【第4讲】多分辨分析(小波变换)
- 格式:pptx
- 大小:2.91 MB
- 文档页数:37
小波变换的多分辨率分析原理与应用引言:小波变换是一种在信号处理和图像处理领域中广泛应用的数学工具。
它通过将信号分解成不同频率的子信号,以实现对信号的多分辨率分析。
本文将介绍小波变换的原理和应用,并探讨其在信号处理和图像处理中的潜在价值。
一、小波变换的原理小波变换是一种基于窗函数的变换方法,它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和频率上的分解系数。
小波基函数是一种具有有限长度的波形,它可以在时间和频域上进行调整,以适应不同尺度和频率的信号特性。
小波变换的核心思想是多分辨率分析,即将信号分解成不同尺度的子信号。
通过对信号进行连续缩放和平移操作,小波变换可以捕捉到信号在不同频率上的细节信息。
与傅里叶变换相比,小波变换可以提供更好的时频局部化特性,能够更准确地描述信号的瞬时特征。
二、小波变换的应用1. 信号处理小波变换在信号处理中有广泛的应用。
通过对信号进行小波变换,可以实现信号的降噪、压缩和特征提取等操作。
由于小波基函数具有时频局部化的特性,它可以有效地消除信号中的噪声,并提取出信号的重要特征。
因此,在语音识别、图像处理和生物医学信号处理等领域,小波变换被广泛应用于信号的预处理和特征提取。
2. 图像处理小波变换在图像处理中也有重要的应用。
通过对图像进行小波变换,可以实现图像的去噪、边缘检测和纹理分析等操作。
由于小波基函数具有多尺度分析的能力,它可以捕捉到图像中不同尺度上的细节信息。
因此,在图像压缩、图像增强和图像分割等领域,小波变换被广泛应用于图像的处理和分析。
3. 数据压缩小波变换在数据压缩中有着重要的应用。
通过对信号或图像进行小波变换,可以将其表示为一组小波系数。
由于小波系数具有稀疏性,即大部分系数都接近于零,可以通过对系数进行适当的量化和编码,实现对信号或图像的高效压缩。
因此,在音频压缩、图像压缩和视频压缩等领域,小波变换被广泛应用于数据的压缩和传输。
结论:小波变换是一种强大的信号处理和图像处理工具,它通过多分辨率分析实现对信号的精确描述和处理。
每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。
而该小波的basis 函数其实就是对这个母小波和父小波缩放和平移形成的。
缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。
还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。
小波展开的近似形式是这样:其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。
和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。
但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的?在这一篇文章里,我们就来讨论一下这些特性背后的原理。
首先,我们一直都在讲小波展开的近似形式。
那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。
但是,母小波并非唯一的原始基。
在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。
它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交:另外,为了方便处理,父小波和母小波也需要是正交的。
可以说,完整的小波展开就是由母小波和父小波共同定义的。
其中是母小波,是父小波。
需要提醒一点的是,这个正交纯粹是为了小波分析的方便而引入的特性,并不是说小波变换的基就一定必须是正交的。
但大部分小波变换的基确实是正交的,所以本文就直接默认正交为小波变换的主要性质之一了。
引入这个父小波呢,主要是为了方便做多解析度分析(multiresolution analysis, MRA)。
说到这里,你的问题可能会井喷了:好好的为什么出来一个父小波呢?这个scaling function是拿来干嘛的?它背后的物理意义是什么?wavelet function背后的物理意义又是什么?这个多解析度分析又是什么呢?不急,下面,我们围绕一个例子来巩固一下前面的知识,同时再引出新的特性。
