新人教版九年级下解直角三角形全章教案
- 格式:doc
- 大小:163.00 KB
- 文档页数:18
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3一. 教材分析《人教版数学九年级下册28.2《解直角三角形及其应用》》这一章节是在学生已经掌握了锐角三角函数的基础上进行学习的,目的是让学生能够运用解直角三角形的知识解决实际问题。
本章节主要包括解直角三角形的概念、方法及其应用。
通过本章节的学习,学生能够进一步理解和掌握解直角三角形的方法,提高解决实际问题的能力。
二. 学情分析学生在学习本章节之前,已经掌握了锐角三角函数的知识,具备了一定的几何基础。
但是,对于解直角三角形的应用,学生可能还不够熟悉,需要通过实例讲解和练习来提高理解。
同时,学生可能对于实际问题的解决还缺乏一定的思路和方法,需要教师进行引导和指导。
三. 教学目标1.知识与技能:使学生理解和掌握解直角三角形的概念、方法及其应用。
2.过程与方法:通过实例讲解和练习,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。
四. 教学重难点1.重点:解直角三角形的概念、方法及其应用。
2.难点:如何运用解直角三角形的知识解决实际问题。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过实例讲解和练习,引导学生掌握解直角三角形的方法,并通过讨论和探究,提高学生解决实际问题的能力。
六. 教学准备1.教具准备:黑板、粉笔、课件等。
2.学具准备:练习本、直尺、三角板等。
七. 教学过程1.导入(5分钟)通过复习锐角三角函数的知识,引导学生回顾已学的三角函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)(1)讲解解直角三角形的概念,介绍解直角三角形的定义及其性质。
(2)讲解解直角三角形的方法,包括勾股定理、三角函数的定义等。
(3)通过示例,演示解直角三角形的具体步骤和应用。
3.操练(10分钟)学生独立完成练习题,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生分组讨论,总结解直角三角形的方法和技巧。
人教版数学九年级下册28.2《解直角三角形(2)》教案一. 教材分析人教版数学九年级下册28.2《解直角三角形(2)》这一节主要让学生掌握解直角三角形的知识和方法,能灵活运用勾股定理和锐角三角函数解决实际问题。
教材通过实例引入,引导学生探究直角三角形的性质,从而掌握解直角三角形的方法。
二. 学情分析学生在学习本节内容前,已经掌握了直角三角形的定义、性质,以及锐角三角函数的知识。
但解直角三角形的实际应用可能对学生来说较为困难,因此需要通过实例引导学生理解解直角三角形的原理,培养学生的动手操作能力和解决问题的能力。
三. 教学目标1.了解解直角三角形的概念和方法,能熟练运用勾股定理和锐角三角函数解直角三角形。
2.能运用解直角三角形的知识解决实际问题,提高学生的应用能力。
3.培养学生的合作交流能力和解决问题的能力。
四. 教学重难点1.重难点:解直角三角形的方法和应用。
2.难点:如何引导学生将实际问题转化为解直角三角形的问题。
五. 教学方法1.采用问题驱动法,引导学生探究直角三角形的性质,发现解直角三角形的方法。
2.用实例讲解,让学生在实际问题中体会解直角三角形的重要性。
3.利用小组合作交流,培养学生的团队协作能力。
4.用练习巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关的实例和练习题,以便引导学生进行探究和练习。
2.准备课件,用于展示解直角三角形的原理和实例。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如:一个房间的长为6米,宽为4米,求房间对角线的长度。
让学生思考如何解决这个问题,引出解直角三角形的需要。
2.呈现(10分钟)呈现直角三角形的定义和性质,引导学生回顾已学的知识。
然后讲解解直角三角形的方法,如:利用勾股定理和锐角三角函数。
通过示例,让学生理解解直角三角形的原理。
3.操练(10分钟)让学生分组进行练习,每组选择一个实例,运用解直角三角形的方法解决问题。
教师巡回指导,解答学生的疑问。
28.2.1 解直角三角形1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.在上述的Rt △ABC 中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】 利用解直角三角形求边或角已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;(2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,即c =a cos B =3632=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33,∴∠A =30°,∴∠B =60°,∴c =2a=12 2.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题【类型二】 构造直角三角形解决长度问题一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°=43,∴CD =CM -MD =12-4 3.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 运用解直角三角形解决面积问题如图,在△ABC 中,已知∠C =90°,sin A =37,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积.解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =3k =6,∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12AC ·BC =12×410×6=1210.所以△ABC 的面积是1210.方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:解直角三角形的综合【类型一】 解直角三角形与等腰三角形的综合 已知等腰三角形的底边长为2,周长为2+2,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC 中,AB =AC ,BC =2,∵周长为2+2,∴AB =AC =1.过A 作AD ⊥BC 于点D ,则BD =22,在Rt △ABD 中,cos ∠ABD =BD AB =22,∴∠ABD =45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】 解直角三角形与圆的综合已知:如图,Rt △AOB 中,∠O =90°,以OA 为半径作⊙O ,BC 切⊙O 于点C ,连接AC 交OB 于点P .(1)求证:BP =BC ;(2)若sin ∠P AO =13,且PC =7,求⊙O 的半径.解析:(1)连接OC ,由切线的性质,可得∠OCB =90°,由OA =OC ,得∠OCA =∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO=90°,∵∠APO=∠BPC,∴∠BPC=∠BCA,∴BC=BP;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP中,∵sin∠P AO=13,设OP=x,AP=3x,∴AO=22x.∵AO=OE,∴OE=22x,∴AE=42x.∵sin∠P AO=13,∴在Rt△ACE中CEAE=13,∴ACAE=223,∴3x+742x=223,解得x=3,∴AO=22x=62,即⊙O的半径为6 2.方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.解直角三角形的基本类型及其解法;2.解直角三角形的综合.本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
