新人教版九年级下解直角三角形全章教案
- 格式:doc
- 大小:154.00 KB
- 文档页数:17
人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计6一. 教材分析人教版九年级数学下册第28.2.1节《解直角三角形》是整个初中数学的重要内容,主要让学生掌握直角三角形的性质和解法。
通过本节课的学习,学生能够理解和掌握直角三角形的边角关系,会用勾股定理解决实际问题。
本节课的内容为后续学习三角函数、解三角形等知识打下基础。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,对三角函数有了初步的了解。
但解直角三角形需要学生灵活运用所学知识,将实际问题转化为数学问题。
因此,在教学过程中,教师需要关注学生的知识掌握情况,引导学生将理论知识应用于实际问题。
三. 教学目标1.让学生掌握直角三角形的性质和解法,能运用勾股定理解决实际问题。
2.培养学生的逻辑思维能力和解决实际问题的能力。
3.激发学生对数学的兴趣,提高学生的数学素养。
四. 教学重难点1.重点:直角三角形的性质和解法。
2.难点:如何将实际问题转化为数学问题,运用勾股定理解决。
五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形的性质和解法。
2.利用实例分析,让学生体会数学在实际生活中的应用。
3.采用合作学习法,让学生在小组讨论中互相启发,共同解决问题。
4.利用板书,突出重点知识,帮助学生形成知识体系。
六. 教学准备1.准备相关教案和教学课件。
2.准备实际问题案例,用于课堂分析和讨论。
3.准备直角三角形的相关图片和模型,帮助学生直观理解。
七. 教学过程1.导入(5分钟)利用直角三角形的图片和模型,引导学生回顾直角三角形的定义和性质。
提问:你们知道直角三角形有哪些特殊的性质吗?2.呈现(10分钟)展示实际问题案例,让学生尝试解决。
例如:一个直角三角形的两个直角边分别为3cm和4cm,求斜边的长度。
提问:你们能解决这个问题吗?3.操练(10分钟)让学生在小组内讨论,运用所学知识解决实际问题。
鼓励学生互相交流,共同解决问题。
教师巡回指导,解答学生疑问。
人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1一. 教材分析《解直角三角形》是九年义务教育课程标准人教版九年级数学下册第28章第2节的一部分。
本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行的。
本节主要让学生了解解直角三角形的意义和方法,学会使用锐角三角函数来解直角三角形,为以后学习三角函数和解其他三角形打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。
但是,对于如何运用锐角三角函数来解直角三角形,他们可能还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握锐角三角函数在解直角三角形中的应用。
三. 教学目标1.了解解直角三角形的意义和方法。
2.学会使用锐角三角函数来解直角三角形。
3.能够运用解直角三角形的方法解决实际问题。
四. 教学重难点1.重点:解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
2.难点:如何引导学生理解和掌握锐角三角函数在解直角三角形中的应用。
五. 教学方法采用讲授法、引导法、实践法、讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而掌握解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备相关的练习题和测试题。
七. 教学过程1.导入(5分钟)通过展示一些与直角三角形相关的图片和实例,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解解直角三角形的意义和方法,引导学生理解解直角三角形的重要性。
通过示例,讲解如何使用锐角三角函数来解直角三角形。
3.操练(10分钟)让学生分组进行实践,运用锐角三角函数来解直角三角形。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验他们是否掌握了解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
课题教学目标教学重点教学难点授课类型教具教学步骤28.2.1 解直角三角形授课人知识技能使学生理解直角三角形中五个元素( 直角除外 ) 的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.数学思考通过实际问题的情境,让学生感受到在生活、学习中解直角三角形知识的实际意义.问题解决通过学习解直角三角形,归纳出解直角三角形的两种类型.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的情感态度策略.解直角三角形的意义以及一般方法.选择恰当的边角关系,解直角三角形.新授课课时多媒体教学活动师生活动设计意图如图 28- 2- 4, Rt△ABC 中的关系式 (∠ C=90° ):两锐角的关系:∠A+∠ B= 90°.三边之间的关系:a2+ b2= c2.a b a边角关系: sinA=c,cosA=c,tanA=b.回顾以前所学内容,回顾为本节课的教学内容做好准备 .