2020版高考物理一轮复习第三章专题三动力学中的“传送带、板块”模型教案新人教版
- 格式:docx
- 大小:443.97 KB
- 文档页数:8
微专题四动力学中的“木板-滑块”和“传送带”模型动力学中“木板-滑块”模型1.模型分析模型概述(1)滑块、滑板是上下叠放的,分别在各自所受力的作用下运动,且在相互的摩擦力作用下相对滑动.(2)滑块相对滑板从一端运动到另一端,若两者同向运动,位移之差等于板长;若反向运动,位移之和等于板长.(3)一般两者速度相等为“临界点”,要判定临界速度之后两者的运动形式。
常见情形滑板获得一初速度v0,则板块同向运动,两者加速度不同,x板>x块,Δx=x板-x块,最后分离或相对静止滑块获得一初速度v0,则板块同向运动,两者加速度不同,x板<x块,Δx=x块-x板,最后分离或相对静止开始时板块运动方向相反,两者加速度不同,最后分离滑板或滑块受到拉力作用,要判断两者是否有相对运或相对静止,Δx=x块+x板动,以及滑板与地面是否有相对运动2。
常见临界判断(1)滑块恰好不滑离木板的条件:滑块运动到木板的一端时,滑块与木板的速度相等.(2)木板最短的条件:当滑块与木板的速度相等时滑块滑到木板的一端.(3)滑块与木板恰好不发生相对滑动的条件:滑块与木板间的摩擦力为最大静摩擦力,且二者加速度相同。
[典例1]一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4。
5 m,如图(a)所示。
t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1 s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。
已知碰撞后1 s时间内小物块的v。
t图线如图(b)所示。
木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2。
求:图(a)图(b)(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.[大题拆分]第一步:分析研究对象模型.设小物块和木板的质量分别为m和M。
传送带模型高中物理教案传送带模型高中物理教案1一、教学目标1.在学习机械能守恒定律的根底上,研究有重力、弹簧弹力以外其它力做功的情况,学习处理这类问题的方法。
2.对功和能及其关系的理解和认识是本章教学的重点内容,本节教学是本章教学内容的总结。
通过本节教学使学生更加深入理解功和能的关系,明确物体机械能变化的规律,并能应用它处理有关问题。
3.通过本节教学,使学生能更加全面、深入认识功和能的关系,为学生今后能够运用功和能的观点分析热学、电学知识,为学生更好理解自然界中另一重要规律——能的转化和守恒定律打下根底。
二、重点、难点分析1.重点是使学生认识和理解物体机械能变化的规律,掌握应用这一规律解决问题的方法。
在此根底上,深入理解和认识功和能的关系。
2.本节教学实质是渗透功能原理的观点,在教学中不必出现功能原理的名称。
功能原理内容与动能定理的区别和联系是本节教学的难点,要解决这一难点问题,必须使学生对“功是能量转化的量度”的认识,从笼统、浅薄地了解深入到十清楚确认识“某种形式能的变化,用什么力做功去量度”。
3.对功、能概念及其关系的认识和理解,不仅是本节、本章教学的重点和难点,也是中学物理教学的重点和难点之一。
通过本节教学应使学生认识到,在今后的学习中还将不断对上述问题作进一步的分析和认识。
三、教具投影仪、投影片等。
四、主要教学过程(一)引入新课结合复习机械能守恒定律引入新课。
提出问题:1.机械能守恒定律的内容及物体机械能守恒的条件各是什么?评价学生答复后,教师进一步提问引导学生思考。
2.假如有重力、弹簧弹力以外其它力对物体做功,物体的机械能怎样变化?物体机械能的变化和哪些力做功有关呢?物体机械能变化的规律是什么呢?教师提出问题之后引起学生的注意,并不要求学生答复。
在此根底上教师明确指出:机械能守恒是有条件的。
大量现象讲明,许多物体的机械能是不守恒的。
例如从车站开出的车辆、起飞或降落的飞机、打入木块的子弹等等。
3.系统内一对滑动摩擦力做的功等于−f滑∙x相,产生热量Q=f滑∙x相4.电动机做的功等于F牵∙x传,将电能转化为机械能和内能三、板块模型中的功能关系区分三种位移:板的位移,物块的位移,相对位移内容讲解例 1.如图所示,传送带以v0的速度匀速运动。