九年级数学下册《解直角三角形》全章教案新人教版九年级数学下册《解直角三角形》全章教案(新人教版)第一课时:锐角三角函数教学目标:知识目标:初步了解正弦、余弦、正切的概念;能正确地用sinA、cosA、___表示直角三角形中两边的比;熟记30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
能力目标:逐步培养学生观察、比较、分析和概括的思维能力。
情感目标:提高学生对几何图形美的认识。
教学程序:一、探究活动1.通过特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数的定义。
sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边3.例1.求如图所示的直角三角形Rt⊿ABC中的sinA、cosA、___的值。
二、探究活动二1.让学生画30°、45°、60°的直角三角形,分别求sin30°、cos45°、tan60°,并归纳结果。
sinA cosA ___30° 1/2 √3/2 √3/345° √2/2 √2/2 160°√3/2 1/2 √32.求下列各式的值。
1) sin30° + cos30°2) 2sin45° - cos30° + tan60° - tan30°三、拓展提高1.P82例4.(略)2.如图,在直角三角形ABC中,∠A = 30°,tanB = 1/3,AC = 2√3,求AB。
四、小结通过本节课的研究,我们初步了解了正弦、余弦、正切的概念,并学会了用sinA、cosA、___表示直角三角形中两边的比。
同时,我们也熟记了30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
28.2.1 解直角三角形课题28.2.1 解直角三角形授课类型新授课标依据能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
教学目标知识与技能1.了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形;2.通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决;3.通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。
过程与方法情感态度与价值观教学重点难点教学重点直角三角形的解法。
教学难点三角函数在解直角三角形中的灵活运用。
教学师生活动设计意图过程设计一、提出问题:问题:如图所示,在一次强烈的地震中一棵百年大树被折断倒在地上,你知道这棵大树在折断之前有多高吗?学过本章节之后,你就可以轻松地解答这个问题了。
引入本节课学习目标:在直角三角形中如何根据已知条件求其它未知元素?二、知识探究:1、一个直角三角形有几个元素?它们之间有何关系?2、知道除直角外元素中的几个元素,就可以求出其他的元素?结论:在直角三角形的六个元素中,除直角外,如果知道两个元素,就可以求出其余三个元素。
3、归纳三、例题练讲:(详见PPT课件)四、总结反思:解直角三角形的一般步骤:(见PPT)五、当堂检测:1、检测题(见PPT);2、做题思路点拨六、课堂小结:1、把实际问题转化成直角三角形来解决2、怎样来解直角三角形及需要的知识3、解题一般思路七、布置作业:习题28.2 第1题以实际问题激发学生学习兴趣,体现数学的应用价值。
通过方法点拨,加深学生对所学知识的理解,掌握解决相关问题的基本方法。
第6题(A做)分层设计不同难度的作业,让不同的学生在数学上得到不同发展,进一步反馈教学,内化知识。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A.32B.2 C.52D.3【答案】C【解析】延长BC 到E 使BE=AD,利用中点的性质得到CM=12DE=12AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=12DE=12AB,∵AC⊥BC,∴AB=22AC BC=224+3=5,∴CM=52,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线. 2.如图所示的正方体的展开图是()A .B .C .D .【答案】A【解析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A 正确. 故选A 【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察. 3.在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( ) A .45° B .60°C .75°D .105°【答案】C【解析】根据非负数的性质可得出cosA 及tanB 的值,继而可得出A 和B 的度数,根据三角形的内角和定理可得出∠C 的度数. 【详解】由题意,得 cosA=12,tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°. 故选C . 4.若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2 B .m <﹣2 C .m >2 D .m <2【答案】B【解析】根据反比例函数的性质,可得m+1<0,从而得出m 的取值范围.【详解】∵函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大, ∴m+1<0, 解得m <-1. 故选B .5.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断【答案】B【解析】比较OP 与半径的大小即可判断. 【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B . 【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.6.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°. 【详解】∵∠AFD =65°, ∴∠CFB =65°, ∵CD ∥EB ,∴∠B =180°−65°=115°, 故选:A . 【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.7.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.8.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件【答案】D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率【答案】C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B .掷一枚硬币,出现正面朝上的概率为12,故此选项错误; C .从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确; D .任意写出一个整数,能被2整除的概率为12,故此选项错误. 故选C .10.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
人教版数学九年级下册28.2《解直角三角形(1)》教学设计一. 教材分析人教版数学九年级下册28.2《解直角三角形》是本节课的主要内容。
这部分内容是在学生已经掌握了锐角三角函数的基础上进行的,是初中的重要知识,也是高考的重点内容。
解直角三角形在实际生活中有广泛的应用,如测量高度、距离等。
本节课的内容包括了解直角三角形的边角关系,利用锐角三角函数解决实际问题。
二. 学情分析九年级的学生已经掌握了锐角三角函数的知识,对解直角三角形有一定的认知基础。
但是,解直角三角形的实际应用能力还需加强。
学生在学习本节课的内容时,需要将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解直角三角形的边角关系,掌握解直角三角形的方法。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的动手操作能力和团队协作能力。