图28- 2- 4【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为 B ,塔身中心线与垂直中活动 心线的夹角为∠ A ,过点 B 向垂直中心线 一: 引垂线, 垂足为 C ,如图 28- 2- 5.在 Rt 创设 △ ABC 中,∠ C = 90°, BC = 5.2 m ,AB情境 = 54.5 m ,求∠ A 的度数 .图 28- 2- 5导入 师生活动: 教师呈现问题并引导学生结合图形, 观察已知和新课所求角之间的关系, 分析得到通过求∠ A 的正弦来求∠ A 的度数 .1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解? 师生活动: 已知直角三角形的斜边和一条直角边, 求它的锐角的度数,利用锐角的正弦 (或余弦 )的概念直接求解 .问题:在活动一所述的 Rt △ ABC 中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中, 除直角外, 共有五个元素,即三条边和两个锐角. 由直角三角形中的已知元素, 求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法 问题:回想一下, 刚才解直角三角形的过程中,用到了哪些活动知识?你能梳理一下直角三角形各个元素之间的关系吗?二:28- 2- 6,引导学生结合师生活动:如图实践( 直角除外 )之间的关图形,梳理五个元素探究系,学生展示:交流a 2+b 2=c 2(勾股定理 ).(1)三边之间的关系:新知A +∠B = 90° .(2)两锐角之间的关系:∠(3)边角之间的关系:图 28-2- 6a, cosA = b, tanA =a,sinA = c c bsinB = b a b, cosB = , tanB = .c c a问题:从上述问题来看, 在直角三角形中, 知道斜边和一条直角边这两个元素, 可以求出其余的三个元素. 一般地, 已知五个元素 (直角除外 )中的任意两个元素, 可以求其余元素吗?教师给出结论: 在直角三角形中, 知道除直角外的五个元素中的两个元素 (至少有一个是边 ),就可以求出其余三个未知元素 .通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,通过求解,初步体会解直角三角形的内涵,引入课题 .1.有条理地梳理直角三角形五个元素之间的关系,明确各自的作用,便于应用 .2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力 .活动三:开放训练体现应用【应用举例】例1 教材 P73 例 1 如图 28- 2- 7,在 Rt△ABC 中,∠C= 90°, AC= 2,BC=6,解这个直角三角形 .师生活动:学生在教师的引导下,思考如图 28- 2- 7何求出所有未知元素.先让学生找出所有未知元素:∠A,∠ B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径 .【拓展提升】1.涉“斜”选“弦”的策略当已知和所求涉及直角三角形的斜边时,应选择与斜边相关的已知角的正弦、余弦.我们把它叫做涉“斜”(涉及斜边 ) 选“弦” (选正弦、余弦 )的策略 .例 2 滨州中考在 Rt△ABC 中,∠ C= 90°,AB= 10,sinA=3,5通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.进一步训练学生解一般直角三角形的4, tanA=3,则 BC 的长为 (A) 思路和方法,并学会cosA=5 4A.6 B. 7.5 C. 8 D. 12.5 从计算简便的角度2.无“斜”选“切”的策略活动四:课堂总结反思当已知和所求均未涉及到斜边时,应选择与斜边无关的边角关系式——正切,这种方法称之为无“斜”(斜边 )选“切” (正切 )的策略 .例3 在 Rt△ ABC 中,∠ C= 90°,若∠ A= 60°, AC= 20 m,则BC 大约是 (结果精确到 0.1 m)( B)A.34.64 m B. 34.6 m C. 28.3 m D . 17.3 m【达标测评】1.在 Rt△ ABC 中,∠ C= 90°,∠ B= 40°,BC= 3,则 AC= (C)A.3sin40 °B. 3sin50°C.3tan40°D. 3tan50°32.在 Rt△ABC 中,∠ C= 90°,若 AB = 5, sinA=,则 AC 的长为 (B)A.3 B.4 C. 5D. 63.在△ ABC 中,若∠ C= 90°, sinA=1,AB= 2,则△ ABC 的周2长为 __3+ 3__.4.在 Rt△ ABC 中,∠ C= 90°,有两边长分别为 3 和 4,则 sinA3 34 7的值为__5或4或5或4 __.5.如图28-2- 8,在△ ABC 中, BD⊥ AC,选用适当的关系式求解 .通过设置达标测评,进一步巩固所学新知,同时检测学习效果,做到“ 堂堂清”.第 3页(1)求 BD 和 AD 的长;图 28- 2- 8(2)求 tanC 的值 .引导学生从知识和方法两个1.课堂总结:请同学们回顾以下问题:方面总结自己的收获,理清(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?2.布置作业:教材第 77 页习题 28.2 第 1 题 .【知识网络】解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力 .