苏教版八年级数学下册期中试卷
- 格式:doc
- 大小:78.00 KB
- 文档页数:4
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5002.某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )A.13B.12C.1 D.03.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A.5 B.8 C.10 D.124.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱5.下列式子为最简二次根式的是()A.22a b+B.2a C.12a D.1 26.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.若顺次连接四边形ABCD各边的中点得到一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形8.若分式5xx-的值为0,则()A.x=0 B.x=5 C.x≠0 D.x≠5 9.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件10.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠二、填空题11.如图,点D 、E 分别是△ABC 的边AB 、AC 的中点,若BC=6,则DE= .12.计算326⨯的结果是_____.13.一个不透明的袋中装有3个红球,2个黑球,每个球除颜色外都相同.从中任意摸出3球,则“摸出的球至少有1个红球”是__事件.(填“必然”、“不可能”或“随机”) 14.如图是某市连续5天的天气情况,最大的日温差是________℃.15.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.16.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.17.如图,反比例函数y =xk(x >0)的图象经过矩形OABC 的边AB 的中点D ,若矩形OABC 的面积为8,则k =_____.18.如图,菱形ABCD 的边长为6,∠ABC=60°,则对角线AC 的长是 .19.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.20.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =1,则四边形BEDF 的周长是_____.三、解答题21.如图,在ABCD 中,点O 为对角线BD 的中点,过点O 的直线EP 分别交AD ,BC 于E ,F 两点,连接BE ,DF .(1)求证:四边形BFDE 为平行四边形; (2)当∠DOE = °时,四边形BFDE 为菱形?22.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.24.一粒木质中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平滑的.将它从定高度下掷,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下.由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:试验次数20406080100120140160“帅”字面朝上频数a18384752667888相应频率0.70.450.630.590.520.550.56b=;=;(2)画出“帅”字面朝上的频率分布折线图;(3)如图实验数据,实验继续进行下去,根据上表的这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?的顶点25.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC均在格点上,请在所给的平面直角坐标系中解答下列问题:(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆; (2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆.26.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形27.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.28.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验: 第一步:如图1在一张纸上画了一个平角∠AOB ;第二步:如图2在平角∠AOB 内画一条射线,沿着射线将平角∠AOB 裁开;第三步:如图3将∠AO'C'放在∠COB 内部,使两边分别与OB 、OC 相交,且O'A =O'C'; 第四步:连接OO', 测量∠COB 度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB.你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB的关系是;(2)线段O'A与O'C'的关系是.请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知:求证:证明:【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别. 2.A解析:A【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可.【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种,因此选到月季花的概率是13,故选A.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.3.C解析:C【分析】由矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,易证得四边形CODE是菱形,又由AB=4,BC=3,可求得AC的长,继而求得OC的长,则可求得答案.【详解】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=OD,OC=OA,∠ABC=90°∴OC=OD,∴四边形CODE是菱形∵AB=4,BC=35AC∴=∴OC=5 2∴四边形CODE的周长=4×52=10故选:C.【点睛】本题考查菱形的判定,运用勾股定理解三角形,掌握特殊平行四边形的判定与性质是解题的关键.4.D解析:D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.5.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C=D=,可以化简,故不是最简二次根式;故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.B解析:B【分析】根据轴对称图形和中心对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故答案为B.【点睛】本题考查了轴对称图形和中心对称图形的识别,掌握轴对称图形和中心对称图形的概念是解答本题的关键.7.D解析:D 【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得. 【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH 四边形EFGH 是矩形 90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形 故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.8.B解析:B 【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案. 【详解】解:∵分式5x x-的值为0, ∴x ﹣5=0且x ≠0, 解得:x =5. 故选:B . 【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.9.B解析:B 【详解】 随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断: 抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.10.D解析:D 【分析】利用旋转的性质得AC=CD ,BC=EC ,∠ACD=∠BCE ,所以选项A 、C 不一定正确 再根据等腰三角形的性质即可得出A EBC ∠=∠,所以选项D 正确;再根据∠EBC =∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可. 【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆, ∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE2∠︒-, ∴选项A 、C 不一定正确 ∴∠A =∠EBC∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090, ∴选项B 不一定正确; 故选D . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.二、填空题 11.3 【分析】先判断DE 是△ABC 的中位线,从而得解. 【详解】因为点D 、E 分别是△ABC 的边AB 、AC 的中点, 所以DE 是△ABC 的中位线, 所以DE=BC=3. 故答案为3. 考点:三角形的中解析:3 【分析】先判断DE 是△ABC 的中位线,从而得解.因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=12BC=3.故答案为3.考点:三角形的中位线定理.12.【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】=2=2×3=6.故答案为:6.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.解析:【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】===.故答案为:.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.13.必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是解析:必然根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是必然事件,故答案为:必然.【点睛】本题考查了必然事件的定义,正确理解必然事件,不可能事件,随机事件的概念是解题关键.14.10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的解析:10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的实际应用,根据图象找出温差最大的一天是解题关键.15.35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是解析:35先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE 的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=∠OCD=55°,又∵DE⊥AC,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.16.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.17.4【分析】设D 的坐标是,则B 的坐标是,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是,则B 的坐标是,∵∴,∵D 在上,∴.故答案是:4.【点睛】解析:4【分析】设D 的坐标是()a b ,,则B 的坐标是()2a b ,,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是()a b ,,则B 的坐标是()2a b ,, ∵OABC 8S =矩形∴28ab =,∵D 在k y x=上, ∴1842k ab ==⨯=. 故答案是:4.【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.18.6【分析】由菱形的性质可得AB=BC ,再由∠ABC=60°得△ABC 为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,解析:6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,则AC=AB=6,故答案为:6.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.19.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.20.20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD⊥EF,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如解析:20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8232-=, 由勾股定理得:DE =2222435OD OE +=+=,∴四边形BEDF 的周长=4DE =4×5=20,故答案为:20.【点睛】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.三、解答题21.(1)详见解析;(2)90【分析】(1)证△DOE ≌△BOF (ASA ),得DE=BF ,即可得出结论;(2)由∠DOE=90°,得EF ⊥BD ,即可得出结论.【详解】(1)∵四边形ABCD 是平行四边形,O 为对角线BD 的中点,∴BO =DO ,AD ∥BC ,∴∠EDO =∠FBO ,在△EOD 和△FOB 中,EDO FBO DO BO EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE ≌△BOF (ASA ),∴DE =BF ,又∵DE ∥BF ,∴四边形BFDE 为平行四边形;(2)∠DOE =90°时,四边形BFDE 为菱形;理由如下:由(1)得:四边形BFDE 是平行四边形,若∠DOE =90°,则EF ⊥BD ,∴四边形BFDE 为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE ≌△BOF 是解题的关键.22.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDF BE DF∠∠===∴△CBE ≌△CDF (SAS ).∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF∵∠GCE=∠GCF, GC=GC∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.考点:1.正方形的性质;2.全等三角形的判定与性质.23.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.24.(1)14,0.55;(2)图见解析;(3)0.55.【分析】(1)根据图中给出的数据和频数、频率与总数之间的关系分别求出a、b的值;(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.【详解】(1)a=20×0.7=14;b=88160=0.55;故答案为:14,0.55;(2)根据图表给出的数据画折线统计图如下:(3)随着试验次数的增加“帅”字面朝上的频率逐渐稳定在0.55左右,利用这个频率来估计概率,得P (“帅”字朝上)=0.55.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.25.(1)见解析 (2)见解析【分析】(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可.【详解】【点睛】解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作图时先找点,继而由点连成线.26.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE ≌△CDF 即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.27.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线, ∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =, 12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.28.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等.已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,∴'OO 平分∠COB .【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.。
苏教版八年级数学下册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为__________.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数A-,并说明理由.图象是否经过点(5,9)4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、B6、D7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、-153、32或424、425、30°.6、(10,3)三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、12x x +-,55+3、(1)见解析;(2)经过,理由见解析4、(1)见解析(2)成立(3)△DEF 为等边三角形5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.下列调查中,适合采用普查的是( )A .了解一批电视机的使用寿命B .了解全省学生的家庭1周内丢弃塑料袋的数量C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .了解扬州市中学生的近视率3.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 4.一个事件的概率不可能是( )A .32B .1C .23D .05.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .2B .6C .5D .36.下列方程中,关于x 的一元二次方程是( ) A .x 2﹣x (x +3)=0B .ax 2+bx +c =0C .x 2﹣2x ﹣3=0D .x 2﹣2y ﹣1=0 7.若分式42x x -+的值为0,则x 的值为( ) A .0 B .-2 C .4 D .4或-28.已知反比例函3y x =-,下列结论中不正确的是( ) A .图像经过点(1,3)- B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小 9.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x =图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .403910.下列调查中,适宜采用普查方式的是( )A .一批电池的使用寿命B .全班同学的身高情况C .一批食品中防腐剂的含量D .全市中小学生最喜爱的数学家 11.反比例函数3y x =-,下列说法不正确的是( ) A .图象经过点(1,-3)B .图象位于第二、四象限C .图象关于直线y=x 对称D .y 随x 的增大而增大12.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2S =甲, 1.8S =乙, 3.3S =丙,S a =丁,a 是整数,且使得关于x 的方程2(2)410a x x -+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a 的取值可以是( )A .3B .2C .1D .1-二、填空题13.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.14.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).15.在一次数学测试中 ,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2 ,则第六组的频数是_______.16.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.17.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)18.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.19.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x=-的图象上,则y 1,y 2的大小关系是y 1_____y 2. 20.x 千克橘子糖、y 千克椰子糖、z 千克榴莲糖混合成“什锦糖”.已知这三种糖的单价分别为30元/千克、32元/千克、40元/千克,则这种“什锦糖”的单价为_____元.(用含x 、y 、z 的代数式表示)21.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图.22.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大.23.方程x2=0的解是_______.24.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.三、解答题25.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?26.已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.27.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.28.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF 是平行四边形;(2)当DE =DF 时,求EF 的长.29.计算:(1)2354535⨯; (2)()22360,0x yxy x y ≥≥; (3)()48274153-+÷. 30.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A(-6,0),D(-7,3),点B 、C 在第二象限内.(1)点B 的坐标 ;(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t,使在第一象限内点B 、D 两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q,使得以P 、Q 、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P 、Q 的坐标;若不存在,请说明理由.31.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x <2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?32.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.33.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.34.如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE的形状,并说明理由.35.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC ⊥BC ,AC =2,BC =3.点E 是BC 延长线上一点,且CE =3,连结DE .(1)求证:四边形ACED 为矩形.(2)连结OE ,求OE 的长.36.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =;(2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,4=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=124 2DE BD⋅=.故答案为B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.2.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.3.D解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1<<③为随机事件.4.A解析:A【分析】根据概率的意义知,一件事件的发生概率最大是1,所以只有A项是错误的,即找到正确选项.【详解】∵必然事件的概率是1,不可能事件的概率为0,∴B、C、D选项的概率都有可能,∵32>1,∴A不成立.故选:A.