四. 教学重难点1.教学重点:直角三角形的边角关系,解直角三角形的方法。
2.教学难点:如何将实际问题转化为解直角三角形的问题,运用锐角三角函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探索直角三角形的边角关系。
2.利用多媒体演示,帮助学生直观理解解直角三角形的过程。
3.运用实例分析法,让学生动手操作,提高解决问题的能力。
4.采用小组讨论法,培养学生的团队协作能力。
六. 教学准备1.多媒体课件2.直角三角形模型3.实际问题案例七. 教学过程1.导入(5分钟)利用多媒体展示直角三角形的图片,引导学生思考直角三角形的特征。
提问:直角三角形有哪些特殊的性质?让学生回顾已学的锐角三角函数知识。
2.呈现(10分钟)讲解直角三角形的边角关系,引导学生理解解直角三角形的意义。
通过多媒体演示,让学生直观地感受解直角三角形的过程。
3.操练(10分钟)给出实际问题案例,让学生动手操作,尝试运用锐角三角函数解决实际问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生分组讨论,总结解直角三角形的步骤和方法。
第一课时教学内容 锐角三角函数(一)教学三维目标 一.知识目标初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
(二).教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 (三)教学程序 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值 (1)sia 30°+cos30°BAC(2)2sia 45°-21cos30° (3)004530cos sia +ta60°-tan30° 三.拓展提高 1. P82例4.(略)2. 如图,在⊿ABC 中,∠A=30°,tanB=3,AC=23,求AB四.小结 五.作业课本p86 2,3,6,7,8,10第二课时教学内容 解直角三角形应用(一)一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA ba (2)三边之间关系a2 +b2 =c2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)探究活动1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 2 a=6,解这个三角形.∠=350,例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 B解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习∠的平分线AD=43,解此直角三角形。
在△ABC中,∠C为直角,AC=6,BAC解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.(四)总结与扩展请学生小结:1在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2解决问题要结合图形。
四、布置作业.p96 第1,2题第三课时教学内容:解直三角形应用(二)一.教学三维目标(一)、知识目标使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.二、教学重点、难点和疑点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.三、教学过程 (一)回忆知识1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠(二)新授概念 1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.2.例1如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)解:在Rt △ABC 中sinB=AB AC∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.例2.2003年10月15日“神州”5号载人航天飞船发射成功。
当飞船完成变轨后,就在离地形表面350km 的圆形轨道上运行。
如图,当飞船运行到地球表面上P 点的正上方时,从飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6400km ,结果精确到0.1km ) 分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。
将问题放到直角三角形FOQ 中解决。
.解决此问题的关键是在于把它转化为数学问题,利用解直角三角形知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重请学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角α得出Rt △ABC 中的∠ABC ,进而利用解直角三角形的知识就可以解此题了.例1小结:本章引言中的例子和例1正好属于应用同一关系式 sinA=斜边的对边A ∠ 来解决的两个实际问题即已知α∠和斜边,求∠α的对边;以及已知∠α和对边,求斜边.OPQF(三).巩固练习1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为600,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1`m)2.如图6-17,某海岛上的观察所A发现海上某船只B并测得其俯角α=80°14′.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)教师在学生充分地思考后,应引导学生分析:(1).谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.(2).请学生结合图形独立完成。
3 如图6-19,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.此题在例1的基础上,又加深了一步,须由A作一条平行于CD的直线交BD于E,构造出Rt△ABE,然后进一步求出AE、BE,进而求出BD与CD.设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度为1.72米,求树高(精确到0.01米).要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.(四)总结与扩展请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.四、布置作业1.课本p96 第 3,.4,.6题第四课时教学内容:解直三角形应用(三)(一)教学三维目标(一)知识目标使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.(二)能力目标逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.二、教学重点、难点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决.三、教学过程1.导入新课上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决.2.例题分析例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt△ABC的方法求出BC和AB.学生在把实际问题转化为数学问题后,大部分学生可自行完成例题小结:求出中柱BC的长为2.44米后,我们也可以利用正弦计算上弦AB的长。
如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯. 另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想. 例2.如图,一艘海轮位于灯塔P 的北偏东650方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南东340方向上的B 处。