将质量为m的物体无初速度放在传送带上的左端,物体将被传送带送到右端,已知物体到达右端之前已和传送带相对静止,则下列说法正确的是()A.传送带对物体做功为12mv02B. 传送带克服摩擦做功12mv02C. 在传送物体过程中产生的热量为12mv02D. 电动机因传送物体而多消耗的能量为12mv02【答案】AC【分析】电动机多消耗的电能转化为内能和物体的动能,根据功能关系分析电动机多做的功;根据运动学公式求出物体与传送带相对运动时,传送带位移与物体位移之间的关系,得出传送带克服摩擦力做的功。
解决本题的关键在于分析清楚物体的运动过程以及相对位移,灵活运动功能关系。
【解答】A.物体受重力支持力和摩擦力,根据动能定理,传送带对物体做的功等于动能的增加量,即12mv02,故A正确;B.根据动能定理得:摩擦力对物体做功大小为12mv02,在物体匀加速运动的过程中,由于传送带的位移大于物体的位移,则传送带克服摩擦力做的功大于摩擦力对物体做功,所以传送带克服摩擦力做的功大于12mv02,故B错误;C.在传送物体过程产生的热量等于滑动摩擦力与相对路程的乘积,即Q=fΔx;设加速时间为t,物体的位移为x1=12v0t,传送带的位移为x2=v0t;根据动能定理,有f·x1=12mv02,故热量Q=fΔx=12mv02,故C正确;D.电动机由于传送物体多消耗的能量等于物体动能增加量和摩擦产生的内能的和,故大于12mv02,故D错误。
故选AC。
例2.如图所示,传送带与水平面之间的夹角为θ=30°,其上A、B两点间的距离为L=5m,传送带在电动机的带动下以V=1m/s的速度匀速运动,现将一质量为m=10kg的小物体(可视为质点)轻放在传送带的A点,已知小物体与传送带之间的动摩擦因数μ为√32,在传送带将小物体从A点传送到B点的过程中,求:(1)传送带对小物体做的功;(2)电动机做的功.【分析】本题为传送带问题,要注意分析物体在传送带上的受力情况及运动情况,综合利用牛顿第二定律及动能定理、功能关系等方法求解。
专题三 动力学中的“传送带、板块”模型突破1 传送带模型考向1 水平传送带模型(2019·海口模拟)(多选)如图所示,水平传送带A 、B 两端相距s =3.5 m ,工件与传送带间的动摩擦因数μ=0.1.工件滑上A 端瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B ,则(g 取10 m/s 2)( )A .若传送带不动,则vB =3 m/sB .若传送带以速度v =4 m/s 逆时针匀速转动,v B =3 m/sC .若传送带以速度v =2 m/s 顺时针匀速转动,v B =3 m/sD .若传送带以速度v =2 m/s 顺时针匀速转动,v B =2 m/s[审题指导] (1)若传送带顺时针转动且v 物>v 带,则传送带对物块的摩擦力为滑动摩擦力且为阻力.(2)若传送带逆时针转动,传送带对物块的摩擦力为滑动摩擦力且为阻力.【解析】 若传送带不动,由匀变速运动规律可知v 2B -v 2A =-2as ,a =μg ,代入数据解得vB =3 m/s ,当满足选项B 、C 、D 中的条件时,工件所受滑动摩擦力跟传送带不动时一样,还是向左,加速度还是μg ,所以工件到达B 端时的瞬时速度仍为3 m/s ,故选项A 、B 、C 正确,D 错误.【答案】 ABC分析传送带问题的关键是判断摩擦力的方向.要注意抓住两个关键时刻:一是初始时刻,根据物块相对传送带的运动方向确定摩擦力的方向,根据受力分析确定物块的运动;二是当物块的速度与传送带速度相等时,判断物块能否与传送带保持相对静止.另外注意考虑传送带长度——判定达到共同速度(临界点)之前物块是否脱离传送带.1.如图所示,足够长的水平传送带静止时在左侧某处画下标记点P ,将工件放在P 点.启动传送带,使其向右做匀加速运动,工件相对传送带发生滑动.经过t 1=2s 立即控制传送带,使其做匀减速运动,再经过t 2=3s 传送带停止运行,测得标记点P 通过的距离x 0=15 m.(1)求传送带的最大速度;(2)已知工件与传送带间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2,最大静摩擦力等于滑动摩擦力,求整个过程中工件运动的总距离.