【点睛】本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.5.B解析:B【分析】连接EG,由折叠的性质可得BE=EF又由E是BC边的中点,可得EF=EC,然后证得Rt△EGF≌Rt△EGC(HL),得出FG=CG=2,继而求得线段AG的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD 中,∴∠C =90°,∴∠EFG =∠B =90°,∵在Rt △EGF 和Rt △EGC 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ),∴FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∴AF =AB =3,∴AG =AF +FG =3+2=5,∴BC =AD=.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键. 6.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、x 2﹣x (x +3)=0,化简后为﹣3x =0,不是关于x 的一元二次方程,故此选项不合题意;B 、ax 2+bx +c =0,当a =0时,不是关于x 的一元二次方程,故此选项不合题意;C 、x 2﹣2x ﹣3=0是关于x 的一元二次方程,故此选项符合题意;D 、x 2﹣2y ﹣1=0含有2个未知数,不是关于x 的一元二次方程,故此选项不合题意; 故选:C .【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.7.C解析:C【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值.解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩, 由40x -=,得:4x =,由20x +≠,得:2x ≠-.综上,得4x =,即x 的值为4.故选:C .【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题. 8.D解析:D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】解:A 、∵()133-⨯=-,∴图象必经过点(1,3)-,故本选项正确;B 、∵30k =-<,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C 、∵1x =时,3y =-且y 随x 的增大而而增大,∴1x >时,30y -<<,故本选项正确;D 、函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误.故选:D .【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质进行解题.9.A解析:A【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x =中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x …2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x =, 得:1y 、2y 、3y …2020y 202040392019.52y ==,【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k ≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10.B解析:B【分析】根据抽样调查和普查的特点分析即可.【详解】解:A .调查一批电池的使用寿命适合抽样调查;B .调查全班同学的身高情况适合普查;C .调查一批食品中防腐剂的含量适合抽样调查;D .调查全市中小学生最喜爱的数学家适合抽样调查;故选:B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.D解析:D【解析】【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x =-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.解析:C【分析】根据方程的根的情况得出a 的取值范围,结合乙同学的成绩最稳定且a 为整数即可得a 得取值.【详解】∵关于于x 的方程2(2)410a x x -+-=有两个不相等的实数根, ∴()=16+42>0,a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠∵丁同学的成绩最稳定,∴<1.8a 且0a >.则a=1.故答案选:C.【点睛】本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.二、填空题13.【详解】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1解析:【详解】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.14.大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=67,摸出的是白球的概率=17,所以摸出的是红球的可能性大于摸出的是白球的可能性.故答案为:大于.【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.15.5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-解析:5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率16.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC ,所以∠BA′C=∠BCA′=1801804522CBD -∠-==67.5°. 故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用. 17.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质. 18.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.19.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.20.【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:;故答案为:.【点睛】本题考查列代数式,解题的关键是读懂题意.解析:303240 x y zx y z++++【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:303240x y zx y z++++;故答案为:303240x y zx y z++++.【点睛】本题考查列代数式,解题的关键是读懂题意.21.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.22.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16, 所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.23.【分析】直接开平方,求出方程的解即可.【详解】∵x2=0,开方得,,故答案为:.【点睛】此题考查了解一元二次方程-直接开平方法,比较简单.解析:120x x ==【分析】直接开平方,求出方程的解即可.【详解】∵x 2=0,开方得,120x x ==,故答案为:120x x ==.【点睛】此题考查了解一元二次方程-直接开平方法,比较简单.24.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x3,x4, ∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.三、解答题25.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.26.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF 是平行四边形.27.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI .∵四边形ABCD 是正方形,∴AD =AB ,∠ADF =∠ABC =90°,∴∠ABI =90°,又∵BI =DF ,∴△DAF ≌△BAI (SAS ),∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,又∵AE 是△EAI 与△EAF 的公共边,∴△EAI ≌△EAF (SAS ),∴∠BEA =∠FEA .【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.28.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2,∴x 2+62=(8-x)2.解得x =74. ∴DE =8-74=254. 在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD 2,∴BD=10.∴OD =12BD =5. 在Rt △DOE 中,根据勾股定理,有DE 2-OD 2=OE 2,∴OE =154. ∴EF =2OE =152. 【点睛】 考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.29.(1)6;(2)3;(3)【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的乘法法则运算;(3)利用二次根式的除法法则运算.【详解】(1=23×35=6;(2()260,0y xy x y ≥≥=3(3)=4﹣=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.30.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为ky x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6yx =.(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,6n).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】。
2021年苏教版八年级下学期期中测试学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1. 下列调查中,适宜采用普查方式的是( )A. 调查市场上酸奶的质量情况B. 调查我市中小学生的视力情况C. 调查某品牌圆珠笔芯的使用寿命D. 调查乘坐飞机的旅客是否携带危禁物品2. 为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,以下说法正确的是( )A. 1 000名学生是是总体B. 抽取的50名学生是样本容量C. 每位学生的身高是个体D. 被抽取的50名学生是总体的一个样本 3. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x 米,则可得方程3000300010x x --=15,根据此情景,题中用“…”表示的缺失的条件应补为( )A. 每天比原计划多铺设10米,结果延期15天才完成B. 每天比原计划少铺设10米,结果延期15天才完成C. 每天比原计划多铺设10米,结果提前15天才完成D. 每天比原计划少铺设10米,结果提前15天才完成4. 如图,已知□ABCD 的对角线BD=4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( )A. 4π cmB. 3π cmC. 2π cmD. π cm5. 如果把分式23n m n -中的m 和n 都扩大3倍,那么分式的值( ) A 不变B. 扩大3倍C. 缩小3倍D. 扩大9倍6. 如图,正方形ABCD的面积为16,ABE△是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD PE+的和最小,则这个最小值为().A. 8B. 3C. 4D. 32二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7. “a是实数,|a|≥0”这一事件是_____事件.8. 若分式||33xx-+的值是0,则x的值为________.9. 已知11a b-=4,求2227a ab ba b ab---+的值.10. 一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有____个数.11. 已知菱形两条对角线的长分别为12和16,则这个菱形的周长为__________,面积为__________.12. 大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用________统计图来描述数据.13. 如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足___条件时,四边形EFGH是矩形14. 某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:摸球次数100200300400500600摸到白球的次数58118189237302359摸到白球的频率0.580.590.630.5930.6040.598从这个袋中随机摸出一个球,是白球的概率约为________.(结果精确到0.1)15. 如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D 运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有______次.16. 如图,点E是正方形ABCD内一点,将ABE∆绕点B顺时针旋转90到CBE'∆的位置,若1,2,3AE BE CE===,求BE C'∠的度数.三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤)17. 计算:(1)23324ac acb b-⎛⎫⎛⎫÷-⎪ ⎪⎝⎭⎝⎭(2)211xxx-++(3)22555xx x+--(4)22a b a ba b b a a b⎛⎫++÷⎪---⎝⎭18. 解方程:(1)214111xx x+-=--.(2)6123xx x=--+.19. 先化简22224x x xx x x⎛⎫-÷⎪-+-⎝⎭,在选择一个你喜欢的整数x代入求值.20. 如图,在边长为1的小正方形组成的网格中,AOB的三个顶点均在格点上,点A、B的坐标分别是(1,3)A,(3,1)B.(1)画出AOB 绕点O 逆时针旋转180︒后得到A OB ''△.(2)点B 关于点O 中心对称的点B '的坐标为__________.(3)连接AB '、BA ',四边形ABA B ''的面积是__________.21. 网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a 的值.(2)求扇形统计图中1823-岁部分所占的百分比;(3)据报道,目前我国1235-岁网瘾人数约为2000万,请估计其中1223-岁的人数.22. 如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F .证明:FD CD =.23. 某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.求甲单独完成全部工程所用的时间. 24. 如图,在四边形ABCD 中,AB=BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N .(1)求证:∠ADB=∠CDB ;(2)若∠ADC=90°,求证:四边形MPND 是正方形.25. 如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有ADQ △≌ABQ △.(2)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,ADQ △恰为等腰三角形.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1. 下列调查中,适宜采用普查方式的是( )A. 调查市场上酸奶的质量情况B. 调查我市中小学生的视力情况C. 调查某品牌圆珠笔芯的使用寿命D. 调查乘坐飞机的旅客是否携带危禁物品【答案】D【解析】试题分析:调查市场上酸奶的质量情况,是抽样调查;调查我市中小学生的视力情况,是抽样调查;调查某品牌圆珠笔芯的使用寿命,是抽样调查;调查乘坐飞机的旅客是否携带危禁物品,是普查.故选D考点:事件的调查2. 为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,以下说法正确的是( )A. 1 000名学生是是总体B. 抽取的50名学生是样本容量C. 每位学生的身高是个体D. 被抽取的50名学生是总体的一个样本【答案】C【解析】试题解析:A、八年级1000名学生的身高是总体,故A错误;B、50是样本容量,故B错误;C、每位学生的身高是个体,故C正确;D、被抽取的50名学生的身高是总体的一个样本,故D错误;故选C.考点:总体、个体、样本、样本容量.3. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程3000300010x x--=15,根据此情景,题中用“…”表示的缺失的条件应补为( )A. 每天比原计划多铺设10米,结果延期15天才完成B. 每天比原计划少铺设10米,结果延期15天才完成C. 每天比原计划多铺设10米,结果提前15天才完成D. 每天比原计划少铺设10米,结果提前15天才完成【答案】C【解析】题中方程表示原计划每天铺设管道(10)x -米,即实际每天比原计划多铺设10米,结果提前15天完成,选C .4. 如图,已知□ABCD 的对角线BD=4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A. 4π cmB. 3π cmC. 2π cmD. π cm【答案】C【解析】【分析】 点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4,∴OD=2∴点D 所转过的路径长=1802180π⨯=2π. 故选:C . 【点睛】本题主要考查了弧长公式:180n r l π=. 5. 如果把分式23n m n-中的m 和n 都扩大3倍,那么分式的值( ) A 不变 B. 扩大3倍 C. 缩小3倍 D. 扩大9倍【答案】B【解析】【分析】把原分式中的m 和n 分别换为3m 和3n ,然后进行化简,再与原分式进行比较即可得出结论.【详解】解:m 和n 都扩大3倍时, 原分式变为:23(3)33n m n -=2273()n m n -=233n m n⨯-, 即把分式23n m n-中的m 和n 都扩大3倍,那么分式的值扩大3倍. 故选B .【点睛】本题考查了分式的基本性质,把m ,n 分别换成3m ,3n 是解题关键.6. 如图,正方形ABCD 的面积为16,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ).A. 8B. 3C. 4D. 32【答案】C【解析】 连接BD 、PB 、BD 关于AC 对称.∴PB PD =.∴PD PE PB PE +=+,当B 、P 、E 三点共线得PD PE +最小.∴min ()4PD PE BE AB +===,选C .点睛:本题考查的是正方的性质和轴对称-最短线题,熟知“两点之间,线段最短”是解答此的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7. “a是实数,|a|≥0”这一事件是_____ 事件.【答案】必然【解析】对于任意实数a,由绝对值的非负性可知,0a≥成立,故为必然事件.8. 若分式||33xx-+的值是0,则x的值为________.【答案】3【解析】【分析】根据分式为0的条件解答即可,【详解】因为分式|x|33x-+的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=±3,3+x≠0,即x≠-3,所以x=3,故答案为3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.9. 已知11a b-=4,求2227a ab ba b ab---+的值.【答案】6 【解析】由114a b-=可得:4b a ab-=.原式426247ab abab ab--==-⨯+.10. 一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有____个数.【答案】200【解析】数据总和102000.05===频数频率11. 已知菱形两条对角线的长分别为12和16,则这个菱形的周长为__________,面积为__________.【答案】(1). 40(2). 96【解析】如图,四边形ABCD 是菱形,12AC =,16BD =.∴AC BD ⊥,162AO AC ==,182BO BD ==. ∴22226810AB AD BO =+=+=∴菱形周长为41040⨯=.菱形面积为:11216962⨯⨯=.12. 大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用________统计图来描述数据.【答案】折线【解析】试题解析:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图, 13. 如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足___条件时,四边形EFGH 是矩形【答案】AB ⊥CD【解析】【分析】【详解】解:需添加条件AB ⊥DC ,∵E 、F 、G 、H 分别为四边形ABCD 中AD 、BD 、BC 、CA 中点,∴1//,2EF AB EF AB =,1//,2GH AB GH AB = ∴EF HG ∥,EF HG =.∴四边形EFGH 为平行四边形.∵E 、H 是AD 、AC 中点,∴EH ∥CD ,∵AB ⊥DC ,EF ∥HG∴EF ⊥EH ,∴四边形EFGH 是矩形.故答案为:AB ⊥DC .14. 某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:摸球的次数100 200 300 400 500 600 摸到白球的次数58 118 189 237 302 359摸到白球的频率0.58 0.59 0.63 0.593 0.604 0.598从这个袋中随机摸出一个球,是白球的概率约为________.(结果精确到0.1)【答案】0.6【解析】【分析】 【详解】∵摸到白球的频率稳定在0.6附近,∴从这个袋中随机摸出一个球,是白球的概率约为0.6考点:利用频率估计概率.15. 如图,平行四边形ABCD 中,AB=8cm ,AD=12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有______次.【答案】3【解析】∵四边形ABCD 是平行四边形,∴BC=AD=12,AD ∥BC ,∵四边形PDQB 是平行四边形,∴PD=BQ ,∵P 的速度是1cm/秒,∴两点运动的时间为12÷1=12s , ∴Q 运动的路程为12×4=48cm ,∴在BC 上运动的次数为48÷12=4次. 第一次PD=QB 时,12−t=12−4t ,解得t=0,不合题意,舍去;第二次PD=QB 时,Q 从B 到C 的过程中,12−t=4t−12,解得t=4.8;第三次PD=QB 时,Q 运动一个来回后从C 到B ,12−t=36−4t ,解得t=8;第四次PD=QB 时,Q 在BC 上运动3次后从B 到C ,12−t=4t−36,解得t=9.6.∴在运动以后,以P 、D. Q 、B 四点组成平行四边形的次数有3次,故答案为3.点睛:本题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.16. 如图,点E 是正方形ABCD 内一点,将ABE ∆绕点B 顺时针旋转90到CBE '∆的位置,若1,2,3AE BE CE ===,求BE C '∠的度数.【答案】135︒【解析】连接EE`,如图,根据旋转的性质得BE=B E'=2,AE=C E'=1,∠EBE`=90°,则可判断△BEE`为等腰直角三角形,根据等腰直角三角形的性质得EE`=2BE=22,∠BE`E=45°,在△CE E'中,由于CE`2+E E'2=CE2,根据勾股定理的逆定理得到△CEE`为直角三角形,即∠EE`C=90°,然后利用∠B E'C=∠B E'E+∠C E'E求解【详解】连接EE`,如图,∵△ABE绕点B顺时针旋转90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EB E'=90°∴△BE E'为等腰直角三角形∴E E'=2BE=22,∠BE'E=45°在△CEE`中,CE=3,C E'=1,EE'=22,∵12+ (22)2=32∴CE2+E E'2= CE2∴△CE E'为直角三角形∴∠E E'C=90°∴∠B E'C=∠B E'E+∠C E'E=135°【点睛】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤)17. 计算:(1)23324ac acb b-⎛⎫⎛⎫÷-⎪ ⎪⎝⎭⎝⎭(2)211xxx-++(3)22555xx x+--(4)22a b a ba b b a a b⎛⎫++÷⎪---⎝⎭【答案】(1)-9abc,(2)11x+,(3)x+5,(4)a-b分析:(1)原式先计算乘方运算,再计算除法运算即可得到结果; (2)先通分,再根据同分母的分数相加减的法则进行解答即可.(3)原式变形后,利用同分母分式的减法法则计算,约分即可得到结果; (4) 原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.本题解析:(1)原式22329494a c b abc b ac ⎛⎫=⨯-=- ⎪⎝⎭. (2)原式()()()()22221111111111x x x x x x x x x x x x --+-=--=-==+++++. (3)原式()()25525555x x x x x x +--===+--. (4)原式()()22a b a b a b a b a b a b a b a b+---=⨯==--++. 18. 解方程:(1)214111x x x +-=--. (2)6123x x x =--+. 