活动提纲挈领,重点突出. 四:课堂总结反思【教学反思】① [授课流程反思]在创设情境中,由一个实际问题引入,自然过渡到直角三角形.在探究新知中,采用启发法、讨论法等教学方法,学生通过讨论、实践形成理论体系,对知识反思教学过程和教师表现,掌握较为牢固 .② [讲授效果反思]进一步提升操作流程和自身解直角三角形是重点,而选择恰当的边角关系则是难点,为了突破此难点,本节课选择了两个例题让学生素质 .探究、讨论、总结出选择边角关系的策略:涉“斜”选“弦”,无“斜”选“切” ,避“除”就“乘”,能“正”不“余”. 因为有这些例题的引导,所以学生对于解直角三角形的两个类型的掌握,应该没有问题,建议把补充练习也安排给成绩中等及以上的学生.③ [师生互动反思]_____________________________________________ _____________________________________________ ④ [习题反思 ]好题题号错题题号。
九年级数学下册《解直角三角形》全章教案新人教版九年级数学下册《解直角三角形》全章教案(新人教版)第一课时:锐角三角函数教学目标:知识目标:初步了解正弦、余弦、正切的概念;能正确地用sinA、cosA、___表示直角三角形中两边的比;熟记30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
能力目标:逐步培养学生观察、比较、分析和概括的思维能力。
情感目标:提高学生对几何图形美的认识。
教学程序:一、探究活动1.通过特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数的定义。
sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边3.例1.求如图所示的直角三角形Rt⊿ABC中的sinA、cosA、___的值。
二、探究活动二1.让学生画30°、45°、60°的直角三角形,分别求sin30°、cos45°、tan60°,并归纳结果。
sinA cosA ___30° 1/2 √3/2 √3/345° √2/2 √2/2 160°√3/2 1/2 √32.求下列各式的值。
1) sin30° + cos30°2) 2sin45° - cos30° + tan60° - tan30°三、拓展提高1.P82例4.(略)2.如图,在直角三角形ABC中,∠A = 30°,tanB = 1/3,AC = 2√3,求AB。
四、小结通过本节课的研究,我们初步了解了正弦、余弦、正切的概念,并学会了用sinA、cosA、___表示直角三角形中两边的比。
同时,我们也熟记了30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
人教版数学九年级下册28.2《解直角三角形(1)》教学设计一. 教材分析人教版数学九年级下册28.2《解直角三角形》是本节课的主要内容。
这部分内容是在学生已经掌握了锐角三角函数的基础上进行的,是初中的重要知识,也是高考的重点内容。
解直角三角形在实际生活中有广泛的应用,如测量高度、距离等。
本节课的内容包括了解直角三角形的边角关系,利用锐角三角函数解决实际问题。
二. 学情分析九年级的学生已经掌握了锐角三角函数的知识,对解直角三角形有一定的认知基础。
但是,解直角三角形的实际应用能力还需加强。
学生在学习本节课的内容时,需要将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解直角三角形的边角关系,掌握解直角三角形的方法。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的动手操作能力和团队协作能力。
四. 教学重难点1.教学重点:直角三角形的边角关系,解直角三角形的方法。
2.教学难点:如何将实际问题转化为解直角三角形的问题,运用锐角三角函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探索直角三角形的边角关系。
2.利用多媒体演示,帮助学生直观理解解直角三角形的过程。
3.运用实例分析法,让学生动手操作,提高解决问题的能力。
4.采用小组讨论法,培养学生的团队协作能力。
六. 教学准备1.多媒体课件2.直角三角形模型3.实际问题案例七. 教学过程1.导入(5分钟)利用多媒体展示直角三角形的图片,引导学生思考直角三角形的特征。
提问:直角三角形有哪些特殊的性质?让学生回顾已学的锐角三角函数知识。
2.呈现(10分钟)讲解直角三角形的边角关系,引导学生理解解直角三角形的意义。
通过多媒体演示,让学生直观地感受解直角三角形的过程。
3.操练(10分钟)给出实际问题案例,让学生动手操作,尝试运用锐角三角函数解决实际问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生分组讨论,总结解直角三角形的步骤和方法。
人教版数学九年级下册教学设计28.2《解直角三角形及其应用》一. 教材分析人教版数学九年级下册第28.2节《解直角三角形及其应用》是本册教材中的重要内容,主要让学生掌握解直角三角形的各种方法,以及如何运用这些方法解决实际问题。
本节课的内容包括:了解直角三角形的性质,掌握解直角三角形的基本方法,学会运用解直角三角形解决实际问题。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对三角形有了一定的了解。