解析:(1)设传送带的最大速度为v m .根据匀变速直线运动规律,有x 0=x 1+x 2=v m2(t 1+t 2) 解得v m =6 m/s(2)以工件为研究对象,由牛顿第二定律,有μmg =ma 2 解得a 2=μg =2 m/s 2设经时间t 工件与传送带速度相等,有v =a 2tv =v m +a 1(t -t 1)传送带减速运动中的加速度a 1=0-v m t 2=-2 m/s 2解得t =2.5 s ,v =5 m/st =2.5 s 内工件的位移x 1=v2·t =6.25 m工件与传送带速度相等后,假设二者相对静止,则工件受到的合外力大小F 合=m ·|a 1|=m ×2 m/s 2工件与传送带之间的最大静摩擦力f m =μmg =m ×2 m/s 2因为F 合=f m ,所以二者一起减速运动到静止 减速过程工件的位移x 2=v2(t 1+t 2-t )=6.25 m故工件的总位移x =x 1+x 2=12.5 m 答案:(1)6 m/s (2)12.5 m 考向2 倾斜传送带模型上某位置轻轻放置一小木块,小木块与传送带间动摩擦因数为μ,小木块速度随时间变化关系如图乙所示,v 0、t 0已知,则( )A .传送带一定逆时针转动B .μ=tan θ+v 0gt 0cos θC .传送带的速度大于v 0D .t 0后木块的加速度为2g sin θ-v 0t 0【解析】 若传送带顺时针转动,当木块下滑时(mg sin θ>μmg cos θ),将一直匀加速到底端;当滑块上滑时(mg sin θ<μmg cos θ),先匀加速运动,在速度相等后将匀速运动,两种情况均不符合运动图象,故传送带是逆时针转动,选项A 正确.木块在0~t 0内,滑动摩擦力向下,木块匀加速下滑,a 1=g sin θ+μg cos θ,由图可知a 1=v 0t 0,则μ=v 0gt 0cos θ-tan θ,选项B 错误.当木块的速度等于传送带的速度时,木块所受的摩擦力变成斜向上,故传送带的速度等于v 0,选项C 错误.等速后的加速度a 2=g sin θ-μg cos θ,代入μ值得a 2=2g sin θ-v 0t 0,选项D 正确.【答案】 AD本题中在工件与传送带达到共同速度的瞬间摩擦力发生了“突变”,由向下的滑动摩擦力变为向上的滑动摩擦力.对于倾斜传送带,滑动摩擦力方向能否发生“突变”,还与动摩擦因数的大小有关.只有μ<tan θ时,才能突变为向上的滑动摩擦力;若μ>tan θ,则突变为静摩擦力.2.有一条沿顺时针方向匀速转动的传送带,恒定速度v =4 m/s ,传送带与水平面的夹角θ=37°,现将质量m =1 kg 的小物块轻放在其底端(小物块可视作质点),与此同时,给小物块沿传送带方向向上的恒力F =8 N ,经过一段时间,小物块上到了离地面高为h =2.4 m 的平台上.已知物块与传送带之间的动摩擦因数μ=0.5(g 取10 m/s 2,sin37°=0.6,cos37°=0.8).问:(1)物块从传送带底端运动到平台上所用的时间?(2)若在物块与传送带达到相同速度时,立即撤去恒力F ,计算小物块还需经过多少时间离开传送带以及离开时的速度?解析:(1)对物块受力分析可知,物块先是在恒力作用下沿传送带方向向上做初速度为零的匀加速运动,直至速度达到传送带的速度,由牛顿第二定律ma 1=F +μmg cos37°-mg sin37°,计算得a 1=6 m/s 2 加速时间t 1=v a 1=23 s加速距离x 1=v 22a 1=43m物块达到与传送带同速后,对物块受力分析发现,物块受的摩擦力的方向改变,因为F =8 N ,而下滑力和最大摩擦力之和为10 N .故不能相对斜面向上加速.故得a 2=0 匀速运动时间t 2=x -x 1v =23s 到平台所用的时间t =t 1+t 2=43s≈1.33 s(2)若达到同速后撤去力F ,因为mg sin37°>μmg cos37°,故减速上行,由牛顿第二定律可得ma 3=mg sin37°-μmg cos37°解得a 3=2 m/s 2物块还需t ′离开传送带,离开时的速度为v t ,则v 2-v 2t =2a 3x 2 v t =433m/s≈2.3 m/s t ′=v -v t a 3=2 s -233s≈0.85 s答案:(1)1.33 s (2)0.85 s突破2 板块模型1.