【答案】(1) 无解;(2) x=4-3 【解析】分析:(1),(2))两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.本题解析:(1)方程两边同乘()()11x x +-,得:()()()21411x x x +-=+-.整理得220x -=.解得1x =.检验,当1x =时,()()110x x +-=.所以1x =是增根,应舍去.∴原方程无解.(2)方程两边同乘()()23x x -+,得: ()()()()63223x x x x x +=---+.整理得:912x =-. 解得,43x =-. 经检验,43x =-. 19. 先化简22224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在选择一个你喜欢的整数x 代入求值. 【答案】6x +, 7【解析】分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.本题解析:原式()()()()()()()22222622x x x x x x x x x x x x +--+-+=⋅=+-6x =+.当1x =时,原式7=.20. 如图,在边长为1的小正方形组成的网格中,AOB 的三个顶点均在格点上,点A 、B 的坐标分别是(1,3)A ,(3,1)B .(1)画出AOB 绕点O 逆时针旋转180︒后得到A OB ''△.(2)点B 关于点O 中心对称的点B '的坐标为__________.(3)连接AB '、BA ',四边形ABA B ''的面积是__________.【答案】(1)见解析;(2)(3,1)--,(3)16【解析】分析:(1)根据中心旋转图形的定义画出图形即可.(2)由点A ′的位置可以写出点A ′坐标.(3)结论是矩形,根据对角线相等的平行四边形是矩形进行证明.本题解析:(1)旋转后得到的A DB ''如图所示.(2)由图像可知()3,1B '--,故答案为()3,1--.(3)16解析:∵OA OA =',OB OB =',∴四边形ABA B ''为平行四边形.又OA OB =.∴AA BB '='.∴平行四边形ABA B ''为矩形. ∴2222224416S AB AB =⋅=+⋅+='.21. 网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a 的值.(2)求扇形统计图中1823-岁部分所占的百分比;(3)据报道,目前我国1235-岁网瘾人数约为2000万,请估计其中1223-岁的人数.【答案】(1)3000;(2)30%;(3)1000万人.【解析】分析:(1)用30~35岁的人数除以所占的百分比求出被调查的人数,然后列式计算即可得解;(2)用360°乘以18~23岁的人数所占的百分比计算即可得解;(3)用网瘾总人数乘以12~35岁的人数所占的百分比计算即可得解.本题解析:(1)被调查人数33022%1500=÷=(人),∴15004504203303000a =---=(人).(2)1823-岁部分所占百分比为450100%30%1500⨯=. (3)∵12~35岁网瘾人数均为2000万, ∴12~23岁人数约为2000万30045010001500+⨯=万. 答:其中12~23为1000万人.点睛:本题考查了条形统计图和扇形统计图,明确頻数、百分比、数据总数之间的关系是解题的关键. 22. 如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F .证明:FD CD =.【答案】证明见解析【解析】分析:利用已知得出△ABE ≌△DFE(AAS ),进而求出即可.本题解析:证明:如图,∵在平行四边形ABCD 中,E 是AD 边上的中点.∴AE ED =,AB CF ,AB CD =.∴1F ∠=∠.又23∠=∠(对顶角相等).在AEB 和DEF 中123AE ED F =⎧⎪∠=∠⎨⎪∠=∠⎩.∴AEB ≌()AAS EDF∴AB DF =.∴DF DC =.23. 某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.求甲单独完成全部工程所用的时间.【答案】12天【解析】分析:利用总工作量为1,分别表示出甲、乙完成的工作量进而得出等式求出答案;本题解析:设甲单独完成工程所用时间为x 天,则乙单独完成需()6x +天. 由题意得:416x x x +=+. 解得:12x =.经检验:12x =是原方程的解.答:甲单独完成全部工程所用的时间为12天.24. 如图,在四边形ABCD 中,AB=BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N .(1)求证:∠ADB=∠CDB ;(2)若∠ADC=90°,求证:四边形MPND 是正方形.【答案】见解析【解析】【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD ≌△CBD ,由全等三角形的性质即可得到:∠ADB=∠CDB ;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND 是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND 是正方形.【详解】证明:(1)∵对角线BD 平分∠ABC ,∴∠ABD=∠CBD ,在△ABD 和△CBD 中, AB CB ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ;(2)∵PM ⊥AD ,PN ⊥CD ,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND 是矩形,∵∠ADB=∠CDB ,∴∠ADB=45°∴PM=MD ,∴四边形MPND 是正方形. 25. 如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有ADQ △≌ABQ △.(2)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,ADQ △恰为等腰三角形.【答案】(1)证明见解析;(2)QA QD =.【解析】分析:(1)根据正方形的四条边都相等可得AD=AB ,对角线平分一组对角可得∠DAQ=∠BAQ=45°,然后利用“边角边”证明△ADQ 和△ABQ 全等;(2)分①AQ=DQ 时,点B 、P 重合,②AQ=AD 时,根据等边对等角可得∠ADQ=∠AQD ,再求出正方形的对角线AC 的长,再求出CQ ,然后根根据两直线平行,内错角相等求出∠CPQ=∠ADQ ,从而得到∠CQP=∠CPQ ,根据等角对等边可得CP=CQ ,从而得到点P 的位置,③AD=DQ 时,点C 、P 、Q 三点重合.本题解析:(1)如图,∵在正方形ABCD 中,无论P 运动到AB 何处,都有AD AB =,45DAQ BAQ ∠=∠=︒.∴在ADQ 和ABQ 中,AD AB DAQ BAQ AQ AQ =⎧⎪∠=∠⎨⎪=⎩.∴DAQ ≌()SAS ABQ .(2)ADQ 为等腰三角形.如图,QA QD =时,此时Q 为正方形.ABCD 的中心,此时点P 与点B 重合.②如图,AQ AD =时,由等边对等角得:ADQ AQD ∠=∠.∴4AQ AD ==,224442AC =+=.∴424CQ AC AQ =-=-∵AD BC∵CPQ ADQ ∠=∠∴CQP CPQ ∠=∠∴424CP CQ ==-.③如图,DA DQ =时,此时C 、P 、Q 三点重合.综上所述:当P运动到①B点位置②4CP=处(BC上)③C点位置时,ADQ为等腰三角形.点睛:本题考查了正方形的性质,全等三角形的判定,勾股定理的应用,等腰三角形的判定与性质,难度不大,(2)中要注意分类讨论的思想.。
苏教版八年级下学期数学期中测试卷一、选择题(本题共8个小题,每小题3分,共12y y y =+分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.2. 无论x 取什么数时,总是有意义的分式是( ) A. 221x x + B. 21x x + C. 331xx + D. 25x x -3. 下列说法正确的是( )(1)抛一枚硬币,正面一定朝上;(2)掷一颗骰子,点数一定不大于6;(3)为了解一种灯泡的使用寿命,宜采用普查的方法;(4)”明天的降水概率为80%”,表示明天会有80%的地方下雨.A. 1个B. 2个C. 3个D. 4个 4. 如果把5xx y +中的x 与y 都扩大为原来的10倍,那么这个代数式的值为 ( )A. 缩小为原来的110 B. 扩大为原来的5倍 C. 扩大为原来的10倍 D. 不变5. 在同一平面直角坐标系中,函数y=k (x ﹣1)与y=kx 的大致图象是( )A. B.C. D.6. 如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD=6,则菱形ABCD 的面积是( )A. 6B. 12C. 24D. 48 7. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时”…”,设实际每天铺设管道x 米,则可得方程 3000300010x x --=15,根据此情景,题中用”…”表示的缺失的条件应补为( )A. 每天比原计划多铺设10米,结果延期15天才完成B. 每天比原计划少铺设10米,结果延期15天才完成C. 每天比原计划多铺设10米,结果提前15天才完成D . 每天比原计划少铺设10米,结果提前15天才完成8. 如图,在□ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上(E 不与A 、B 重合),连接EF 、CF ,则下列结论中一定成立的是 ( )①∠DCF=12∠BCD ;②EF=CF ;③2BEC CEF S S ∆∆<;④∠DFE=4∠AEF A. ①②③④B. ①②③C. ①②D. ①②④ 二、填空题(每题3分,共30分)9. 在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知口袋中只有3个红球,且一次摸出一个球是红球的概率为13,那么袋中的球共有________个. 10. 在式子2312351094678xy a b c x y x a x yπ+++、、、、、中,分式有________个. 11. 若分式11x x --的值为0,则x 的值是________ 12. 反比例函数-1k y x =图像经过11(,)A x y ,22(,)B x y 两点,其中120x x <<,且12y y >,则k 的范围是_________.13. 如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=_____.14. 已知11a b-=4,求2227a ab ba b ab---+的值.15. 若分式方程21111x mx x--=--有增根,则m的值是____.16. 如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为___________17. 在四边形ABCD中,对角线AC ⊥BD且AC=4,BD=8,E、F分别是边AB.CD的中点,则EF=_______ .18. 如图,A,B是反比例函数kyx=图象上的两点,过点A作AC y⊥轴,垂足为C,AC交OB于点D.若D为OB的中点,AOD的面积为6,则k的值为______三.计算题(共28分)19化简;(1) 2422a a a +-- (2).22214()244x x x x x x x x +---÷--+ 20. 解方程(1)2323x x =+- (2) 11222x x x -=--- 21. 先化简22321(1)24a a a a -+-÷+-,再从33a -<<中选取一个你喜欢的整数a 的值代入求值. 四、解答题(共68分)22. 某校为了了解学生孝敬父母的情况(选项: A 为父母洗一次脚;B 帮父母做一次家务;C 给父母买一件礼物;D 其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出): 根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B 选项的有多少人?23. 已知12y y y =+,1y 与x 成正比例,2y 与2x +成反比例,且当1x =-时, 3y =;当3x =时,7y =.求3x =-时,y 的值.24. 当a 为何值时, 12221(2)(1)x x x a x x x x --+-=-+-+的解是负数? 25. 准备一张矩形纸片,按如图操作: 将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点.(1)求证: 四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.26. 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成.试问: (1)规定日期是多少天?(2)在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.27. 如图,已知:直线12y x =与双曲线(0)k y k x=>交于A.B 两点,且点A 的横坐标为4, 若双曲线(0)k y k x=>上一点C 的纵坐标为8,连接AC. (1)填空: k 的值为_______; 点B 的坐标为___________;点C 的坐标为___________. (2)直接写出关于的不等式102k x x -≥的解集. (3)求三角形AOC 的面积(4) 若在x 轴上有点M ,y 轴上有点N ,且点M.N.A.C 四点恰好构成平行四边形,直接写出点M.N 的坐标.28. 已知: 在△AOB 与△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°.(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则请你判断线段AD 与OM 之间的数量关系,并加以证明.(2)如图2,将图1中△COD 绕点O 逆时针旋转,旋转角为α(0°<α<90°).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD绕点O逆时针旋转到使△COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.答案与解析一、选择题(本题共8个小题,每小题3分,共12y y y =+分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解: A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2. 无论x 取什么数时,总是有意义的分式是( ) A. 221x x + B. 21x x + C. 331x x + D. 25x x - 【答案】A【解析】试题分析: 分式总是有意义,即分母恒不为0.A 、∵21x +≠0,∴分式恒有意义.B 、当2x+1=0,即x=﹣0.5时,分式无意义.C 、当31x +=0,即x=﹣1时,分式无意义.D 、当2x =0,即x=0时,分式无意义. 故选A .考点: 分式有意义的条件.3. 下列说法正确的是( )(1)抛一枚硬币,正面一定朝上;(2)掷一颗骰子,点数一定不大于6;(3)为了解一种灯泡的使用寿命,宜采用普查的方法;(4)”明天的降水概率为80%”,表示明天会有80%的地方下雨.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】分析: 直接利用概率的意义以及全面调查与抽样调查的意义分析得出答案.详解: (1)抛一枚硬币,正面一定朝上,是随机事件,故此选错误;(2)掷一颗骰子,点数一定不大于6,正确;(3)为了解一种灯泡的使用寿命,宜采用普查的方法,错误,应抽样调查;(4)”明天的降水概率为80%”,表示明天会有80%的地方下雨,错误.故选A.点睛: 本题主要考查了概率的意义以及全面调查与抽样调查的意义,正确理解相关事件的意义是解题的关键.4. 如果把5xx y+中的x与y都扩大为原来的10倍,那么这个代数式的值为()A. 缩小为原来的110B. 扩大为原来的5倍C. 扩大为原来的10倍D. 不变【答案】D【解析】分析: 依题意分别用10x和10y去代换原分式中的x和y,利用分式的基本性质化简即可.详解: ∵5101010xx y⨯+=10510xx y⨯+()=5xx y+,∴把5xx y+中的x与y都扩大为原来的10倍,分式的值不变.故选D.点睛: 本题考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5. 在同一平面直角坐标系中,函数y=k(x﹣1)与y=kx的大致图象是()A. B. C. D.【答案】C【解析】分析: 由函数y =k (x ﹣1)知直线必过(1,0)这一点,据此可得.详解: 由函数y =k (x ﹣1)知直线必过(1,0)这一点.故选C .点睛: 本题主要考查一次函数与反比例函数的图象,根据y =k (x ﹣1)知直线必过(1,0)这一点是解题的关键.6. 如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD=6,则菱形ABCD 的面积是( )A. 6B. 12C. 24D. 48【答案】C【解析】试题分析: 根据菱形的对角线可以求得菱形ABCD 的面积:菱形的对角线为6、8, 则菱形的面积为12×6×8=24. 故选C .考点: 菱形性质.7. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时”…”,设实际每天铺设管道x米,则可得方程3000300010x x--=15,根据此情景,题中用”…”表示的缺失的条件应补为()A. 每天比原计划多铺设10米,结果延期15天才完成B. 每天比原计划少铺设10米,结果延期15天才完成C. 每天比原计划多铺设10米,结果提前15天才完成D. 每天比原计划少铺设10米,结果提前15天才完成【答案】C【解析】题中方程表示原计划每天铺设管道(10)x-米,即实际每天比原计划多铺设10米,结果提前15天完成,选C.8. 如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上(E不与A、B重合),连接EF、CF,则下列结论中一定成立的是( )①∠DCF=12∠BCD;②EF=CF;③2BEC CEFS S∆∆<;④∠DFE=4∠AEFA. ①②③④B. ①②③C. ①②D. ①②④【答案】B【解析】【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【详解】解: ①∵F是AD的中点,∴AF=FD.∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF.∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故①正确;延长EF,交CD延长线于M.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF.∵F为AD中点,∴AF=FD.在△AEF和△DFM中,A FDMAF DFAFE DFM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M.∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°.∵FM=EF,∴EF=CF,故②正确;③∵EF=FM,∴S△EFC=S△CFM.∵MC>BE,∴S△BEC<2S△EFC故③正确;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x.∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④错误.故答案为B.点睛: 本题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题的关键.二、填空题(每题3分,共30分)9. 在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知口袋中只有3个红球,且一次摸出一个球是红球的概率为13,那么袋中的球共有________个.【答案】9【解析】试题分析: ∵在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,口袋中只装有3个黄球,且摸出黄球的概率为13,∴袋中共有球的个数为: 3÷13=9.故答案为9.考点: 概率公式.10. 在式子2312351094678xy a b c x yxa x yπ+++、、、、、中,分式有________个.【答案】3【解析】151096x a x y、、++是分式; 2323478xy a b c x y π+、、是整式; 故答案为3.11. 若分式11x x --的值为0,则x 的值是________ 【答案】x=-1【解析】【分析】 根据题意可得10,10x x -=-≠,然后进行求解即可.【详解】解: 由题意可得:10,10x x -=-≠,解得: 1x =-;故答案为1x =-.【点睛】本题主要考查分式为零的条件,熟练掌握分式为零的条件是解题的关键.12. 反比例函数-1k y x =的图像经过11(,)A x y ,22(,)B x y 两点,其中120x x <<,且12y y >,则k 的范围是_________.【答案】k <1;【解析】 ∵反比例函数-1k y x =的图像经过()11,A x y ,()22,B x y 两点,其中120x x <<,且12y y >, ∴k -1<0,∴k <1;故答案是: k<1.点睛: 反比例函数y=k x,它的图象与k 的关系: 反比例函数的图象是两支双曲线.当k>0时,双曲线两个分支在第一、三象限内,如图1.当k<0时,双曲线两个分支在第二、四象限内,如图2.函数的增减性: 当k>0时,在每个象限内y 随x 增大减小;当k<0时,在每个象限内,y 随x 增大而增大.13. 如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=_____.【答案】020.【解析】试题分析: 根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解: 如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案20°.14. 已知11a b-=4,求2227a ab ba b ab---+的值.【答案】6 【解析】由114a b-=可得: 4b a ab-=.原式426247ab abab ab--==-⨯+.15. 若分式方程21111x mx x--=--有增根,则m的值是____.【答案】3【解析】【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【详解】解: ∵分式方程21111x mx x--=--有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得:2﹣(m﹣1)=0,∴m=3.故答案为3.【点睛】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.16. 如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为___________【答案】4.【解析】【分析】【详解】解: ∵AB⊥x轴于点B,且S△AOB=2,∴S△AOB=12|k|=2,∴k=±4.∵函数在第一象限有图象,∴k=4.故答案为4.【点睛】本题考查反比例函数系数k的几何意义.17. 在四边形ABCD中,对角线AC ⊥BD且AC=4,BD=8,E、F分别是边AB.CD的中点,则EF=_______.【答案】25【解析】分析: 取BC的中点G,连接EG、FG,根据三角形的中位线平行于第三边并且等于第三边的一半求出EG、FG,并求出EG⊥FG,然后利用勾股定理列式计算即可得解.详解: 如图,取BC的中点G,连接EG、FG.∵E、F分别是边AB、CD的中点,∴EG∥AC且EG=12AC=12×4=2,FG∥BD且FG=12BD=12×8=4.∵AC⊥BD,∴EG⊥FG,∴EF=22EG FG+=2224+=25.故答案为25.点睛: 本题考查了三角形的中位线定理,勾股定理的应用,作辅助线构造出直角三角形是解题的关键.18. 如图,A,B是反比例函数kyx=图象上的两点,过点A作AC y⊥轴,垂足为C,AC交OB于点D.若D为OB的中点,AOD的面积为6,则k的值为______【答案】16【解析】【分析】先设点D 坐标为()a b ,,得出点B 的坐标为()2a 2b ,,A 的坐标为()4a b ,,再根据AOD 的面积为6,列出关系式求得k 的值即可.【详解】设点D 坐标为()a b ,,点D 为OB 的中点,∴点B 的坐标为()2a 2b ,,k 4ab∴=, 又AC y ⊥轴,A 在反比例函数图象上,A ∴的坐标为()4a b ,,AD 4a a 3a ∴=-=, AOD 的面积为6,13a b 62∴⨯⨯=, ab 4∴=,k 4ab 4416∴==⨯=,故答案为16.【点睛】本题考查了反比例函数系数k 的几何意义,以及运用待定系数法求反比例函数解析式,根据AOD 的面积为6列出关系式是解题的关键.三.计算题(共28分)19. 化简; (1)2422a a a+-- (2).22214()244x x x x x x x x +---÷--+【答案】(1)2;(2)212)x (- 【解析】分析: (1)先变形为同分母分式加减,再根据法则计算,最后约分即可得;(2)根据分式混合运算顺序和运算法则计算可得.详解: (1)原式=22a a -﹣42a - =242a a -- =222a a --() =2;(2)原式=[22x x x ()+-﹣212x x --()]•4x x - =[2242x x x --()﹣222x x x x --()]•4x x - =242x x x --()•4x x - =212x -(). 点睛: 本题主要考查分式的混合运算,运算时要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.20. 解方程 (1)2323x x =+- (2) 11222x x x-=--- 【答案】(1)-12;(2)无解【解析】分析: 两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 详解: (1)去分母得: 2x ﹣6=3x +6,解得: x =﹣12,经检验x =﹣12是分式方程的解;(2)去分母得: 1﹣x =﹣1﹣2x +4,解得: x =2,经检验x =2增根,分式方程无解.点睛: 本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21. 先化简22321(1)24a a a a -+-÷+-,再从33a -<<中选取一个你喜欢的整数a 的值代入求值. 