但是,对于解直角三角形的应用,部分学生可能会感到困难。
因此,在教学过程中,需要关注学生的学习困难,引导学生掌握解直角三角形的方法,并能够运用到实际问题中。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的基本方法,能够运用这些方法解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:解直角三角形的基本方法。
2.难点:如何运用解直角三角形的方法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的解决问题的能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备教学PPT和其他教学资源。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如:“一个房屋的面积是50平方米,已知其中一个角是90度,另外两个角的度数分别是30度和60度,求房屋的长和宽。
”2.呈现(10分钟)呈现房屋的示意图,引导学生观察并思考问题。
让学生尝试用已学的知识解决此问题,鼓励学生发表自己的观点和想法。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用解直角三角形的方法进行解决。
教师在这个过程中给予学生指导,帮助学生解决问题。
4.巩固(10分钟)请各组代表分享自己组的问题和解决过程,让全班学生共同讨论和评价。
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3一. 教材分析《人教版数学九年级下册28.2《解直角三角形及其应用》》这一章节是在学生已经掌握了锐角三角函数的基础上进行学习的,目的是让学生能够运用解直角三角形的知识解决实际问题。
本章节主要包括解直角三角形的概念、方法及其应用。
通过本章节的学习,学生能够进一步理解和掌握解直角三角形的方法,提高解决实际问题的能力。
二. 学情分析学生在学习本章节之前,已经掌握了锐角三角函数的知识,具备了一定的几何基础。
但是,对于解直角三角形的应用,学生可能还不够熟悉,需要通过实例讲解和练习来提高理解。
同时,学生可能对于实际问题的解决还缺乏一定的思路和方法,需要教师进行引导和指导。
三. 教学目标1.知识与技能:使学生理解和掌握解直角三角形的概念、方法及其应用。
2.过程与方法:通过实例讲解和练习,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。
四. 教学重难点1.重点:解直角三角形的概念、方法及其应用。
2.难点:如何运用解直角三角形的知识解决实际问题。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过实例讲解和练习,引导学生掌握解直角三角形的方法,并通过讨论和探究,提高学生解决实际问题的能力。
六. 教学准备1.教具准备:黑板、粉笔、课件等。
2.学具准备:练习本、直尺、三角板等。
七. 教学过程1.导入(5分钟)通过复习锐角三角函数的知识,引导学生回顾已学的三角函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)(1)讲解解直角三角形的概念,介绍解直角三角形的定义及其性质。
(2)讲解解直角三角形的方法,包括勾股定理、三角函数的定义等。
(3)通过示例,演示解直角三角形的具体步骤和应用。
3.操练(10分钟)学生独立完成练习题,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生分组讨论,总结解直角三角形的方法和技巧。
解直角三角形教学目标:理解解直角三角形的概念和条件重点:解直角三角形难点:解直角三角形的基本类型及解法28.2.1 解直角三角形理解解直角三角形的概念和条件(1)解直角三角形在直角三角形中,由元素求出元素的过程,就是解直角三角形.(2)解直角三角形的条件在直角三角形中除直角外的五个元素中,已知其中个元素(至少有一个是),就能求出其余的个未知元素,即“知二求三”.重点一:解直角三角形解直角三角形的基本类型及解法Rt△ABC中,∠C=90°已知条件解法(选择的边角关系)斜边和一直角边c,a由sin A=,求∠A;∠B=90°-∠A; b=两直角边a,b由tan A=,求∠A;∠B=90°-∠A; c=斜边和一锐角c,∠A∠B=90°-∠A;a=c·sin A;b=c·cos A一直角边和一锐角a,∠A∠B=90°-∠A;b=; c=1.(2013兰州)△ABC中,a、b、c分别是∠A、∠B∠C的对边,如果a+b=c,那么下列结论正确的是( )(A)csin A=a (B)bcos B=c (C)atan A=b (D)ctan B=b2.(2013安顺)在Rt△ABC中,∠C=90°,tan A=,BC=8,则△ABC的面积为.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,请分别根据下列条件解直角三角形.(1)a=6,b=2;(2)c=4,∠A=60°.重点二:利用特殊角解非直角三角形非直角三角形可通过作三角形的高,构造直角三角形求解.在选择关系式时要尽量利用原始数据,直接求解,防止累积误差.4.如图所示,在△ABC中,∠A=30°,tan B=,AC=2,则AB的长是( )(A)3+(B)2+2(C)5 (D)5. (2013曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .6.