模型特点涉及两个物体,并且物体间存在相对滑动.如图所示,质量为M 的长木板位于光滑水平面上,质量为m 的物块静止在粗糙的长木板上,为使两者能共同向右加速运动,可以采用以下两种方案:(1)水平恒力作用在物块m 上,其最大值为F ;(2)水平恒力作用在长木板M 上.重力加速度大小为g ,物块m 与长木板M 之间的最大静摩擦力等于两者之间的滑动摩擦力.则方案(2)中的水平恒力最大值为( )A.⎝ ⎛⎭⎪⎫1+m M FB.M m FC.⎝⎛⎭⎪⎫1+M mFD.m MF【解析】 对于方案(1),以物块m 为研究对象,根据牛顿第二定律有F -μmg =ma 1,以长木板M 为研究对象,根据牛顿第二定律有μmg =Ma 2,若两者出现相对滑动应有a 1≥a 2,联立解得F ≥μmg ⎝⎛⎭⎪⎫1+m M ;对于方案(2),以物块m 为研究对象,根据牛顿第二定律有μmg =ma 1′,以长木板为研究对象,根据牛顿第二定律有F ′-μmg =Ma 2′,若两者出现相对滑动应有a 1′≤a 2′,联立解得F ′≥μ(M +m )g .若取临界情况,则有F ′=M mF ,选项B 正确.【答案】 B3.(多选)如图所示,一质量为M 的斜面体静止在水平地面上,斜面倾角为θ,斜面上叠放着A 、B 两物体,物体B 在沿斜面向上的力F 的作用下沿斜面匀速上滑.若A 、B 之间的动摩擦因数为μ,μ<tan θ,A 、B 质量均为m ,重力加速度为g ,则( BD )A .A 、B 保持相对静止 B .A 、B 一定相对滑动C .B 与斜面间的动摩擦因数为F -mg sin θ2mg cos θD .B 与斜面间的动摩擦因数为F -mg sin θ-μmg cos θ2mg cos θ解析:因为μ<tan θ,对A 研究对象则满足mg sin θ>μmg cos θ,所以A 、B 一定相对滑动,选项A 错误,B 正确;选物体B 为研究对象,由牛顿第二定律得F -μmg cos θ-mg sin θ-μB ·2mg cos θ=0,μB =F -mg sin θ-μmg cos θ2mg cos θ,故选项C 错误,D 正确.4.(2019·湖北三校联考)有一项“快乐向前冲”的游戏可简化如下:如图所示,滑板长L =1 m ,起点A 到终点线B 的距离s =5 m .开始滑板静止,右端与A 平齐,滑板左端放一可视为质点的滑块,对滑块施一水平恒力F 使滑板前进.板右端到达B 处冲线,游戏结束.已知滑块与滑板间动摩擦因数μ=0.5,地面视为光滑,滑块质量m 1=2 kg ,滑板质量m 2=1 kg ,重力加速度g 取10 m/s 2,求:(1)滑板由A 滑到B 的最短时间;(2)为使滑板能以最短时间到达,水平恒力F 的取值范围.解析:(1)滑板一直加速时,所用时间最短.设滑板加速度为a 2,f =μm 1g =m 2a 2,a 2=10 m/s 2,s =a 2t 22,解得t =1 s.(2)刚好相对滑动时,水平恒力最小,设为F 1,此时可认为二者加速度相等,F 1-μm 1g =m 1a 2,解得F 1=30 N.当滑板运动到B 点,滑块刚好脱离时,水平恒力最大,设为F 2,设滑块加速度为a 1,F 2-μm 1g =m 1a 1,a 1t 22-a 2t 22=L ,解得F 2=34 N.则水平恒力大小范围是30 N≤F ≤34 N. 答案:(1)1 s (2)30 N≤F ≤34 N学习至此,请完成课时作业10。
能力课2 动力学中的“传送带、板块”模型[冷考点]“传送带”模型命题角度1水平传送带问题求解的关键在于对物体所受的摩擦力进行正确的分析判断。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
『例1』如图1所示,水平长传送带始终以v匀速运动,现将一质量为m的物体轻放于A端,物体与传送带之间的动摩擦因数为μ,AB长为L,L足够长。
问:图1(1)物体从A到B做什么运动?(2)当物体的速度达到传送带速度v时,物体的位移多大?传送带的位移多大?(3)物体从A到B运动的时间为多少?(4)什么条件下物体从A到B所用时间最短?解析(1)物体先做匀加速直线运动,当速度与传送带速度相同时,做匀速直线运动。