【答案】见解析【解析】分析: 根据分式的运算法则先化简,然后取一个使分式有意义的值,代入计算即可求出答案.详解: 原式=232a a +-+×2221a a a ()()()+-- =21a a -- ∵a ≠﹣2,2,1, ∴a =0.当a =0时,原式=2.点睛: 本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.四、解答题(共68分)22. 某校为了了解学生孝敬父母的情况(选项: A 为父母洗一次脚;B 帮父母做一次家务;C 给父母买一件礼物;D 其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出): 根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B 选项的有多少人?【答案】(1)240;(2)36,96,0.25;(3)400.【解析】试题分析: (1)由选项D 的频数48,频率0.2,根据频数、频率和总量的关系即可求得这次被调查的学生人数.(2)由(1)求得的这次被调查的学生人数,根据频数、频率和总量的关系即可求得表中m ,n ,p 的值,补全条形统计图.(3)应用用样本估计总体计算即可.试题解析: (1)∵480.2240÷=,∴这次被调查的学生有240人.(2)2400.1536,?2400.496,?602400.25m n p =⨯==⨯==÷=.补全条形统计图如图:(3)∵16000.25400⨯=,∴估计该校全体学生中选择B 选项的有400人.考点: 1.频数、频率统计表;2.条形统计图;3.频数、频率和总量的关系;4.用样本估计总体.23. 已知12y y y =+,1y 与x 成正比例,2y 与2x +成反比例,且当1x =-时, 3y =;当3x =时,7y =.求3x =-时,y 的值.【答案】-11【解析】分析: 首先根据正比例和反比例的定义可得y =kx +2m x +,再把x =﹣1,y =3;x =3,y =7代入得到关于k 、m 的方程组,再解可得k 、m 的值,进而可得y 与x 的解析式,再把x =﹣3代入计算出y 的值即可.详解: ∵y 1与x 成正比例,∴设y 1=kx .∵y 2与x +2成反比例,∴设y 2=2m x +. ∵y =y 1+y 2,∴y =kx +2m x +. ∵当x =﹣1时,y =3;当x =3时,y =7, ∴3735k m m k =-+⎧⎪⎨=+⎪⎩,解得: 25k m =⎧⎨=⎩, ∴y =2x +52x +, 当x =﹣3时,y =2×(﹣3)﹣5=﹣11.点睛: 本题主要考查了待定系数法求反比例函数解析式,关键是正确表示出y 与x 的关系式.24. 当a 为何值时, 12221(2)(1)x x x a x x x x --+-=-+-+的解是负数?【答案】57a a <-≠-且 【解析】分析: 首先解分式方程求得方程的解,然后根据方程的解是负数,即可得到一个关于a 的不等式,从而求得a 的范围.详解: 方程两边同时乘以(x ﹣2)(x +1)得:(x ﹣1)(x +1)﹣(x ﹣2)2=2x +a ,即: x 2﹣1﹣(x 2﹣4x +4)=2x +a ,则x 2﹣1﹣x 2+4x ﹣4=2x +a ,移项、合并同类项得: 2x =5+a ,则x =52a +, 根据题意得: 52a +<0,且52a +≠﹣1, 解得: a <﹣5且a ≠﹣7.点睛: 本题考查了分式方程的解法以及一元一次不等式的解法,正确解得方程的解是解题的关键. 25. 准备一张矩形纸片,按如图操作: 将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点. (1)求证: 四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.【答案】(1)证明见解析;(283 【解析】【分析】 【详解】试题分析:(1)、根据矩形的性质可得∠ABD=∠CDB ,根据折叠可得∠EBD=∠FDB ,则BE ∥DF ,根据两组对边分别平行的四边形为平行四边形进行证明;(2)、根据菱形可得BE=DE ,有折叠可得BM=AB=2,则DM=BM=2,BD=4,根据勾股定理可得3DE=x ,则3-x ,BE=x ,根据Rt △ABE 的勾股定理得出x 的值,然后计算菱形的面积.试题解析: (1)、∵四边形ABCD 是矩形 ∴ AB ∥CD AD ∥BC ∴∠ABD=∠CDB由折叠知: ∠EBD=∠ABD ,∠FDB=∠CDB ∴∠EBD=∠FDB ∴BE//DF∴四边形BFDE 是平行四边形(2)、∵四边形BFDE是菱形 ∴ BE=DE 由折叠知: ∠EMB=∠A=90°BM=AB=2∴DM=BM=2 ∴BD=4 由勾股定理解得DE=x ,则,BE=x在Rt △ABE 中,AE 2+AB 2=BE 2 2+22=x 2 解得: x=3∴菱形BFDE 的面积为3×2=3 考点: (1)、平行四边形的判定;(2)、勾股定理;(3)、菱形的面积计算.26. 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天; (3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成.试问: (1)规定日期是多少天? (2)在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【答案】(1)6天;(2)方案(3)最节省工程款,理由见解析【解析】分析:(1)根据关键描述语为: “甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x 天完成任务,工作量=工作时间×工作效率等量关系为: 甲3天的工作量+乙规定日期的工作量=1列方程.(2)再看费用情况: 方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求详解: (1)设规定日期为x 天.由题意得:3 x +6x x =1 解得: x =6.经检验: x =6是原方程的根.答: 规定日期为6天;(2)显然,方案(2)不符合要求;方案(1): 1.2×6=7.2(万元);方案(3): 1.2×3+0.5×6=6.6(万元).因为7.2>6.6,所以在不耽误工期的前提下,选方案(3)最节省工程款.点睛: 本题主要考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.27. 如图,已知:直线12y x =与双曲线(0)k y k x=>交于A.B 两点,且点A 的横坐标为4, 若双曲线(0)k y k x=>上一点C 的纵坐标为8,连接AC. (1)填空: k 的值为_______; 点B 的坐标为___________;点C 的坐标为___________. (2)直接写出关于的不等式102k x x -≥的解集. (3)求三角形AOC 的面积(4) 若在x 轴上有点M ,y 轴上有点N ,且点M.N.A.C 四点恰好构成平行四边形,直接写出点M.N 的坐标.【答案】(1)k=8 ,B(-4,-2),C(1,8) ;(2)404x x -≤<≥或 ;(3) 15;(4)M(3,0)、N(0,6)或M(-3,0)、N(0,-6)【解析】分析: (1)由直线12y x =与双曲线0k y k x=(>)交于A 、B 两点,A 点横坐标为4,代入正比例函数,可求得点A 的坐标,继而求得k 值,把C 的纵坐标代入反比例函数,即可得到C 的坐标;根据对称性,可求得点B 的坐标.(2)结合图象,即可求得关于x 的不等式102k x x-≥的解集; (3)首先过点C 作CD ⊥x 轴于点D ,过点A 作AE ⊥轴于点E ,可得S △AOC =S △OCD +S 梯形AEDC ﹣S △AOE =S 梯形AEDC ,又由双曲线0ky k x=(>)上有一点C 的纵坐标为8,可求得点C 的坐标,继而求得答案;(4)由当MN ∥AC ,且MN =AC 时,点M 、N 、A 、C 四点恰好构成平行四边形,根据平移的性质,即可求得答案.详解: (1)∵直线12y x =与双曲线0k y k x =(>)交于A 、B 两点,A 点横坐标为4,∴点A 的纵坐标为: y =12×4=2,∴点A (4,2),∴2=4k ,∴k =8,∴8y x =;把y =8代入8y x =,解得: x =1,∴C (1,8).∵直线12y x =与双曲线0k y k x=(>)交于A 、B 两点,∴B (﹣4,﹣2); (2)由图象可知: 关于x 的不等式102k x x -≥的解集为: ﹣4≤x <0或x ≥4; (3)过点C 作CD ⊥x 轴于点D ,过点A 作AE ⊥x 轴于点E .∵双曲线0k y k x =(>)上有一点C 的纵坐标为8,∴把y =8代入y =8x ,得: x =1,∴点C (1,8),∴S △AOC =S △OCD +S 梯形AEDC ﹣S △AOE =S 梯形AEDC =12×(2+8)×(4﹣1)=15; (4)如图,当MN ∥AC ,且MN =AC 时,点M 、N 、A 、C 四点恰好构成平行四边形.∵点A (4,2),点C (1,8),∴根据平移的性质可得: M (3,0),N (0,6)或M ′(﹣3,0),N ′(0,﹣6).点睛: 本题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想、分类讨论思想与方程思想的应用.28. 已知: 在△AOB 与△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°.(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则请你判断线段AD 与OM 之间的数量关系,并加以证明.(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α(0°<α<90°).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD 绕点O 逆时针旋转到使△COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.【答案】(1)OM=12AD,理由见解析;(2)成立,理由见解析;(3)不变化,理由见解析【解析】分析: (1)AD与OM之间的数量关系为AD=2OM;(2)(1)中的结论仍然成立,理由为: 如图2所示,延长BO到F,使FO=BO,连接CF,由M、O分别为BC、BF的中点,得到OM为三角形BCF的中位线,利用中位线定理得到FC=2OM,利用SAS得到三角形AOD与三角形FOC全等,利用全等三角形的对应边相等得到FC=AD,等量代换得到AD=2OM;(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为: 如图3所示,延长DC交AB于E,连结ME,过点E作EN⊥AD于N,由三角形COD与三角形AOB都为等腰直角三角形,利用等腰直角三角形的性质得到四个角为45度,进而得到三角形MCE与三角形AED为等腰直角三角形,根据EN为直角三角形ADE斜边上的中线得到AD=2EN,再利用三个角为直角的四边形为矩形得到四边形OMEN为矩形,可得出EN=OM,等量代换得到AD=2OM.详解: (1)线段AD与OM之间的数量关系是AD=2OM;(2)(1)的结论仍然成立,理由为:证明: 如图2,延长BO到F,使FO=BO,连结CF.∵M为BC中点,O为BF中点,∴MO为△BCF的中位线,∴FC=2OM.∵∠AOB=∠AOF=∠COD=90°,∴∠AOB+∠BOD=∠AOF+∠AOC,即∠AOD=∠FOC.在△AOD和△FOC中,OA OFAOD FOCOC OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOD≌△FOC(SAS),∴FC=AD,∴AD=2OM.(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为:证明: 如图3,延长DC交AB于E,连结ME,过点E作EN⊥AD于N.∵OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠A=∠D=∠B=∠BCE=∠DCO=45°,∴AE=DE,BE= CE,∠AED=90°,∴DN=AN,∴AD=2NE.∵M为BC的中点,∴EM⊥BC,∴四边形ONEM是矩形,∴NE=OM,∴AD=2OM.故答案为AD=2OM.点睛: 本题考查了几何变换综合题,涉及的知识有: 全等三角形的判定与性质,等腰直角三角形的判定与性质,三角形的中位线定理,是一道多知识点探究性试题.。
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.江苏移动掌上营业厅,推出“每日签到——抽奖活动”:每个手机号码每日只能签到1次,且只能抽奖1次,抽奖结果有流量红包、话费充值卷、惊喜大礼包、谢谢参与.小明的爸爸已经连续3天签到,且都抽到了流量红包,则“他第4天签到后,抽奖结果是流量红包”是()A .必然事件B .不可能事件C .随机事件D .必然事件或不可能事件2.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100° 3.下列成语故事中所描述的事件为必然发生事件的是( )A .水中捞月B .瓮中捉鳖C .拔苗助长D .守株待兔 4.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .2B .6C .5D .35.如果a 32+,b 32,那么a 与b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a >b6.已知反比例函3y x =-,下列结论中不正确的是( ) A .图像经过点(1,3)- B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小 7.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意..四边形的面积为a ,则它的中点四边形面积为( )A.12a B.23a C.34a D.45a8.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.7 C.6 D.59.在四边形中,能判定这个四边形是正方形的条件是()A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直 D.一组邻边相等,对角线互相平分10.“明天下雨的概率是80%”,下列说法正确的是()A.明天一定下雨B.明天一定不下雨C.明天下雨的可能性比较大D.明天80%的地方下雨二、填空题11.若菱形的两条对角线分别为2和3,则此菱形的面积是.12.如图,点D、E分别是△ABC的边AB、AC的中点,若BC=6,则DE= .13.如图,点A是一次函数13y x=(0)x≥图像上一点,过点A作x轴的垂线l,点B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(0)x>的图像过点B、C,若OAB∆的面积为8,则ABC∆的面积是_________.14.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.15.如图,反比例函数y =x k (x >0)的图象经过矩形OABC 的边AB 的中点D ,若矩形OABC 的面积为8,则k =_____.16.如果用A 表示事件“三角形的内角和为180°”,那么P (A )=_____.17.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.18.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.19.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.20.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为_____.三、解答题21.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.22.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?23.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.24.如图,在正方形网格中,△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)直接写出:以A 、B 、C 为顶点的平形四边形的第四个顶点D 的坐标 .25.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.26.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF求证:AC 、EF 互相平分.27.如图,反比例函数k y x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数k y x=的图像上另一点(,2)C n -.(1)求反比例函数k y x =与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0k ax b x +-≥的解集为_________ (4)若()11,D x y 在k y x =(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.28.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PB PE =,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系,并说明理由;(2)如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P 在AC 的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:直接利用随机事件的定义进而得出答案.详解:∵有流量红包、话费充值卷、惊喜大礼包、谢谢参与四种等可能情况,∴他第4天签到后,抽奖结果是流量红包为随机事件.故选C.点睛:本题主要考查了随机事件,正确把握相关定义是解题的关键.2.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.【详解】解:由题意得:DE∥BC,∴∠A'DE=∠B=180°﹣120°﹣26°=34°,∴∠BDE=180°﹣∠B=146°,故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.故选:B.【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.3.B解析:B【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解:A 、水中捞月是不可能事件,故A 错误;B 、瓮中捉鳖是必然事件,故B 正确;C 、拔苗助长是不可能事件,故C 错误;D 、守株待兔是随机事件,故D 错误;故选B .考点:随机事件.4.B解析:B【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt △EGF ≌Rt △EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG ,∵E 是BC 的中点,∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE =EF ,∴EF =EC ,∵在矩形ABCD 中,∴∠C =90°,∴∠EFG =∠B =90°,∵在Rt △EGF 和Rt △EGC 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ),∴FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∴AF =AB =3,∴AG =AF +FG =3+2=5,∴BC=AD=.故选:B .【点睛】 此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.5.A解析:A【分析】先利用分母有理化得到a 2),从而得到a 与b 的关系.【详解】∵a2),而b 2,∴a =﹣b ,即a+b=0.故选:A .【点睛】﹣2是解答本题的关键.6.D解析:D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】解:A 、∵()133-⨯=-,∴图象必经过点(1,3)-,故本选项正确;B 、∵30k =-<,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C 、∵1x =时,3y =-且y 随x 的增大而而增大,∴1x >时,30y -<<,故本选项正确;D 、函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误.故选:D .【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质进行解题.7.A解析:A【分析】由E 为AB 中点,且EF 平行于AC ,EH 平行于BD ,得到△BEK 与△ABM 相似,△AEN 与△ABM 相似,利用面积之比等于相似比的平方,得到△EBK 面积与△ABM 面积之比为1:4,且△AEN 与△EBK 面积相等,进而确定出四边形EKMN 面积为△ABM 的一半,同理得到四边形KFPM 面积为△BCM 面积的一半,四边形QGPM 面积为△DCM 面积的一半,四边形HQMN 面积为△DAM 面积的一半,四个四边形面积之和即为四个三角形面积之和的一半,即为四边形ABCD 面积的一半,即可得出答案.【详解】解:如图,画任意四边形ABCD ,设AC 与EH ,FG 分别交于点N ,P ,BD 与EF ,HG 分别交于点K ,Q ,则四边形EFGH 即为它的中点四边形,∵E 是AB 的中点,EF//AC ,EH//BD ,∴△EBK ∽△ABM ,△AEN ∽△ABM , ∴EBK ABM S S ∆∆=14,S △AEN =S △EBK , ∴EKMNABM S S ∆四边形=12, 同理可得:KFPM BCMS S ∆四边形=12,QGPM DCM S S ∆四边形=12,HQMN DAM S S ∆四边形=12, ∴EFGHABCD S S 四边形四边形=12, ∵四边形ABCD 的面积为a , ∴四边形EFGH 的面积为12a ,故选:A .【点睛】本题考查了三角形中位线的性质,相似三角形的判定和性质,掌握知识点是解题关键.8.D解析:D【分析】连接DN ,根据三角形中位线定理得到EF =12DN ,根据题意得到当点N 与点B 重合时,DN 最大,根据勾股定理计算,得到答案.【详解】连接DN ,∵点E,F分别为DM,MN的中点,∴EF是△MND的中位线,∴EF=12 DN,∵点M,N分别为线段BC,AB上的动点,∴当点N与点B重合时,DN最大,此时DN22AB AD10,∴EF长度的最大值为:12×10=5,故选:D.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形;故选C.10.C解析:C【解析】【分析】根据概率的意义找到正确选项即可.【详解】解:明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有C合题意.故选:C.【点睛】本题考查了概率的意义,解决本题的关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.二、填空题11.3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=×2×3=3,故答案为3.考点:菱形的性质.解析:3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=12×2×3=3,故答案为3.考点:菱形的性质.12.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=12BC=3.故答案为3.考点:三角形的中位线定理.13.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形, 解析:163 【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上,∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.14.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC 中,点D ,E 分别为BC ,AC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE ,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC 中,点D ,E 分别为BC ,AC 的中点,∴DE 是△ABC 的中位线,∴AB =2DE ,∵DE =2,∴AB =4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质. 15.4【分析】设D 的坐标是,则B 的坐标是,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是,则B 的坐标是,∵∴,∵D 在上,∴.故答案是:4.【点睛】解析:4【分析】设D 的坐标是()a b ,,则B 的坐标是()2a b ,,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是()a b ,,则B 的坐标是()2a b ,, ∵OABC 8S =矩形∴28ab =,∵D 在k y x=上, ∴1842k ab ==⨯=. 故答案是:4.【点睛】 本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.16.1【分析】先判断出事件A 是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A )=1,故答案为:1.【点睛】解析:1【分析】先判断出事件A 是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P (A )=1,故答案为:1.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.【分析】根据平均数的计算公式,可得,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据的平均数为6,众数为5,∴中至少有一个是 解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.18.