称】《爆炸与冲击》【年(卷),期】2014(034)005【总页数】5页(P534-538)【关键词】流体力学;运动特性;ALE方法;高速破片;侵彻能力;水【作者】康德;严平【作者单位】海军工程大学兵器工程系,湖北武汉430033;海军工程大学兵器工程系,湖北武汉430033【正文语种】中文【中图分类】O351.2水下爆炸对目标的破坏除了冲击波作用,高速破片的作用也不可忽视。
爆炸产生的破片初始速度可以达到1 000m/s以上,具有很强的侵彻破坏能力[1]。
破片对典型水下目标结构的毁伤效果主要取决于破片在水中的运动特性和侵彻能力。
研究高速破片在水中的运动特性对于典型水下目标的抗破片侵彻能力设计具有重要意义。
水下物体的高速运动是一个复杂的多相流运动,涉及到大变形、高应变率。
由于理论分析的复杂性和实验研究的高成本,数值模拟以其经济性与高效性日益成为研究的重要手段。
本文中利用ANSYS/LS-DYNA有限元程序对速度在1 000~2 500m/s的立方体破片在水介质中的运动进行了数值模拟,得到了破片的速度衰减曲线,冲击波传播规律。
分析了破片墩粗变形规律及其对侵彻阻力的影响,得到了高速破片的侵彻能力随速度的变化规律。
其计算结果可为水中目标易损性分析提供有益的参考和依据。
dyna流固耦合体积分数法
动力学流固耦合体积分数法(Dyna流固耦合体积分数法)是一
种用于模拟流体与结构相互作用的数值计算方法。
该方法结合了流
体动力学和结构动力学的数值模拟技术,能够模拟在流体作用下结
构的变形以及结构对流体的影响。
在Dyna流固耦合体积分数法中,流体和结构的运动方程通过有
限元法和有限体积法进行离散化处理。
对于流体,Navier-Stokes
方程通常被用来描述流体的运动,而对于结构,通常采用弹性力学
方程描述结构的变形。
通过将流体和结构的运动方程进行耦合,可
以模拟出流固耦合系统的动态响应。
在实际工程中,Dyna流固耦合体积分数法被广泛应用于飞行器、汽车、船舶等工程领域,用于模拟飞行器在空气中飞行时的结构动
力学响应,汽车在空气中行驶时的空气动力学效应,船舶在水中航
行时的流体-结构相互作用等问题。
该方法的优点包括能够考虑流固耦合系统的动态响应、能够模
拟复杂的流固耦合现象、能够提供结构变形和流体压力的详细分布等。
然而,该方法也面临着计算量大、模拟精度受到网格划分和边
界条件等因素的影响等挑战。
总的来说,Dyna流固耦合体积分数法是一种重要的数值模拟方法,能够有效地模拟流体与结构的相互作用,为工程领域的流固耦合问题提供了重要的分析手段。
ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。
由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。
.
贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。
下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA 分析此类型跌落问题的方法和步骤:
1.建立几何模型
调用ANSYS Workbench中的LS-DYNA模块,如图1所示。
然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。
图1 调用Workbench LS-DYNA图2 DesignModeler中建立几何模型
2.生成K文件
双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。
设置完成后点击“solve”求解,生成K文件,如图4所示。
图3调用Workbench LS-DYNA图4DesignModeler中建立几何模型
3.编辑K文件
通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。
K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。
3.1重要关键字释义
(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系
*ALE_REFERENCE_SYSTEM_NODE
*ALE_REFERENCE_SYSTEM_GROUP
(2)定义空材料和状态方程的关键字
*MAT_NULL*EOS
(3)初始化空白域的关键字
*INITIAL_VOID_PART
(4)结构和流体之间耦合的关键字
*CONSTRAINED_LAGRANGE_IN_SOLID
(5)单元算法定义(单点积分的单物质加空白材料)的关键字
*SECTION_SOLID_ALE ELF0RM=12
(6)在重力作用下产生下落的关键字
*LOAD_BODY
……
3.2关键字编辑方法
关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。
当然也可以使用TEXT文本编辑器来编辑K文件,不过TEXT在此方面的专业性不及UltraEdit,尤其对于较大的K文件,使用TEXT打开将会很慢。
图5 ls-prepost中编辑关键字图6UltraEdit中编辑关键字
3.3关键字检查
关键字编辑完成后,很难确保所有关键字编写无误,若直接递交LS-DYNA求解器求解,计算一段时间后可能会报错。
这样往往会浪费我们的时间,可以在求解之前先对关键字进行检查,有针对性的将错误提前排除掉,具体检查方法如图7所示。
图中提示关键字LOAD存在错误,对LOAD进行重点查看,错误排查后如图8所示,然后再提交至LS-DYNA求解器计
算。
图7关键字错误检查图8 关键错误排查
4.后处理查看结果
在ls-prepost中查看计算结果,可将计算得到的d3plot文件直接拖入至ls-prepost,勾选“Assembly and Select Part”中的“Fluid(Ale)”,便可查看装水水箱整个跌落过程中液体水的流动情况,如图9所示。
图9 后处理结果查看。