等腰三角形的三边长分别为1、1、,那么它的底角为.7.如图所示,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积(结果可保留根号).A层(基础)1.在下面的条件中,不能解直角三角形的是( )(A)已知两锐角(B)已知两条边(C)已知一边和一锐角(D)已知三条边2. 如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是( )(A)(B)12 (C)14 (D)213. 如图所示,正三角形的内切圆半径为1,那么三角形的边长为( )(A)2 (B)2 (C)(D)34.若等腰三角形ABC的底边BC上的高为4,sin B=,则△ABC的周长为( )(A)24(B)16+4 (C)8+8 (D)16+85.在△ABC中,AB=4,AC=,∠B=60°,则BC的长为( )(A)1 (B)2 (C)3 (D)1或36.如图,已知Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC= .7. 如图所示,在高为2米,∠ABC为30°的楼梯上铺地毯,地毯的长度至少应有米.8. (2013陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)9. 如图所示,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形,若AB=2,求△ABC的周长.(结果保留根号).教学反思:。
28.2 解直角三角形教学目标:1、使学生理解解直角三角形中五个元素的关系,及解直角三角形的概念2、能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形教学重点:直角三角形的解法。
教学难点:三角函数在解直角三角形中的灵活运用。
学过程设计一、实际问题引入:由实际问题的解答引入课题,并归纳出解直角三角形的概念。
教师给出解直角三角形定义:解直角三角形:由直角三角形中除直角外的两个已知元素,求出所有未知元教素的过程,叫做解直角三角形.二、回顾旧知1.在三角形中共有几个元素?(几条边,几个角)2.直角三角形中,,这五个元素间有哪些等量关系呢?(1)边角之间关系;(2)三边之间关系(勾股定理);(3)锐角之间关系.从上面可以看出,直角三角形的边与角,边与边,角与角之间都存在着密切的关系,能否根据直角三角形的几个已知元素去求其余的未知元素呢?这节课就来探究这个问题,引出课题.二、自主探究问题:我们已经了解了直角三角形的边角关系、三边关系、角角关系,利用这些关系,在知道直角三角形几个元素个元素,就可求出其余的元素?结合图形探究。
提问思考:共有多少种情况?1.已知一个元素能否解直角三角形?(否)2.已知两个元素能否解直角三角形?共有三种情况:知两边知一边一角知两角a.讲解例一例1如图,在Rt △ABC 中,∠C =90°,解这个直角三角形分組讨论交流解题方法,师板书。
归纳得出(1)知两边解直角三角形可以。
注意:一题多解时选择简单方法。
计算时,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。
例2如图,在Rt △ABC 中,∠B =60°,b=20,解这个直角三角形(精确到)提出问题,学生思考,教师指名口述,师板书。
归纳得出(2)知一边一角解直角三角形可以。
AB C 26 A B C a b c 20 60° 6,2==BC ACc.讨论得出:知两角解直角三角形不可以。
第一课时教学内容 锐角三角函数(一)教学三维目标 一.知识目标初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
(二).教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 (三)教学程序一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值 (1)sia 30°+cos30° (2)2sia 45°-21cos30° (3)004530cos sia +ta60°-tan30°BAC1. 2.四.小结 五.作业课本p86 2,3,6,7,8,10第二课时教学内容解直角三角形应用(一)一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA ba(2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 2a=6,解这个三角形.∠=350,例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 B解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三)巩固练习∠的平分线AD=43,解此直角三角形。
在△ABC中,∠C为直角,AC=6,BAC解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.(四)总结与扩展请学生小结:1在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2解决问题要结合图形。