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.19.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角解析:103或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=5,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示,连结AC,在Rt△ABC中,AB=5,BC=12,∴AC=22512+=13,∵将ΔABE 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°,当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即将ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+,解得:10a 3=; ②当点B ′落在AD 边上时,如图2所示,此时ABEB ′为正方形,∴BE=AB=5,综上所述,BE 的长为103或5, 故答案为103或5. 【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.20.【分析】已知S△PAB=S 矩形ABCD ,则可以求出△ABP 的高,此题为“将军饮马”模型,过P 点作直线l∥AB,作点A 关于l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.【详解41【分析】已知S △PAB =13S 矩形ABCD ,则可以求出△ABP 的高,此题为“将军饮马”模型,过P 点作直线l ∥AB ,作点A 关于l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.【详解】解:设△ABP 中AB 边上的高是h .∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=22225441+=+=AB AE,即PA+PB的最小值为41.故答案为:41.【点睛】本题主要考查的是勾股定理以及“将军饮马”的模型,“将军饮马”模型主要是用来解决最小值问题,掌握这模型是解题的关键.三、解答题21.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.22.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.23.(1)150人;(2)见解析;(3)192人【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人).【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)---,根据关于原点对称的点的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)--,描点连线,△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---,故答案为:(1,1),(5,3),(3,1)---.【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.25.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【详解】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC ,∴四边形AECF 是平行四边形,∵CF 是∠BCA 的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF 是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF 是平行四边形,并证明∠ECF 是90°.26.证明见解析【分析】连接AE 、CF ,证明四边形AECF 为平行四边形即可得到AC 、EF 互相平分.【详解】解:连接AE 、CF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD ﹦BC ,又∵DF ﹦BE ,∴AF ﹦CE ,又∵AF ∥CE ,∴四边形AECF 为平行四边形,∴AC 、EF 互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.27.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数(2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解.【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x-=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b=-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0.故答案为:43x ≥或x <0. 【点睛】 本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.28.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..。
苏教版八年级下学期数学期中测试卷一、选择题: (本大题共10小题,每题3分,共30分.)1. 下列图形中,不是中心对称图形是( ) A. B. C. D.2. 下列四种说法中不正确的是( )A. 为了解一种灯泡的使用寿命,宜采用普查的方法;B. “在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;C. “打开电视机,正在播放少儿节目”是随机事件;D. 如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.3. 一只不透明的口袋中原来装有1个白球、2个红球,每个球除颜色外完全相同.则下列将袋中球增减的办法中,使得将球摇匀,从中任意摸出一个球,摸到白球与摸到红球的概率不相等为( )A. 在袋中放入1个白球B. 在袋中放入1个白球、2个红球C. 在袋中取出1个红球D. 在袋中放入2个白球、1个红球 4. 下列分式是最简分式的是( ) A. 22a a ab+ B. 63xy a C. 211x x -+ D. 211x x ++ 5. 若222x x y +中的x 和y 的值都缩小2倍,则分式的值( ) A. 缩小2倍B. 缩小4倍C. 扩大2倍D. 扩大4倍6. 下列命题中是真命题的是( )A. 两条对角线相等的四边形是矩形;B. 有一条对角线平分一个内角的平行四边形为菱形;C. 对角线互相垂直且相等的四边形是正方形;D. 依次连结四边形各边的中点,所得四边形是菱形. 7. 如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A. 68°B. 20°C. 28°D. 22°8. 小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A. ①,②B. ①,④C. ③,④D. ②,③9. 如图,四边形ABCD是正方形,直线a,b,c分别通过A,B,C三点,且////a b c,若a与b的距离为5,b与c的距离为7,则正方形ABCD的面积等于( )A. 148B. 70C. 144D. 7410. 如图,在矩形ABCD中,AB=10,BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN 的最小值为()A. 10B. 8C. 5D. 6二、填空题: (本大题共8小题,每题2分,共16分.)11. 若分式242aa-+的值为0,则a的值为____.12. 有5张看上去无差别的卡片,上面分别写着02,227,1.333,随机抽取1张,则取出的数是无理数的概率是_______.13. 已知平行四边形ABCD中,∠C=2∠B,则∠A=___________度.14. 若关于x 的方程2111x mx x++=--产生增根,则m的值为___________15. 菱形的周长为40,两条对角线之比为3: 4,则菱形的面积为_________________.16. 若112a b-=,则422a ab ba ab b+---的值是________ 17. 如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是_____________.18. 如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是___.三、解答题: (本大题共8小题,共54分. 解答需写出必要的文字说明或演算步骤)19.计算或解方程: (1)23232y y x x⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭(2) 214111x x x+-=--20. 先化简228(2)242m m m m m m+÷-+--,若22m-≤≤,请你选择一个你喜欢的整数,代入求值.21. 如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作:(1)在第二象限内的格点上..........画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是____________,△ABC的面积是_____________________.(2)画出△ABC,以点C为旋转中心、旋转180°后的△A′B′C,连结AB′和A′B,则四边形AB A′B′的形状是何特殊四边形?___________________.(3)在坐标轴上是否存在P点,使得△PAB与△CAB的面积相等?若存在,请直接写出点P的坐标(写出一种情况即可)___________________.22. 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位: kg)分成五组(A: 39.5~46.5;B: 46.5~53.5;C: 53.5~60.5;D: 60.5~67.5;E: 67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?23. 如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证: 四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.24. 今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.(1) 求v的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的23,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.25. 如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段______和______;:ABCD AEFG S S =矩形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长;(3)如图4,梯形ABCD 纸片满足//AD BC ,AD BC <,AB BC ⊥,8AB =,10CD =.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长.答案与解析一、选择题: (本大题共10小题,每题3分,共30分.)1. 下列图形中,不是中心对称图形是( ) A. B. C. D.【答案】B【解析】分析: 根据中心对称图形的定义判断即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.详解: A 、C 、D 符合中心对称图形的定义,是中心对称图形;B 不符合中心对称图形的定义,不是中心对称图形,是轴对称图形.故选B.点睛: 本题考查了中心对称图形的识别,准确掌握中心对称图形的定义是解答本题的关键. 2. 下列四种说法中不正确的是( )A. 为了解一种灯泡的使用寿命,宜采用普查的方法;B. “在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;C. “打开电视机,正在播放少儿节目”是随机事件;D. 如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.【答案】A【解析】分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据随机事件、必然事件、不可能事件,可得答案.详解: A.为了解一种灯泡的使用寿命,调查具有破坏性,宜采用抽样调查的方法,A 错误;B.”在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B 正确;C.”打开电视机,正在播放少儿节目”是随机事件,故C 正确;D.如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,故D 正确;故选A . 点睛: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查;随机事件是可能发生也可能不发生的事件,必然事件是一定发生的事件,不可能事件是一定不发生的事件.3. 一只不透明的口袋中原来装有1个白球、2个红球,每个球除颜色外完全相同.则下列将袋中球增减的办法中,使得将球摇匀,从中任意摸出一个球,摸到白球与摸到红球的概率不相等为( )A. 在袋中放入1个白球B. 在袋中放入1个白球、2个红球C. 在袋中取出1个红球D. 在袋中放入2个白球、1个红球 【答案】B【解析】分析: 根据概率公式,分别求出各选项中摸到白球与摸到红球的概率即可求解.详解:A 、在袋中放入1个白球,则摸到白球的概率为: 1111212+=++,摸到红球的概率为: 211212=++,故本选项不符合题意;B 、在袋中放入1个白球、2个红球,则摸到白球的概率为: 11112123+=+++,摸到红球的概率为: 22212123+=+++,故本选项符合题意; C 、在袋中取出1个红球,则摸到白球的概率为:111212=+-,摸到红球的概率为: 2111212-=+-,故本选项不符合题意;D 、在袋中放入2个白球、1个红球,则摸到白球的概率为: 12112212+=+++,摸到红球的概率为: 21112212+=+++,故本选项不符合题意; 故选B .点睛: 本题考查了概率公式: 概率=所求情况数与总情况数之比,熟练掌握概率的计算公式是解答本题的关键.4. 下列分式是最简分式的是( ) A. 22a a ab+ B. 63xy a C. 211x x -+ D. 211x x ++ 【答案】D【解析】 A 选项中,分式分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确.故选D .点睛: 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.5. 若222x x y+中的x 和y 的值都缩小2倍,则分式的值( ) A. 缩小2倍B. 缩小4倍C. 扩大2倍D. 扩大4倍【答案】C【解析】 分析: 依题意分别用12x 和12y 去代换原分式中的x 和y ,利用分式的基本性质化简即可. 详解: 分别用12x 和12y 去代换原分式中的x 和y 得, 222222124211114422x x x x y x y x y ⨯==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,∴分式的值变为原来的2倍.故选C.点睛: 本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6. 下列命题中是真命题的是( )A. 两条对角线相等的四边形是矩形;B. 有一条对角线平分一个内角的平行四边形为菱形;C. 对角线互相垂直且相等的四边形是正方形;D. 依次连结四边形各边的中点,所得四边形是菱形.【答案】B【解析】分析: 根据菱形、矩形和正方形的判定来逐一分析各个选项,从而选出正确的答案.详解: A. ∵两条对角线相等的四边形可能是等腰梯形,故A 不正确;B. 有一条对角线平分一个内角的平行四边形为菱形,正确;如图,四边形ABCD 是平行四边形,BD 平分∠ABC .求证: 四边形ABCD是菱形.证明: ∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3.∵BD平分∠ABC,∴∠1=∠2,∴∠1=∠3,∴AB=AD,∴四边形ABCD是菱形.C. ∵对角线互相垂直且相等的四边形可能是筝形,故C不正确;D. ∵依次连结四边形各边的中点,所得四边形是平行四边形,故D不正确.点睛: 本题主要考查命题的概念、平行四边形的判定定理、菱形的判定定理、矩形的判定定理以及正方形的判定定理.用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.7. 如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A. 68°B. 20°C. 28°D. 22°【答案】D【解析】试题解析: ∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.8. 小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A. ①,②B. ①,④C. ③,④D. ②,③【答案】D【解析】【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.a b c,若a与b的距离9. 如图,四边形ABCD是正方形,直线a,b,c分别通过A,B,C三点,且////为5,b与c的距离为7,则正方形ABCD的面积等于( )A. 148B. 70C. 144D. 74【答案】D【解析】分析: 过A作AM⊥直线b于M,过D作DN⊥直线c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根据AAS推出△AMD≌△CND,根据全等得出AM=CN,求出AM=CN=5,DN=7,在Rt△DNC中,由勾股定理求出DC2即可.详解: 如图:过A作AM⊥直线b于M,过D作DN⊥直线c于N,则∠AMD=∠DNC=90°,∵直线b∥直线c,DN⊥直线c,∴∠2+∠3=90°,∵四边形ABCD是正方形,∴AD=DC,∠1+∠2=90°,∴∠1=∠3,在△AMD和△CND中,∵∠1=∠3,∠AMD=∠CND,AD=DC,∴△AMD≌△CND,∴AM=CN,∵a与b之间的距离是5,b与c之间的距离是7,∴AM=CN=5,DN=7,在Rt△DNC中,由勾股定理得: DC2=DN2+CN2=72+52=74,即正方形ABCD的面积为74,故选B.点睛: 本题考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线,并进一步求出△AMD≌△CND,难度适中.10. 如图,在矩形ABCD中,AB=10,BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN 的最小值为()A. 10B. 8C. 5D. 6【答案】B【解析】【分析】过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段.【详解】解: 过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,5AC边上的高为55∵△ABC∽△EFB,∴AB ACEF BE=,即1055EF45=EF=8.故选B.考点: 轴对称-最短路线问题.二、填空题: (本大题共8小题,每题2分,共16分.)11. 若分式242aa-+的值为0,则a的值为____.【答案】2【解析】【分析】先进行因式分解和约分,然后求值确定a【详解】原式=(2)(2)22a aaa=-++-∵值为0∴a-2=0,解得: a=2故答案为: 2【点睛】本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立12. 有5张看上去无差别的卡片,上面分别写着02,227,1.333,随机抽取1张,则取出的数是无理数的概率是_______.【答案】0.4【解析】解: 一共有5个数,无理数有π2共2个,∴抽到写有无理数的卡片的概率是2÷5=0.4.故答案为0.4.点睛: 考查概率公式的应用;判断出无理数的个数是解决本题的易错点.13已知平行四边形ABCD中,∠C=2∠B,则∠A=___________度.【答案】120°【解析】试题分析: 根据题意得: ∠B+∠C=180°,则∠B=60°,∠C=120°,则∠A=∠C=120°.考点: 平行四边形的性质.14. 若关于x的方程2111x mx x++=--产生增根,则m的值为___________【答案】2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x-1=0,求出x的值,代入整式方程即可求出m 的值.【详解】去分母得: x+2=m+1,由分式方程有增根,得到x−1=0,即x=1,把x=1代入整式方程得: m=2,故答案为2.【点睛】此题考查分式方程的增根,解题关键在于掌握运算法则.15. 菱形的周长为40,两条对角线之比为3: 4,则菱形的面积为_________________.【答案】96【解析】【分析】根据已知可分别求得两条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可得到其面积.【详解】设两条对角线长分别为3x,4x,根据勾股定理可得(32x)2+(42x)2=102,解之得,x=4,则两条对角线长分别为12、16,∴菱形的面积=12×16÷2=96.故答案为96.【点睛】此题主要考查菱形的面积公式: 两条对角线的积的一半,综合利用了菱形的性质和勾股定理16. 若112a b-=,则422a ab ba ab b+---的值是________【答案】2 -5.【解析】解: ∵1a﹣1b=2,∴a﹣b=﹣2ab,∴原式=42a b aba b ab-+--()()=244ab abab ab-+--=25abab-=﹣25.故答案为﹣25.17. 如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是_____________.【答案】3【解析】分析: 连接CE,设DE=x,则AE=8-x,判断出OE是AC的垂直平分线,即可推得CE=AE=8-x,然后在Rt△CDE 中,根据勾股定理,求出DE的长是多少即可.详解: 如图,连接CE,,设DE=x,则AE=8-x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8-x,在Rt△CDE中,x2+42=(8-x)2,解得x=3,∴DE的长是3.故答案为3.点睛: 此题主要考查了矩形的性质、中垂线的性质和勾股定理,熟练掌握矩形的对角线互相平分和中垂线的性质是解题的关键.18. 如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是___.【答案】()n13-【解析】【分析】【详解】试题分析: 连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=1 2∴3∴3同理可得332,333,…按此规律所作的第n3)n-1三、解答题: (本大题共8小题,共54分. 解答需写出必要的文字说明或演算步骤)19. 计算或解方程: (1)23232y yx x⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭(2)214111xx x+-=--【答案】(1)489x y -;(2)x=1 【解析】分析: (1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x +1)(x -1),把分式方程转化为整式方程求解,解分式方程要验根;详解: (1)原式=232698y y x x ⎛⎫÷- ⎪⎝⎭=-262389y x x y ⨯=-489x y; (2)两边都乘以最简公分母(x+1)(x-1),得()22141x x +-=-,∴x 2+2x +1-4=x 2-1, ∴2x =2,∴1x =.点睛: 本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解分式方程的步骤是解答本题的关键.20. 先化简228(2)242m m m m m m +÷-+--,若22m -≤≤,请你选择一个你喜欢的整数,代入求值. 【答案】16【解析】分析: 先把括号里通分,再把除法转化为乘法,并把分子、分母分解因式约分化简,然后从22m -≤≤中选一个使分式有意义的数代入计算.详解: 原式= ()()2282222m m m m m m -++÷-- =()()222222m m m m m +-⨯-+ =()122m m + , 当1m =时,原式()()11222112m m ==+⨯⨯+=16(或当1m =-时,原式=12-).点睛: 本题考查了分式的化简求值,明确分式混合运算的顺序是解答本题的关键,不考虑分式有无意义,随便选数是本题的易错点.21. 如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作: (1)在第二象限内的格点上..........画一点C , 使点C 与线段AB 组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C 点坐标是____________,△ABC 的面积是_____________________.(2)画出△ABC ,以点C 为旋转中心、旋转180°后的△A′B′C ,连结AB′和A′B , 则四边形AB A′B′的形状是何特殊四边形?___________________.(3)在坐标轴上是否存在P 点,使得△PAB 与△CAB 的面积相等?若存在,请直接写出点P 的坐标(写出一种情况即可)___________________.【答案】 (1). C (-1,1) (2). 4 (3). 矩形 (4). P (0,2)或(-2,0)【解析】分析: (1)根据网格特征选择即可(答案不唯一),利用勾股定理可验证腰长为无理数,用割补法求出△ABC 的面积;(2)由于旋转180°后与原图形成中心对称,所以延长AC 、BD ,使'CA AC =,'CB BC =,即可画出图形,然后根据矩形的判定方法说明即可;(3)根据网格特征选择,然后求出面积验证.