(2)由v=at和a=μg,解得t=v μg物体的位移x1=12at 2=v22μg传送带的位移x2=vt=v2μg (3)物体从A到B运动的时间为t总=vμg +L-x1v=Lv+v2μg(4)当物体从A到B一直做匀加速直线运动时,所用时间最短,所以要求传送带的速度满足v≥2μgL。
答案(1)先匀加速,后匀速(2)v22μgv2μg(3)Lv+v2μg(4)v≥2μgL『拓展延伸1』若在『例1』中物体以初速度v0(v0≠v)从A端向B端运动,则:(1)物体可能做什么运动?(2)什么情景下物体从A到B所用时间最短,如何求最短时间?解析(1)①若v0<v,物体刚放到传送带上时将做a=μg的匀加速运动。
假定物体一直加速到离开传送带,则其离开传送带时的速度为v′=v20+2μgL。
显然,若v0<v<v20+2μgL,则物体在传送带上将先加速,后匀速运动;若v≥v20+2μgL,则物体在传送带上将一直加速运动。
②若v0>v,物体刚放到传送带上时将做加速度大小为a=μg的匀减速运动。
假定物体一直减速到离开传送带,则其离开传送带时的速度为v′=v20-2μgL。
显然,若v≤v20-2μgL,则物体在传送带上将一直减速运动;若v0>v>v20-2μgL,则物体在传送带上将先减速,后匀速运动。
专题三动力学中的“传送带、板块”模型
突破1 传送带模型
考向1 水平传送带模型
(1)
(2)
(1)
(2)
匀速
(3)
匀速
(1)
(2)
端.
时,返回时速度为
(2019·海口模拟)(多选)如图所示,水平传送带A、B两端相距s =3.5 m,工件与传送带间的动摩擦因数μ=0.1.工件滑上A端瞬时速度v A=4 m/s,到达B 端的瞬时速度设为v B,则(g取10 m/s2)( )
A.若传送带不动,则v B=3 m/s
B.若传送带以速度v=4 m/s逆时针匀速转动,v B=3 m/s
C.若传送带以速度v=2 m/s顺时针匀速转动,v B=3 m/s
D.若传送带以速度v=2 m/s顺时针匀速转动,v B=2 m/s
[审题指导] (1)若传送带顺时针转动且v 物>v 带,则传送带对物块的摩擦力为滑动摩擦力且为阻力.
(2)若传送带逆时针转动,传送带对物块的摩擦力为滑动摩擦力且为阻力.
【解析】 若传送带不动,由匀变速运动规律可知v 2
B -v 2
A =-2as ,a =μg ,代入数据解得v
B =3 m/s ,当满足选项B 、
C 、
D 中的条件时,工件所受滑动摩擦力跟传送带不动时一样,还是向左,加速度还是μg ,所以工件到达B 端时的瞬时速度仍为3 m/s ,故选项A 、B 、C 正确,D 错误.
【答案】 ABC
分析传送带问题的关键是判断摩擦力的方向.要注意抓住两个关键时刻:一是初始时刻,根据物块相对传送带的运动方向确定摩擦力的方向,根据受力分析确定物块的运动;二是当物块的速度与传送带速度相等时,判断物块能否与传送带保持相对静止.另外注意考虑传送带长度——判定达到共同速度(临界点)之前物块是否脱离传送带.
1.如图所示,足够长的水平传送带静止时在左侧某处画下标记点P ,将工件放在P 点.启动传送带,使其向右做匀加速运动,工件相对传送带发生滑动.经过t 1=2s 立即控制传送带,使其做匀减速运动,再经过t 2=3s 传送带停止运行,测得标记点P 通过的距离x 0=15 m.
(1)求传送带的最大速度;
(2)已知工件与传送带间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2
,最大静摩擦力等于滑动摩擦力,求整个过程中工件运动的总距离.
解析:(1)设传送带的最大速度为v m .根据匀变速直线运动规律,有x 0=x 1+x 2=v m
2
(t 1+
t 2) 解得v m =6 m/s
(2)以工件为研究对象,由牛顿第二定律,有μmg =ma 2 解得a 2=μg =2 m/s 2
设经时间t 工件与传送带速度相等,有v =a 2t
v =v m +a 1(t -t 1)
传送带减速运动中的加速度a 1=0-v m t 2
=-2 m/s 2
解得t =2.5 s ,v =5 m/s
t =2.5 s 内工件的位移x 1=v
2
·t =6.25 m
工件与传送带速度相等后,假设二者相对静止,则工件受到的合外力大小F 合=m ·|a 1|。