四、布置作业.p96 第1,2题第三课时教学内容:解直三角形应用(二)一.教学三维目标(一)、知识目标使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.二、教学重点、难点和疑点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.三、教学过程(一)回忆知识1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠(二)新授概念 1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.2.例1如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)解:在Rt △ABC 中sinB=AB AC∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.例2.2003年10月15日“神州”5号载人航天飞船发射成功。
当飞船完成变轨后,就在离地形表面350km 的圆形轨道上运行。
如图,当飞船运行到地球表面上P 点的正上方时,从飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6400km ,结果精确到斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin0.1km )分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。
将问题放到直角三角形FOQ 中解决。
.解决此问题的关键是在于把它转化为数学问题,利用解直角三角形知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重请学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角α得出Rt △ABC 中的∠ABC ,进而利用解直角三角形的知识就可以解此题了.例1小结:本章引言中的例子和例1正好属于应用同一关系式 sinA=斜边的对边A ∠ 来解决的两个实际问题即已知α∠和斜边,求∠α的对边;以及已知∠α和对边,求斜边.(三).巩固练习1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为600,热气球与高楼的水平距离为120m ,这栋高楼有多高(结果精确到0.1`m )2.如图6-17,某海岛上的观察所A 发现海上某船只B 并测得其俯角α=80°14′.已知观察所A 的标高(当水位为0m 时的高度)为43.74m ,当时水位为+2.63m ,求观察所A 到船只B 的水平距离BC(精确到1m)教师在学生充分地思考后,应引导学生分析: (1).谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.OPQF(2).请学生结合图形独立完成。
3如图6-19,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.此题在例1的基础上,又加深了一步,须由A作一条平行于CD的直线交BD于E,构造出Rt△ABE,然后进一步求出AE、BE,进而求出BD与CD.设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度为1.72米,求树高(精确到0.01米).要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.(四)总结与扩展请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.四、布置作业1.课本p96 第3,.4,.6题第四课时教学内容:解直三角形应用(三)(一)教学三维目标(一)知识目标使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.(二)能力目标逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.二、教学重点、难点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决. 三、教学过程 1.导入新课上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决. 2.例题分析例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,求中柱BC(C 为底边中点)和上弦AB 的长(精确到0.01米).分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?由题意知,△ABC 为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt △ABC 的方法求出BC 和AB .学生在把实际问题转化为数学问题后,大部分学生可自行完成例题小结:求出中柱BC 的长为2.44米后,我们也可以利用正弦计算上弦AB 的长。
如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯. 另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想. 例2.如图,一艘海轮位于灯塔P 的北偏东650方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南东340方向上的B 处。