详解: (1)如图,取点C (-1,1),则221310+=△ABC 的面积=4×4-111332213134222⨯-⨯⨯-⨯⨯-⨯⨯=. (2)延长AC 、BD ,使'CA AC =,'CB BC =,连接AB′,A′B ,B′′B ,由题意可知,BC=CB′,AC=C A′,∴四边形ABA′B′是平行四边形,又∵AA′=BB′,∴四边形ABA′B′是矩形;(3)如图,当P 1(0,2)时,S △ABP1=11188422AB AP ⋅=⨯⨯=,符合题意; 当P 2(-2,0)时, S △ABP1=21188422AB BP ⋅=⨯⨯=,符合题意; ∴P 点坐标是(0,2)或(-2,0).点睛: 本题考查了旋转作图,矩形的判定,勾股定理的应用,坐标平面内求图形的面积,明确旋转180°后与原图形成中心对称,熟练运用勾股定理求线段的长是解答本题的关键.22. 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位: kg )分成五组(A: 39.5~46.5;B: 46.5~53.5;C: 53.5~60.5;D: 60.5~67.5;E: 67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是 ,并补全频数分布直方图;(2)C 组学生的频率为 ,在扇形统计图中D 组的圆心角是 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【答案】(1)50;(2)0.32;72(3)360【解析】【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【详解】(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=1050×360°=72°;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=1850×100%×1000=360(人).考点: 频数分布直方图.23. 如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证: 四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【答案】(1)证明见解析(2)2【解析】(1)根据平行线的性质以及判定定理求得//DF AC 和//EC DB ,从而得证四边形BCED 是平行四边形;(2)根据角平分线的性质得DBN CBN =∠∠,再根据平行线的性质得CNB DBN =∠∠,从而得证BNC NBC =∠∠,根据等腰三角形的性质即可求出CN 的长.【详解】(1)∵∠A=∠F∴//DF AC∵1DMF =∠∠,12∠=∠∴DMF =∠∠2∴//EC DB∴四边形BCED 是平行四边形(2)∵BN 平分∠DBC∴DBN CBN =∠∠∵//EC DB∴CNB DBN =∠∠∴BNC NBC =∠∠∴2CN BC DE ===.【点睛】本题考查了平行线相关的问题,掌握平行线的性质以及判定定理、平行四边形的性质以及判定定理、角平分线的性质、等腰三角形的性质是解题的关键.24. 今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km ,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h .(1) 求v 的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的23,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.【答案】(1) 15v =;(2)骑自行车的学生应提前76h 出发. 【解析】分析: (1)根据题意列出方程,求出方程的解即可得到v 的值;(2)根据题意求出骑自行车的速度,即可得到骑自行的学生应该提前的时间.详解: (1)由题意得:1515233v v =+ , 解之得,经检验: 15v =是方程的解;(2)自行车的速度变为210/3v km h =, 应该提前时间1515710456h -= , 则骑自行车的学生应提前76h 出发. 点睛: 本题考查了分式方程的实际应用,根据同时到达找出等量关系: 自行车行完全程所用时间=汽车行完全程所用时间+23是解答本题的关键. 25. 如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段______和______;:ABCD AEFG S S =矩形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长;(3)如图4,梯形ABCD 纸片满足//AD BC ,AD BC <,AB BC ⊥,8AB =,10CD =.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长. 【答案】 (1). AE (2). GF (3). 1: 2【解析】分析:(1)由图可直接得到第一、二空答案,根据折叠的性质可得△AEH 与△ABE 面积相等、梯形HFGA 与梯形FCDG 面积相等,据此不难得到第三空答案;(2)对图形进行点标注,如图所示: 首先根据勾股定理求得FH 的长,再根据折叠的性质以及请到的知识可得AH =FN ,HD =HN ,然后根据线段和差关系即可得到AD 的长;(3)根据题目信息,动手这一下,然后将结合画出来,再结合折叠的性质以及勾股定理的知识分析解答即可.详解: (1)根据题意得: 操作形成的折痕分别是线段AE、GF;由折叠的性质得: △ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,∴S矩形AEFG=12S平行四边形ABCD,∴S矩形AEFG: S平行四边形ABCD=1: 2;故答案为AE,GF,1: 2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH=22512=13,由折叠的性质得: AD=FH=13;由折叠的对称性可知: DH=NH,AH=HM,CF=FN. 易得△AEH≌CGF,所以CF=AH,所以AD=DH+AH=HN+FN=FH=13.(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得: AD=BG,AE=BE=12AB=4,CF=DF=12CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM=222254CF FM-=-=3,∴AD=BG=BM-GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得: 四边形EMHG的面积=12梯形ABCD的面积,AE=BE=12AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=12CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴2254-,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=12(AD+BC)×8=2×25,∴AD+BC=252,∴BC=252-x,∴MC=BC-BM=252-x-3,∵MN=MC,∴3+x=252-x-3,解得: x=134,∴AD=134,BC=252-134=374;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=12CD=5,正方形的边长2,GM=FM=4,2254,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8-7=1,∴AD=5.点睛: 本题是四边形综合题,考查了折叠的性质,正方形的性质、勾股定理、梯形面积的计算、解方程等知识,本题综合性强,有一定难度.。
苏教版八年级下学期期中考试数学试题一、单项选择题(本大题共有8小题,每题3分,共24分)1. 若分式11a 有意义,则a 的取值范围是( ) A. a≠1 B. a≠0 C. a≠1且a ≠0 D. 一切实数2. 下列图形中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.3. 今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是( )A. 每位考生的数学成绩B. 3500名考生的数学成绩C. 被抽取的800名考生的数学成绩D. 被抽取的800名学生4. 菱形具有而矩形没有的性质是( )A. 对角线互相平分B. 对边相等C. 对角线相等D. 对角线互相垂直 5. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A. 15B.25 C. 35 D. 456. 如图,点P 是边长为2的菱形ABCD 的对角线AC 上一个动点,点M 、N 分别是AB 、BC 边上的中点,MP+NP 的最小值是( )A. 1B. 2C. 3D. 4 7. 已知1112a b -=,则ab a b -的值是 A. 12 B. -12 C. 2 D. -28. 如图,已知□AOBC 的顶点O(0,0),()A 34-,,点B (12,0),按以下步骤作图:①以点O 为圆心、适当长度为半径作弧,分别交OA 、OB 于点D ,E ;②分别以点D ,E 为圆心、大于12DE 的长为半径作弧,两弧∠AOB 在内交于点F ;③作射线OF ,交边AC 于点G ,则CG 的长为( )A. 6B. 7C. 8D. 9二、不定项选择题(本大题共有4小题,每题3分,共12分)9. 在下列各式中①11a -;②243x y ;③h π-;④23x +中,是分式的是( ) 10. 在平行四边形ABCD 中,在对角线BD 上取不同的两点E F ,(点B 、E 、F 、D 依次排列),下列条件中,能得出四边形AECF 一定为平行四边形的是_____________.(A. BE=DF ;B. AE=CF C. AE ∥CF ;D. ∠BAE=∠DCF )11. 数学家针对古希腊数学提出“几何代数”一词,指的是“用几何方法解决代数问题”.《几何原本》第2卷中有着丰富的几何代数内容,在斐波那契的《计算之书》中频繁运用了这种方法.如图,AB=x ,BC=2,矩形ABDE 和ACGH 的面积均是60,下面的代数式可以表示边DF 的是_________A. 60xB. 602x +C. 60(2)x x +D. 60602x x -+12. 如图,E ,F ,M 分别是正方形ABCD 三边的中点,CE 与DF 交于N ,连接AM ,AN ,MN 对于下列四个结论:①AM ∥CE ;②DF ⊥CE ;③AN=BC ;④∠AND=∠CMN . 其中错误的是( )A. ①B. ②C. ③D. ④三、填空题(本大题共有6小题,每题2分,共12分)13. 当x= ____________时,分式123x x -+的值为零. 14. 新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是_____________ .(填“普查”或“抽样调查”)15. 如图,在周长为10 cm 的□ABCD 中,AB≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于点E ,连接BE ,则△ABE 的周长为 .16. 如图,在△ABC 中,∠CAB =70°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为_____.17. 菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=22,则点B 的坐标为_________.18. 已知x 为整数,且分式2221x x +-的值为整数,则x = ______ . 四、解答题(本大题共有8小题,共72分)19. 计算(1)2223211a aa a---++(2)21424xx x---20. 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数 1 2 3 4 5 6出现的次数10 9 6 9 8 8填空:此次实验中,“1点朝上”的频率是;②小亮说:“根据试验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)小明也做了大量的同一试验,并统计了“1点朝上”的次数,获得的数据如下表: 试验总次数100 200 500 1000 2000 5000 100001点朝上的次数18 34 82 168 330 835 16601点朝上的频率0.180 0.170 0.164 0.168 0.165 0.167 0.166“1点朝上”的概率的估计值是.21. 化简:2212211x x xx x x+---÷--,并在-1≤x≤3中选取一个合适的整数x代入求值.22. 已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.23. 家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某校学生杨杨和舟舟为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是__ __.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:①m=__ __;n=__ __;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是__ __;④家庭过期药品的正确处理方式是送回收站点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站点. 24. 如图,在△ABC 中,∠BAC =90°,AD 是中线,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF . (1)求证:AD =AF ; (2)如果AB =AC ,试判断四边形ADCF 的形状,并证明你的结论.25. 已知,如图,菱形ABCD 的对角线相交于点O ,DE//AC ,CE//DB ,CE 、DE 相交于E 点. (1)求证:四边形DOCE 是矩形;(2)若四边形DOCE 的面积是3,AC+BD=10,则求AB 的长.26. 观察下列式子,111122=-⨯,1112323=-⨯,1113434=-⨯,…… (1)用正整数n 表示这个规律,并加以证明; (2)设111()1223(1)F n n n ,解决下列问题: ①(10)F __ __.②求证:222(2)(3)()(1)()23F F F n F F n n . 27. 如图1,分别沿矩形纸片ABCD 和正方形EFGH 纸片的对角线AC ,EG 剪开,拼成如图2所示的平行四边形KLMN ,若中间空白部分恰好是正方形OPQR .(1)若AB=m ,BC=n ,用含m 、n 的代数式表示正方形EFGH 的边长;(2)若正方形EFGH 的面积为25,求平行四边形KLMN 的面积;(3)平行四边形KLMN 是否能为菱形?请说明理由.答案与解析一、单项选择题(本大题共有8小题,每题3分,共24分)1. 若分式11a-有意义,则a的取值范围是()A. a≠1B. a≠0C. a≠1且a≠0D. 一切实数【答案】A【解析】分析:根据分母不为零,可得答案详解:由题意,得10a-≠,解得 1.a≠故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.2. 下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.【答案】D【解析】【分析】根据轴对称与中心对称的定义分别判断即可,轴对称图形是:一定要沿某直线折叠后直线两旁的部分互相重合;中心对称图形是:图形绕某一点旋转180°后与原来的图形重合.【详解】解:A.是中心对称图形,不是轴对称图形,故此选项错误;B.不是中心对称图形,是轴对称图形,故此选项错误;C.不是中心对称图形,不是轴对称图形,故此选项错误;D. 是中心对称图形,是轴对称图形,故此选项正确;故答案为:D.【点睛】本题考查的知识点主要是区分轴对称图形与中心对称图形,熟记二者的定义可以快速的对图形做出判断,轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形.3. 今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是()A. 每位考生的数学成绩B. 3500名考生的数学成绩C. 被抽取的800名考生的数学成绩D. 被抽取的800名学生【答案】C【解析】【分析】根据样本的定义求解.【详解】解:A是个体,B是总体,C是样本,今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是抽取的800名考生的数学成绩为样本.故选C.【点睛】本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.4. 菱形具有而矩形没有的性质是()A. 对角线互相平分B. 对边相等C. 对角线相等D. 对角线互相垂直【答案】D【解析】【分析】由菱形的对角线互相平分且垂直,矩形的对角线相等且互相平分,即可求得答案.【详解】解:∵菱形具有的性质:对角线互相垂直,对角线互相平分;矩形具有的性质:对角线相等,四个角都是直角,对角线互相平分;∴菱形具有而矩形不具有的性质是:对角线互相垂直.故选:D.【点睛】此题考查了矩形的性质与菱形的性质.注意熟记菱形与矩形的性质区别是关键.5. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A. 15B.25C.35D.45【答案】C 【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷=故选C6. 如图,点P是边长为2的菱形ABCD的对角线AC上一个动点,点M、N分别是AB、BC边上的中点,MP+NP的最小值是()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】如图,作点M关于AC的对称点M′,连接M′N交AC于P,根据菱形的性质及轴对称性质可得PM=PM′,此时MP+NP有最小值NM′.然后证明四边形AM′NB是平行四边形,即可求出NM′=AB=2.【详解】作点M关于AC的对称点M′,连接M′N交AC于P,∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,PM=PM′,∴MP+PN=NM′,此时MP+NP有最小值,∵N 是BC 边上的中点,∴AM′∥BN ,AM′=BN ,∴四边形AM′NB 是平行四边形,∴NM′=AB=2.故选:B .【点睛】本题考查菱形的性质、轴对称的性质及平行四边形的判定等知识的综合应用.根据轴对称性质得出NM ′为MP+PN 最小值是解题关键.7. 已知1112a b -=,则ab a b -的值是 A. 12 B. -12 C. 2 D. -2【答案】D【解析】分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.解答:解:∵, ∴a ab -=, ∴=, ∴=-2.故选D .8. 如图,已知□AOBC 的顶点O(0,0),()A 34-,,点B (12,0),按以下步骤作图:①以点O 为圆心、适当长度为半径作弧,分别交OA 、OB 于点D ,E ;②分别以点D ,E 为圆心、大于12DE 的长为半径作弧,两弧∠AOB 在内交于点F ;③作射线OF ,交边AC 于点G ,则CG 的长为( )A. 6B. 7C. 8D. 9【答案】B【解析】【分析】如图,先利用勾股定理计算出OA=5,再利用基本作图和平行线的性质得到∠AOG=∠AGO,则AG=AO=5,从而得到G点坐标,即可得出CG的长.【详解】如图,∵▱AOBC的顶点A的坐标为(-3,4),∴AC∥OB,2234=5,AM=3,OM=4,由作法得OG平分∠AOB,∴∠AOG=∠BOG,而AC∥OB,∴∠AGO=∠BOG,∴∠AOG=∠AGO,∴AG=AO=5,∴MG=5-3=2,∴G点坐标为(2,4).∵点B(12,0),A点坐标为(-3,4).∴C的坐标为(9,4)∴CG的长为9-2=7,故选:B.【点睛】此题考查作图-基本作图,平行四边形的性质,解题关键在于熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).二、不定项选择题(本大题共有4小题,每题3分,共12分)9. 在下列各式中①11a -;②243x y ;③h π-;④23x +中,是分式的是( ) 【答案】①④【解析】【分析】 根据分式的定义对四个选项依次判断即可; 【详解】①11a -,分母含有字母,是分式; ②243x y ,分母中不含字母,不是分式; ③h π-,分母中不含字母,不是分式; ④23x +,分母含有字母,是分式; 故答案是:①④【点睛】本题主要考查分式的基本定义,熟练掌握分式的定义是求解本题的关键.10. 在平行四边形ABCD 中,在对角线BD 上取不同的两点E F ,(点B 、E 、F 、D 依次排列),下列条件中,能得出四边形AECF 一定为平行四边形的是_____________.(A. BE=DF ;B. AE=CF C. AE ∥CF ;D. ∠BAE=∠DCF )【答案】ACD【解析】【分析】连接AC 与BD 相交于O ,根据平行四边形的对角线互相平分可得OA=OC ,OB=OD ,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF 即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC 与BD 相交于O ,在▱ABCD 中,OA=OC ,OB=OD ,要使四边形AECF 平行四边形,只需证明得到OE=OF 即可;A 、若BE=DF ,则OB-BE=OD-DF ,即OE=OF ,故本选项不符合题意;B 、若AE=CF ,则无法判断OE=OE ,故本选项符合题意;C 、AE ∥CF 能够利用“角角边”证明△AOE 和△COF 全等,从而得到OE=OF ,故本选项不符合题意;D 、∠BAE=∠DCF 能够利用“角角边”证明△ABE 和△CDF 全等,从而得到DF=BE ,然后同A ,故本选项不符合题意;故答案为:ACD .【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.11. 数学家针对古希腊数学提出“几何代数”一词,指的是“用几何方法解决代数问题”.《几何原本》第2卷中有着丰富的几何代数内容,在斐波那契的《计算之书》中频繁运用了这种方法.如图,AB=x,BC=2,矩形ABDE和ACGH的面积均是60,下面的代数式可以表示边DF的是_________A. 60 xB.602x+C.60(2)x x+D.60602x x-+【答案】D【解析】【分析】根据图形和两个矩形的面积均为60可得:(x+2)y=60,x(y+DF)=60,再通过运算表示出DF即可.【详解】解:设AH=y,∵矩形ABDE和ACGH的面积均是60,则有:(x+2)y=60,x(y+DF)=60,∴y=602x+,代入x(y+DF)=60中,()26060612002DF x y x x x x=-=-=++,故答案为:D. 【点睛】本题考查了二元一次方程(组)的应用,解题的关键是根据条件表示出矩形的面积.12. 如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中错误的是()A. ①B. ②C. ③D. ④【答案】D【解析】【分析】 证四边形AECM 为平行四边形得①正确,证DCF ∆≌CBE ∆(SAS)易得②正确,证AM 垂直平分DN 得到③正确,而推导不出∠AND=∠CMN ,故④错误【详解】解:∵正方形ABCD ,M,E 分别为DC ,AB 的中点,∴CM ∥AE ,CM=AE,∴四边形AECM 为平行四边形,∴AM//CE ,①正确;∵CD=BC,∠DCB=∠CBE=90°,CF=BE ,∴DCF ∆≌CBE ∆(SAS),∴∠1=∠2,∵∠2+∠3=90°,∴∠1+∠3=90°,∴DF ⊥CE ,∴②正确;∵Rt DCN ∆,M 为斜边DC 的中点,∴DM=CM=MN ,∵AM//CE ,DF ⊥CE ,∴AM ⊥DF ,∴AM 垂直平分DN ,∴AD=AN=BC ,∴③正确,∴∠AND=∠ADN ,∵∠1+∠AND=90°,∠1+∠3=90°,∴∠AND=∠3=∠MNC≠∠CMN ,故④错误.故答案为D.【点睛】本题主要考查了正方形的性质的综合运用,还考查了平行四边形的判定与性质,全等三角形,直角三角形斜边上的中线等于斜边的一半,等腰三角形的三线合一,垂直平分线的判定性质,综合性较强,但难度适中,是中考常考的能力题.三、填空题(本大题共有6小题,每题2分,共12分)13. 当x= ____________时,分式123x x -+的值为零. 【答案】1【解析】【分析】根据分式的值为0即分子为0以及分式有意义的条件,列方程求解即可得到答案;【详解】解:要使分式123xx-+的值为零,即:10 230 xx-=⎧⎨+≠⎩,解得:1x=,故答案为:1;【点睛】本题主要考查了分式为0的条件,即分子为0,在求解时,还注意解得的结果要使分式有意义,即分母不为0;14. 新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是_____________.(填“普查”或“抽样调查”)【答案】普查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行解答即可.【详解】解:因为新冠肺炎疫情事关重大,学生上学必须进行体温检测,所以采用的调查方式是普查,故答案为:普查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15. 如图,在周长为10 cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.【答案】5cm.【解析】试题分析:先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=5cm.考点:1.平行四边形的性质;2.线段垂直平分线的性质.16. 如图,在△ABC中,∠CAB=70°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为_____.【答案】40°【解析】【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′等于旋转角,然后利用等腰三角形的性质和三角形内角和定理计算出∠CAC′的度数即可.【详解】解:∵CC′∥AB,∴∠ACC′=∠CAB=70°,∵将△ABC在平面内绕点A旋转到△AB′C′的位置,∴AC=AC′,∠CAC′等于旋转角,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴旋转角的度数为40°.