第 4 讲 离散小波变换的多分辨率分析 4.1 多分辨率分析的引入 4.2 多分辩率分析的定义 4.3 空间 V j 、 W j 中信号的分解 4.4 二尺度差分方程 4.5 二尺度差分方程与共轭正交滤波器组 4.6 Mallat 算法 4.7 Mallat 算法的实现 4.8 小波变换小结在实际应用中,特别是在计算机上实现小波变换时,信号总要取成离散的,因此,研 究 a, b 及 t 都是离散值情况下的小波变换,进一步发展一套快速小波变换算法将更有意 义。
由 Mallat 和 Meyer 自 80 年代末期所创立的“多分辨率分析”技术,起到了关键的作 用。
该算法和多抽样率信号处理中的滤波器组及图像处理中的金字塔编码等算法结合起 来,构成了小波分析的重要工具。
本讲讨论多分辨率分析的定义、算法及应用。
14.1 多分辨率分析的引入4.1.1 信号的分解近似 现以信号的分解近似为例来说明多分辨率分析的基本概念。
我们可用不同的基函数并在不同的分辨率水平上对它作近似。
给定一个连续信号 x(t ) , 如图 4.1.1(a)所示,令⎧1 φ (t ) = ⎨ ⎩0显然, φ (t ) 的整数位移相互之间是正交的,即0 ≤ t <1 其它(4.1.1)〈φ ( t − k ), φ ( t − k ′ )〉 = δ ( k − k ′ )k, k′ ∈ Z(4.1.2)这样,由 φ (t ) 的整数位移 φ (t − k ) 就构成了一组正交基。
设空间 V0 由这一组正交基所构成, 这样, x(t ) 在空间V0 中的投影(记作 P0 x(t ) )可表为:P0 x( t ) = ∑ a 0 ( k )φ ( t − k ) = ∑ a 0 ( k )φ 0,k ( t )k k(4.1.3)它可以看作是 x(t ) 式中 φ0, k (t ) = φ (t − k ) , a0 (k ) 是基 φ0, k (t ) 的权函数。
第四章 多分辨率分析与正交小波变换据第三章,构造正交基的一般方法为,在离散框架的基础上,取1,20=∆=τa 则()n t t m mn m -=--22)(2,ψψ; Z n m ∈, (4.1)问题:(1) 按上式离散得到的系列n m ,ψ能否构成一个正交基? (2) 如何构造这样的母函数)(t ψ? 解决方法:多分辨率分析4.1 几种正交小波基(1)Haar 小波数学家A.Haar 于1910年提出的Haar 系()),(22)(2,Z n m n t h t h m m n m ∈-=--是由母函数生成的。
⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=其它12112/101)(x x t h (4.2)特点:同一尺度m 上,函数集合Z n n m t h ∈)}({,中任意两个函数的支集不相交;同一尺度上的基函数相互正交;不同尺度间的基函数正交;n m h ,构成了)(2R L 空间上的完备标准正交基; Haar 系的函数时域不连续,光滑性差; 频域随ω的衰减速度仅为ω1,频域局部性差。
实际应用受限制,但结构简单,常用于理论研究。
(2)Littlewood-Paley 小波)sin 2(sin 1)(t t tt πππψ-= (4.3)其傅里叶变换为⎩⎨⎧≤≤=ψ,其他02,1)(πωπω (4.4)将式(4.3)的)(t ψ按照式(4.1)进行平移和伸缩得到的Z n n m t ∈)}({,ψ是)(2R L 空间上的完备正交基,称之为Littlewood-Paley 正交小波基。
特点:时域衰减速度仅为t1,局部性差; 频域局部性好;实际应用也受到限制。
(3)Meyer 小波Meyer 小波的小波函数ψ和尺度函数φ都是在频域中进行定义的,是具有紧支撑的正交小波。
⎪⎪⎪⎩⎪⎪⎪⎨⎧∉≤≤-≤≤-=ψ--]3π8,3π2[,03π83π4)),1π23(2πcos(e π)2(3π43π2)),1π23(2πsin(e π)2()(2/2/12/2/1ωωωνωωνωωωj j (4.5)其中,)(x v (Meyer 小波的辅助函数)为一任意连续可导函数,且满足⎩⎨⎧≤≥=0011)(x x x v ,, 1)1()(=-+x v x v (4.6) 若取)(x v 一阶连续可导:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<≤=11102sin 00)(2x x xx x v π (4.7)则)(x v 与)(ωψ的波形如图4.3所示。