故答案为40°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形两底角相等的性质,平行线的性质以及三角形内角和定理,熟记性质并准确识图是解题的关键.17. 菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,2,则点B的坐标为_________.【答案】(22+2,2)【解析】 【分析】根据菱形的性质,作CD ⊥x 轴,先利用三角函数求出OD 、CD 的长度,从而得出C 点坐标,然后利用菱形的性质求得点B 的坐标.【详解】解:由题意可得OA=OC=2AOC=45°,∴CD=OCsin45°=2,OD=OCcos45°=2, 点C 的坐标为(2,2),则点B 的坐标为(22,2).故答案为(2,2).【点睛】本题综合考查了菱形的性质和坐标的确定,解答本题的关键有两点,①掌握菱形的四边相等,②理解三角函数的定义,及各三角函数在直角三角形中的表示形式.18. 已知x 为整数,且分式2221x x +-的值为整数,则x = ______ . 【答案】0或2或3【解析】【分析】【详解】分式()()()2212221111x x x x x x ++==-+--, ∵分式2221x x +-的值为整数, ∴x -1=﹣2或﹣1或1或2,∴x =﹣1或0或2或3,又∵x 2-1≠0,即x ≠±1,∴x =0或2或3.故答案为0或2或3.【点睛】解此题关键在于将原式化简,然后写出x 可能的值即可,但是需要注意的是分式的分母的值不能为零.四、解答题(本大题共有8小题,共72分)19. 计算(1)2223211a a a a ---++ (2)21424x x x --- 【答案】(1)1a -;(2)124x +. 【解析】【分析】(1)先将分子进行合并,然后因式分解,约分求解即可;(2)先将分母进行因式分解,然后通分计算即可; 【详解】(1)原式=211a a -+ =1a -(2)原式=222(2)(2)2(2)(2)x x x x x x +-+-+- =22(2)(2)x x x -+- =124x + 【点睛】本题主要考查分式的化简,熟练掌握分式的化简过程是求解本题的关键.20. 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下: 朝上的点数1 2 3 4 5 6 出现的次数10 9 6 9 8 8填空:此次实验中,“1点朝上”的频率是;②小亮说:“根据试验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)小明也做了大量的同一试验,并统计了“1点朝上”的次数,获得的数据如下表: .“1点朝上”的概率的估计值是.【答案】(1)①0.2;②不正确;(2)0.166.【解析】【分析】(1)①利用频数除以总数=频率进而得出答案;②利用频率与概率的区别进而得出答案;(2)利用频率估计概率的方法得出概率的估计值.【详解】(1)①此次实验中,“1点朝上”的频率是:100.2 50=,故答案为0.2;②不正确,因为在一次实验中频率并不等于概率,只有当实验中试验次数很大时,频率才趋近于概率.(2)根据图表中数据可得出:“1点朝上”的概率的估计值是0.166.故答案为0.166.【点睛】考查利用频率估计概率,正确理解频率与概率的区别与联系是解题的关键.21. 化简:2212211x x xx x x+---÷--,并在-1≤x≤3中选取一个合适的整数x代入求值.【答案】11x-+;x=3时,原式=14-.【解析】【分析】首先将除法转化为乘法,约分,再通分,最后根据分式有意义的条件,选择适合的数代入计算即可得答案.【详解】原式=2212•112x x x x x x +----- =22111x x x x +--- =2222111x x x x x ++--- =211x x -- =11x -+, ∵2212211x x x x x x+---÷--有意义, ∴x≠±1,x≠0,x≠2,∵-1≤x≤3,x 为整数∴x=3,当x=3时,原式=14-. 【点睛】本题考查分式的化简求值.熟练掌握分式的运算法则是解题关键.22. 已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.【答案】证明见解析.【解析】【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC ,设对角线交于点O .∵四边形ABCD 是平行四边形,∴OA=OD ,OB=OC .∵AE=DF ,OA ﹣AE=OD ﹣DF ,∴OE=OF .∴四边形BEDF 是平行四边形.23. 家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某校学生杨杨和舟舟为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是__ __.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:①m=__ __;n=__ __;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是__ __;④家庭过期药品的正确处理方式是送回收站点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站点.【答案】(1)③;(2)①20%,6%;②见解析;③B;④估计为18万户.【解析】【分析】(1)根据抽样调查时选取的样本需具有代表性即可求解;(2)①首先根据A类有80户,占8%,求出抽样调查的家庭总户数,再用D类户数除以总户数求出m,用E类户数除以总户数求出n;②用总户数分别减去A、B、D、E、F类户数,得到C类户数,即可补全条形统计图;③根据调查数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④用180万户乘以样本中送回收点的户数所占百分比即可.【详解】解:(1)根据抽样调查时选取的样本需具有代表性,可知下列选取样本的方法最合理的一种是③. ①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)①抽样调查的家庭总户数为:80÷8%=1000(户),200%20%201000m m ===,, 60%6%61000n n ===,.故答案为:20%,6%;②C 类户数为:1000-(80+510+200+60+50)=100, 条形统计图补充如下:③根据调查数据,即可知道该市市民家庭处理过期药品最常见的方式是B 类; ④180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24. 如图,在△ABC 中,∠BAC =90°,AD 是中线,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF . (1)求证:AD =AF ;(2)如果AB =AC ,试判断四边形ADCF 的形状,并证明你的结论.【答案】(1)详见解析;(2)四边形ADCF 是正方形,证明详见解析. 【解析】 【分析】(1)由E 是AD 的中点,AF ∥BC ,易证得△AEF ≌△DEB ,即可得AF =BD ,又由在△ABC 中,∠BAC =90°,AD 是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD =BD =CD =12BC ,即可证得:AD =AF ;(2)由AF =BD =DC ,AF ∥BC ,可证得:四边形ADCF 是平行四边形,又由AB =AC ,根据三线合一的性质,可得AD ⊥BC ,AD =DC ,继而可得四边形ADCF 是正方形. 【详解】解:(1)证明:∵AF ∥BC , ∴∠EAF =∠EDB , ∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEB 中,EAF EDB AE DEAEF DEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DEB (ASA ), ∴AF =BD ,∵在△ABC 中,∠BAC =90°,AD 是中线, ∴AD =BD =DC =12BC , ∴AD =AF ;(2)解:四边形ADCF 是正方形. ∵AF =BD =DC ,AF ∥BC , ∴四边形ADCF 是平行四边形, ∵AB =AC ,AD 是中线, ∴AD ⊥BC , ∵AD =AF ,∴四边形ADCF 是正方形.【点睛】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中.25. 已知,如图,菱形ABCD 的对角线相交于点O ,DE//AC ,CE//DB ,CE 、DE 相交于E 点. (1)求证:四边形DOCE 是矩形;(2)若四边形DOCE 的面积是3,AC+BD=10,则求AB 的长.【答案】(1)见解析;(219 【解析】 【分析】(1)根据//DE AC ,//CE BD ,得到四边形 OCED 是平行四边形,在根据菱形ABCD 的对角线相交于点O ,得到OC BD ⊥,可证四边形 DOCE 是矩形;(2)设OD x =,OC y =,根据题意可得 5x y +=,3xy =,根据22222AB x y xyxy ,可以求出 AB . 【详解】证明:(1)//DE AC ,//CE BD ,∴四边形OCED 是平行四边形,菱形ABCD 的对角线相交于点O , ∴OC BD ⊥,∴四边形DOCE 是矩形; (2)设OD x =,OC y =, 3DOCES 矩形, 10ACBD ,即有:5x y +=,3xy =, ∴2222219AB x y xyxy ,∴19AB =【点睛】本题既考查了菱形的性质,矩形的判定与性质,熟悉相关性质是解题的关键. 26. 观察下列式子,111122=-⨯,1112323=-⨯,1113434=-⨯,…… (1)用正整数n 表示这个规律,并加以证明;(2)设111()1223(1)F n n n ,解决下列问题:①(10)F __ __.②求证:222(2)(3)()(1)()23F F F n F F n n .【答案】(1)111(1)1n n n n =-++,证明见解析;(2)①1011;②见解析.【解析】 【分析】(1)由已知等式知连续整数乘积的倒数等于各自倒数的差,据此可得; (2)利用()1n F n n 化简2()F n n 得到2()11F n nn n ,则可知222(2)(3)()(1)...23F F F n F n 1n n =+,即可求证.【详解】(1)规律为:111(1)1n n n n =-++证明:∵左边=11111(1)(1)(1)(1)1n n n n n n n n n n n n nn =右边,∴等式成立; (3)∵111()1223(1)F n n n ,∴11111111()1122334111n F n nn n n∴①(10)1011F . ②∵()1n F n n ,∴22()111n F n n nn n n ∴222(2)(3)()(1)...23F F F n F n 1111223(1)n n11111111223341nn111n =-+ 1n n =+ 即:222(2)(3)()(1)...()23F F F n F F n n .【点睛】本题主要考查数字的变化类及解分式方程,解题的关键是根据题意得出连续整数乘积的倒数等于各自倒数的差.27. 如图1,分别沿矩形纸片ABCD 和正方形EFGH 纸片的对角线AC ,EG 剪开,拼成如图2所示的平行四边形KLMN ,若中间空白部分恰好是正方形OPQR .(1)若AB=m ,BC=n ,用含m 、n 的代数式表示正方形EFGH 的边长; (2)若正方形EFGH 的面积为25,求平行四边形KLMN 的面积; (3)平行四边形KLMN 是否能为菱形?请说明理由.【答案】(1)2m n+;(2)50;(3)不能,理由见解析. 【解析】 【分析】(1)设正方形ORQP 的边长为a ,则:EF PMm a ,FG PL n a ,根据四边形EFGH 是正方形,得到EF FG =,即有mana ,2nm a,利用EF m a =+可以得到结果;(2)设正方形ORQP 的边长为a ,根据正方形EFGH 面积为25,可得5AB a ,5BCa ,据此可得平行四边形KLMN 的面积. (3)利用反证法,假设是菱形,则NKLK ,正方形EFGH 的边长为x ,可求出m=n ,则小正方形ROPQ边长为0,与题目描述相矛盾,所以假设不成立,不是菱形. 【详解】(1)设正方形ORQP 的边长为a , 则:EFPMm a ,FGPLn a ,、∵四边形EFGH 是正方形, ∴EF FG =,即有m ana∴2n ma ,∴22n mFanmm E m。
(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)(一共4套)苏教版八年级下册期中数学考试题+详细答案系列(第3套)一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.44.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%15.已知关于x的方程=3无解,则m的值为______.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为______.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.六、解答题(共5小题,满分46分)21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.22.(10分)(2017春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.参考答案与试题解析一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.4【考点】反比例函数的性质.【分析】根据反比例函数的性质可知“当k<0时,函数图象位于第二、四象限”,结合四个选项即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0.结合4个选项可知k=﹣1.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,结合函数图象所在的象限找出k值的取值范围是关键.4.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒【考点】利用频率估计概率.【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得文具盒.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.5.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%【考点】由实际问题抽象出分式方程.【分析】方程﹣=20中,表示乙单位人均捐款额,(1+20%)x表示甲单位的人数比乙单位的人数多20%,则表示甲单位人均捐款额,所以方程表示的等量关系为:乙单位比甲单位人均多捐20元,由此得出题中用“…”表示的缺失的条件.【解答】解:设乙单位有x人,那么当甲单位的人数比乙单位的人数多20%时,甲单位有(1+20%)x人.如果乙单位比甲单位人均多捐20元,那么可列出﹣=20.故选C.【点评】本题考查了由实际问题抽象出分式方程的逆应用,根据所设未知数以及方程逆推缺少的条件.本题难度适中.二.填空题(共有10小题,每小题2分,共20分)7.计算=2.【考点】二次根式的性质与化简.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.8.分式,的最简公分母是6x3(x﹣y).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.11.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB 的中点M,N,测得MN=32m,则A,B两点间的距离是64m.【考点】三角形中位线定理.【分析】根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.【点评】本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m<n (填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.某工厂原计划a天生产b件产品,现要提前2天完成,则现在每天要比原来多生产产品件.【考点】列代数式(分式).【分析】根据题意知原来每天生产件,现在每天生产件,继而列式即可表示现在每天要比原来多生产产品件数.【解答】解:根据题意,原来每天生产件,现在每天生产件,则现在每天要比原来多生产产品﹣=件,故答案为:.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5°.【考点】正方形的性质.【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为:22.5°.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.15.已知关于x的方程=3无解,则m的值为﹣4.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x﹣2=0,求出x=2,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:2x+m=3x﹣6,由分式方程无解得到x﹣2=0,即x=2,代入整式方程得:4+m=0,即m=﹣4.故答案为:﹣4【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为3.【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.【考点】分式的加减法.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=﹣==a+b;(2)原式=﹣=.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得,(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得,6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),解得,x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据x2﹣4x﹣1=0得出x2﹣4x=1,代入原式进行计算即可.【解答】解:原式=[﹣]•=•=•==,∵x2﹣4x﹣1=0,∴x2﹣4x=1∴原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.六、解答题(共5小题,满分46分)20.(10分)(2014•兴化市二模)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说50 c文学名著 d e(1)这次随机调查了200名学生,统计表中d=28;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是90°;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?【考点】频数(率)分布表;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,根据频率=频数÷总数,即可求出调查的学生数,进而求出d的值;(2)算出喜欢武侠小说的频率,乘以360°即可;(3)由(1)可知喜欢文学名著类书籍人数所占的频率,即可求出该校1500名学生中有多少名同学最喜欢文学名著类书籍.【解答】解:(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,所以这次随机调查的学生人数为:=200名学生,所以a=200×0.45=90,b=200×0.16=32,∴d=200﹣90﹣32﹣50=28;(2)武侠小说对应的圆心角是360°×=90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有1500×=210名;【点评】此题主要考查了条形图的应用以及用样本估计总体和频数分布直方图,根据图表得出正确信息是解决问题的关键.21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.【考点】反比例函数的应用.【分析】(1)设函数解析式为P=,把V=1.5m3时,p=16kPa代入函数解析式求出k值,即可求出函数关系式;(2)p=40代入求得v值后利用反比例函数的性质确定正确的答案即可.【解答】(1)解:设p与V的函数表达式为p=(k为常数).把p=16、V=1.5代入,得k=24即p与V的函数表达式为;(2)把p=40代入,得V=0.6根据反比例函数的性质,p随V的增加而减少,因此为确保气球不爆炸,气球的体积应不小于0.6m3.【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.22.(10分)(2016春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?【考点】分式方程的应用.【分析】(1)利用总工作量为1,分别表示出甲、乙完成的工作量进而得出等式求出答案;(2)分别求出甲、乙单独完成的费用以及求出甲、乙合作的费用,进而求出符合题意的答案.【解答】解:(1)设甲单独完成全部工程所用的时间为x天,则乙单独完成全部工程所用的时间为(x+6)天,根据题意得,+=1,解得,x=12,经检验,x=12是原方程的解,答:甲单独完成全部工程所用的时间为12天;(2)根据题意得上述3个方案都在20天内.甲单独完成的费用:12×4.5=54万元,乙单独完成的费用:18×2.5=45万元,甲乙合做完成的费用:12×2.5+4×4.5=48万元,即乙单独完成既能按时完工,又能使工程费用最少.【点评】此题主要考查了分式方程的应用,根据题意利用总工作量为1得出等式是解题关键.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【考点】菱形的性质;勾股定理.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.【考点】反比例函数综合题.【分析】(1)由直线与双曲线交于A、B两点,A点横坐标为4,代入正比例函数,可求得点A的坐标,继而求得k值;(2)首先根据对称性,可求得点B的坐标,结合图象,即可求得关于x的不等式的解集;(3)首先过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC,又由双曲线上有一点C的纵坐标为8,可求得点C 的坐标,继而求得答案;(4)由当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,根据平移的性质,即可求得答案.【解答】解:(1)∵直线与双曲线交于A、B两点,A点横坐标为4,∴点A的纵坐标为:y=×4=2,∴点A(4,2),∴2=,∴k=8;(2)∵直线与双曲线交于A、B两点,∴B(﹣4,﹣2),∴关于x的不等式的解集为:﹣4≤x<0或x≥4;(3)过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵双曲线上有一点C的纵坐标为8,∴把y=8代入y=得:x=1,∴点C(1,8),∴S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+8)×(4﹣1)=15;(4)如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,∵点A(4,2),点C(1,8),∴根据平移的性质可得:M(3,0),N(0,6)或M′(﹣3,0),N′(0,﹣6).【点评】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个3.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次 C .至少能中奖一次 D .中奖次数不能确定4.下列成语故事中所描述的事件为必然发生事件的是( ) A .水中捞月B .瓮中捉鳖C .拔苗助长D .守株待兔5.已知12x <≤ ,则23(2)x x -- ) A .2 x - 5 B .—2C .5 - 2 xD .26.如果a 32+,b 32,那么a 与b 的关系是( ) A .a +b =0 B .a =bC .a =1bD .a >b7.若分式42x x -+的值为0,则x 的值为( ) A .0 B .-2 C .4 D .4或-2 8.下列条件中,不能..判定平行四边形ABCD 为矩形的是( ) A .∠A =∠C B .∠A =∠BC .AC =BDD .AB ⊥BC9.若分式5x x-的值为0,则( ) A .x =0 B .x =5 C .x ≠0 D .x ≠5 10.在□ ABCD 中,∠A =4∠D ,则∠C 的大小是( )A .36°B .45°C .120°D .144°11.下列调查中,最适宜采用全面调查方式的是( ) A .调查某市成年人的学历水平 B .调查某批次日光灯的使用寿命 C .调查市场上矿泉水的质量情况 D .了解某个班级学生的视力情况12.下列判断正确的是( ) A .对角线互相垂直的平行四边形是菱形 B .两组邻边相等的四边形是平行四边形 C .对角线相等的四边形是矩形D .有一个角是直角的平行四边形是正方形 二、填空题13.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”) 14.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.15.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm 2,则阴影部分的面积为_____cm 2.16.如图,点D 、E 分别是△ABC 的边AB 、AC 的中点,若BC=6,则DE= .17.已知a ,b 是一元二次方程x 2﹣2x ﹣2020=0的两个根,则a 2+2b ﹣3的值等于_____. 18.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)19.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数k yx=(0)x>的图像过点B、C,若OAB∆的面积为8,则ABC∆的面积是_________.20.一个不透明的袋中装有3个红球,2个黑球,每个球除颜色外都相同.从中任意摸出3球,则“摸出的球至少有1个红球”是__事件.(填“必然”、“不可能”或“随机”)21.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.22.如图,点E在▱ABCD内部,AF∥BE,DF∥CE,设▱ABCD的面积为S1,四边形AEDF的面积为S2,则12SS的值是_____.23.已知1x,2x,…,10x的平均数是a;11x,12x,…,30x的平均数是b,则1x,2x,…,30x的平均数是_________.24.如图,已知22AB=,C为线段AB上的一个动点,分别以AC,CB为边在AB 的同侧作菱形ACED和菱形CBGF,点C,E,F在一条直线上,120D∠=︒,P、Q分别是对角线AE,BF的中点,当点C在线段AB上移动时,线段PQ的最小值为________.三、解答题25.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.26.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F 两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.27.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.28.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目 人数 歌曲 15 舞蹈 a 小品 12 相声 10 其它b(1)在此次调查中,该校一共调查了 名学生; (2)a = ;b = ;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数; (4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.29.如图,在△ABC 中,AB =AC ,点D 是边AB 的点,DE ∥BC 交AC 于点E ,连接BE ,点F 、G 、H 分别为BE 、DE 、BC 的中点. (1)求证:FG =FH ;(2)当∠A 为多少度时,FG ⊥FH ?并说明理由.30.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形31.某种油菜籽在相同条件下的发芽实验结果如表:(1)a = ,b = ;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?32.如图,已知一次函数y =x +2的图象与x 轴、y 轴分别交于点A ,B 两点,且与反比例函数y =mx的图象在第一象限交于点C ,CD ⊥x 轴于点D ,且OA =OD . (1)求点A 的坐标和m 的值;(2)点P 是反比例函数y =mx在第一象限的图象上的动点,若S △CDP =2,求点P 的坐标.33.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是 人; (2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为 度; (4)在扇形统计图中表示观点E 的百分比是 .34.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .(1)求证:BD DF =; (2)求证:四边形BDFG 为菱形;(3)若13AG =,6CF =,求四边形BDFG 的周长.35.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3,P m ⎛⎫ ⎪ ⎪⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?36.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =; (2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,4=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=124 2DE BD⋅=.故答案为B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.2.C解析:C【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】第1个,即不是轴对称图形,也不是中心对称图形,故本选项错误;第2个,既是轴对称图形,也是中心对称图形,故本选项正确;第3个,既是轴对称图形,也是中心对称图形,故本选项正确;第4个,既是轴对称图形,也是中心对称图形,故本选项正确.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念是解题关键.3.D解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生. 【详解】解:根据随机事件的定义判定,中奖次数不能确定. 故选D . 【点睛】解答此题要明确概率和事件的关系:()P A 0=①,为不可能事件; ()P A 1=②为必然事件; ()0P A 1<<③为随机事件. 4.B解析:B 【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A 、水中捞月是不可能事件,故A 错误; B 、瓮中捉鳖是必然事件,故B 正确; C 、拔苗助长是不可能事件,故C 错误; D 、守株待兔是随机事件,故D 错误; 故选B . 考点:随机事件.5.C解析:C 【分析】结合1 < x ≤ 2 ,根据绝对值和二次根式的进行计算,即可得到答案. 【详解】因为1 < x ≤ 2 ,所以3x -+32x x -+-= 5 - 2 x.故选择C . 【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.6.A解析:A 【分析】先利用分母有理化得到a 2),从而得到a 与b 的关系. 【详解】∵a2),而b 2,∴a =﹣b ,即a+b=0. 故选:A . 【点睛】﹣2是解答本题的关键.7.C解析:C 【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值.【详解】解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩,由40x -=,得:4x =, 由20x +≠,得:2x ≠-. 综上,得4x =,即x 的值为4. 故选:C . 【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.8.A解析:A 【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可. 【详解】A 、∠A=∠C 不能判定这个平行四边形为矩形,故此项错误;B 、∵∠A=∠B ,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确; C 、AC=BD ,对角线相等,可推出平行四边形ABCD 是矩形,故此项正确; D 、AB ⊥BC ,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确; 故选:A . 【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.9.B解析:B 【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案. 【详解】解:∵分式5xx的值为0,∴x﹣5=0且x≠0,解得:x=5.故选:B.【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.10.D解析:D【解析】【分析】由四边形ABCD是平行四边形可知∠A+∠D=180°,结合∠A=4∠D,可求出∠D的值,从而可求出∠C的大小.【详解】∵四边形ABCD是平行四边形,∴∠A+∠D=180°,∵∠A=4∠D,∴4∠D +∠D=180°,∴∠D=36°,∴∠C=180°-36°=144°.故选D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.11.D解析:D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A. 调查某市成年人的学历水平工作量比较大,宜采用抽样调查;B. 调查某批次日光灯的使用寿命具有破坏性,宜采用抽样调查;C. 调查市场上矿泉水的质量情况具有破坏性,宜采用抽样调查;D. 了解某个班级学生的视力情况工作量比较小,宜采用全面调查.故选D.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.A解析:A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.二、填空题13.不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.解析:不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.14.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:115.10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH解析:10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=12S菱形ABCD=12×20=10(cm2).故答案为:10.【点睛】本题考查了中心对称,菱形的性质,全等三角形的判定与性质等知识;熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.16.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D 、E 分别是△ABC 的边AB 、AC 的中点,所以DE 是△ABC 的中位线,所以DE=12BC=3. 故答案为3.考点:三角形的中位线定理.17.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.18.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质.19.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形, 解析:163【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上, ∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】 本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.20.必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是解析:必然【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵红球和黑球除颜色外其余都相同且黑球只有2个,∴从中任意摸出3球,至少有一个为红球,即事件“摸出的球至少有1个红球”是必然事件,故答案为:必然.【点睛】本题考查了必然事件的定义,正确理解必然事件,不可能事件,随机事件的概念是解题关键.21.40【分析】根据旋转的性质得出AD=AC,∠D AE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.22.2【分析】首先由ASA 可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S ▱ABCD ,进而可求出的值.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AD∥B解析:2【分析】首先由ASA 可证明:△BCE ≌△ADF ;由平行四边形的性质可知:S △BEC +S △AED =12S ▱ABCD ,进而可求出12S S 的值. 【详解】∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ABC +∠BAD =180°,∵AF ∥BE ,∴∠EBA +∠BAF =180°,∴∠CBE =∠DAF ,同理得∠BCE =∠ADF ,在△BCE 和△ADF 中, CBE DAF BC ADBCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCE ≌△ADF (ASA ),∴S △BCE =S △ADF ,∵点E 在▱ABCD 内部,∴S △BEC +S △AED =12S ▱ABCD , ∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =12S ▱ABCD , ∵▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2, ∴12S S =2, 故答案为:2.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.23.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a ,x11,x12,…,x30的平均数为b ,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求 解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 24.【分析】连接QC 、PC ,先证明∠PCQ=90°,设AC=,则BC=,PC=,CQ=(),构建二次函数,利用二次函数的性质即可解决问题.【详解】连接PC 、CQ .∵四边形ACED ,四边形CB【分析】连接QC 、PC ,先证明∠PCQ=90°,设AC=2a ,则BC=2a ,PC=a ,a -),构建二次函数,利用二次函数的性质即可解决问题.【详解】连接PC 、CQ .∵四边形ACED ,四边形CBGF 是菱形,∠D=120°,∴∠ACE=120°,∠FCB=60°,∵P ,Q 分别是对角线AE ,BF 的中点,∴∠ECP=∠ACP=12∠ACE=60°,∠FCQ=∠BCQ=12∠BCF=30°, ∴∠PCQ=90°,设AC=2a ,则BC=222a ,PC=12AC=a ,CQ=BC cos30⋅︒32a ), ∴()2222232332442PQ PC QC a a a ⎛⎫⎡⎤=+=+-=-+ ⎪ ⎪⎣⎦⎝⎭ ∴当324a =PQ 362=. 故答案为:62. 【点睛】 本题考查了菱形的性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.三、解答题25.解:(1)200,144.(2)见解析;(3)120名【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出 “艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144° 故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名),补图如下:(3)根据题意得:800×30200=120(名), 答:其中有120名学生选修“科技制作”项目.26.(1)见解析 (2)3cm【分析】1)先根据矩形的性质得出∠ABD=∠BDC ,再由图形折叠的性质得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH ≌△DFG ;(2)先根据勾股定理得出BD 的长,进而得出BF 的长,由图形翻折变换的性质得出CG=FG ,设FG=x ,则BG=8﹣x ,再利用勾股定理即可求出x 的值.【详解】(1)如图,ABCD 四边形是矩形,AB CD ∴=,90A C ∠=∠=︒,ABD BDC ∠=∠.BEH ∆是BAH ∆翻折而成的,1=2∴∠∠,==90A HEB ∠∠︒,AB BE =.DGF DGC ∆∆是翻折而成的,3=4∴∠∠,90C DFG ∠=∠=︒,CD DF =,∴在BEH ∆和DFG ∆中,HEB DFG ∠=∠,BE DF =,2=3∠∠,BHE DGF ∴∆∆≌.(2)四边形ABCD 是矩形,6AB =,8BC =,6AB CD ∴==,8AD BC ==, 22=10BD BC CD ∴+=,又由(1)知,DF CD =,CG FG =,=1064BF ∴-=. 设FG x =,则8BG x =-,在Rt BGF ∆中,222BG BF FG =+,即()22284x x -=+,3x ∴=,即3FG =.【点睛】本题主要考查矩形的折叠问题,涉及知识点有全等三角形的证明与性质,勾股定理,折叠性质等知识点,解题关键在于能够灵活运用勾股定理27.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.28.(1)50;(2)8,5;(3)108°;(4)240人.【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【详解】(1)12÷24%=50人故答案为50.(2)a=50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×1550=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.29.(1)见解析;(2)当∠A=90°时,FG⊥FH.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.【详解】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=12BD,FH=12CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.30.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE ≌△CDF 即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.31.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m ÷每批粒数n 即可得到发芽的频率m n; (2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n 很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a ==,7000.701000b == 故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.32.(1)(-2,0);8 (2)(1,8)或(3,83) 【分析】(1)根据待定系数法就可以求出函数的解析式;(2)1||2CDP P C S CD x x =⨯⨯-△,即可求解. 【详解】解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2), OA OD =,故点(2,0)D ,则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,将点C 的坐标代入反比例函数表达式得:42m =, 解得:8m =,故点A 的坐标为(2,0)-,8m =;(2)1142222CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,故点P 的坐标为(1,8)或8(3,)3.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.33.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A 的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C 的人数,从而可以将条形统计图补充完整; (3)根据选B 的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B 的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E 的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),。
2011-2012学年度第二学期初二数学期中试题
时间:100分钟 总分:100分 2012.4
一、选择题(本大题共8小题,每小题3分,共24分)
1.给出下列各式:x -y 3,a 2x -1,x π+1
,-3a b ,12x +y ,1
2x +y ,其中,分式有 ( )
A .5个
B .4个
C .3个
D .2个
2.不等式2x -6>0的解集为 ( )
A .x >3
B .x <-3
C .x <3
D .x <-3
3.若反比例函数y =k
x 的图象经过点(-1,2),则这个函数的图象一定过点 ( )
A .(2,-1)
B .⎝⎛⎭⎫-12,2
C .(-2,-1) D.⎝⎛⎭
⎫1
2,2
4.若a <b ,则下列不等式中一定成立的是 ( )
A .a -3>b -3
B .a -3<b -3
C .3-a <3-b
D .3ac <3bc
5.根据分式的基本性质,分式-a
a -b
可变形为 ( )
A .a -a -b
B .-a a -b
C .a a +b
D .-a a +b
6.函数y =ax -a 与y =a
x
(a ≠0)在同一直角坐标系中的图象可能是 ( )
A .
B .
C .
D .
7.将分式x 2
x +y 中的x 、y 的值同时变为原来的3倍,则分式的值会是 ( )
A .原来的3倍
B .原来的1
3 C .保持不变 D .无法确定
8.如图,直线AB 与双曲线y =k
x 相交于A 、B 两点,过点A 作
AC ⊥y 轴于点C ,过点B 作BD ⊥x 轴于点D ,连结AD 、BC , 分别记△ABC 与△ABD 的面积为S 1、S 2,则下列结论中一定 正确的是 ( ) A .S 1>S 2 B .S 1<S 2
x
(第8题)
学校____________ 班级___________ 姓名___________ 考试号______________
----------------------------------------密--------封--------线--------内--------请--------不--------要--------答--------题-------------------------------- - - - - - - - - - -
C .S 1=S 2
D .无法判断S 1与S 2的大小关系 二、填空题(本大题共8小题,每空2分,共24分)
9.当x =__________时,分式1
x -2无意义;当x =__________时,分式x -1x +1的值为0.
10.x +y 2xy ,y 3x 2,x -y
6xy 2
的最简公分母为_______________.
11.计算:-7a 2bc 321a 3bc =___________;2m m +n -m -n
m +n
=__________. 12.请写出一个含有字母x 的分式(要求:不论x 取何值,该分式都有意义)____________. 13.已知y 与x 成反比例,且当x =2时,y =6,则当y =3时,x =__________. 14.已知反比例函数y =k -2x 的图象位于第一、三象限,则k 的取值范围是__________.
15.在函数y =m 2+1x 的图象上有三个点(-2,y 1),(-1,y 2),(1
5
,y 3),则y 1、y 2、y 3的大
小关系为__________________(用“<”连接).
16.若用去分母的方法解关于x 的方程x -3x -1=m
x -1
时可能会产生增根,则m 的值为_______.
17.若关于x 的不等式组⎩
⎪⎨⎪⎧x ≤4,
x >m 无解,则m 的取值范围是_________.
18.如图,已知函数y =k
x
的图象经过点A (2,2),结合图象,请直接写出
函数值y ≥-2时,自变量x 的取值范围:____________________.
.三、解答题(本大题共8小题,共52分,解答时应写出文字说明或演算步骤)
19.(本题满分4分)解不等式:3(x -1)+2≥2(x -3).
20.(本题满分6分)解不等式组:⎩⎪⎨⎪⎧x +1≥0,x -12<x 3,并把解集在数轴上表示出来.
(第18题)
)
21.(本题满分8分)计算:
(1)x 2x +y -x +y ; (2)⎝⎛⎭⎫a b -b a ÷a +b a .
22.(本题满分8分)解方程:
(1)x -3x -2+1=32-x ; (2)4x +1-1x -1=4
x 2-1.
23.(本题满分5分)先化简:x 2-y 2x 2-xy ÷⎝
⎛⎭⎫
x +2xy +y 2x ,当y =-1时,再从-2<x <3的范围内
选取一个合适的整数x 代入求值.
24.(本题满分6分)某商场准备进一批A 、B 两种不同型号的衣服,这两种衣服的进价及预
计售价如表所示.若该商场购进B 型号衣服是A 型号衣服的2倍还多4件,且B 型号衣服不超过30件,最后销售完毕获利不少于800元.试问:该商场在这次进货中有几种方案,并请简述购货方案.
25.(本题满分6分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中
出色完成了任务.这是记者与驻军工程指挥官的一段对话: 记者:听说你们是用9天完成4800米长的大坝加固任务的?
指挥官:对!我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍…… 通过这段对话,请你求出该地驻军原来每天加固的米数.
26.(本题满分9分)如图,一次函数y 1=ax +2与反比例函数y 2=k x
的图象交于点A (4,m )
和B (-8,-2),与y 轴交于点C ,与x 轴交于点D . (1)求a 、k 的值;
(2)过点A 作AE ⊥x 轴于点E ,若P 为反比例函数
图象的位于第一象限部分上的一点,且直线OP 分△ADE 所得的两部分面积之比为2∶7.请求出所有符合条件的点P 的坐标;
(3)在(2)的条件下,请在x 轴上找一点Q ,使得
△PQC 的周长最小,并求出点Q 的坐标.
----------------------------------------密----------封----------线----------内----------请----------不----------要----------答----------题-------------------------------------------。