小波变换与多分辨率分析报告
- 格式:ppt
- 大小:2.22 MB
- 文档页数:47
一个多分辨率信号分解理论:小波表示摘要:多分辨率表示对于分析图像信号内容十分有效,我们研究了在一给定分辨率下逼近信号算子的性能。
显示出在分辨率12+j 和j 2下逼近信号的信息不同,通过在小波标准正交基2L 上分解这一信号可以将其提取。
小波标准正交基是一系列函数,它由扩大和转化唯一函数)(x ψ来构建。
这一分解定义了一个正交多尺度表示叫做小波表示。
它由金字塔算法来计算,其基于正交镜像滤波器的卷积。
对于图像,小波表示区分了几种空间定位。
我们研究这一表示在数据压缩,图像编码,结构辨别及分形分析上的应用。
关键词-编码,分形,多分辨率金字塔,正交镜像滤波器,结构辨别,小波变换 1. 引言在计算机视觉方面,很难由图像像素的灰度强度来直接分析一个图像的信息内容。
的确,这一数值依赖于照明条件。
更为重要的是图像强度的局部变化。
邻居的大小即对比计算处必须被采用于我们要分析的物体大小。
这一尺寸为测量图像局部变化定义了参考分辨率。
总的来说,我们想要识别的结构具有差异很大的尺寸。
因此,定义分析图像的优先或最优分辨率是不可能的。
一些研究人员发明了图像比对算法用来处理不同分辨率下的图像。
为这一目的,一种算法可以识别图像信息至一系列在不同分辨率下显现的细节。
给定一个提高分辨率的序列j r ,在分辨率j r 下的图像细节被定义为它的分辨率j r 下逼近与低分辨率1-j r 下逼近之间的信息差别。
多分辨率分解使得我们可以获得图像的尺度不变性演绎。
图像尺度随着场景与相机光学中心间的距离而变化。
当图像尺寸修改时,我们对于图像的演绎不应该变化。
多分辨率分解可以满足局部尺度不变性如果分辨率参量j r 的序列以指数形式变化。
我们假设存在分辨率一步R ∈α对于所有整数j ,j j r α=。
如果相机靠近场景时间为α,则每一物体被投影到一个2α的区域比相机焦平面更大。
即每一物体以α倍大的分辨率度量。
因此,新图片在分辨率j α下细节与先前在分辨率1+j α下图像细节相一致。
小波变换的多分辨率分析原理与应用引言:小波变换是一种在信号处理和图像处理领域中广泛应用的数学工具。
它通过将信号分解成不同频率的子信号,以实现对信号的多分辨率分析。
本文将介绍小波变换的原理和应用,并探讨其在信号处理和图像处理中的潜在价值。
一、小波变换的原理小波变换是一种基于窗函数的变换方法,它通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和频率上的分解系数。
小波基函数是一种具有有限长度的波形,它可以在时间和频域上进行调整,以适应不同尺度和频率的信号特性。
小波变换的核心思想是多分辨率分析,即将信号分解成不同尺度的子信号。
通过对信号进行连续缩放和平移操作,小波变换可以捕捉到信号在不同频率上的细节信息。
与傅里叶变换相比,小波变换可以提供更好的时频局部化特性,能够更准确地描述信号的瞬时特征。
二、小波变换的应用1. 信号处理小波变换在信号处理中有广泛的应用。
通过对信号进行小波变换,可以实现信号的降噪、压缩和特征提取等操作。
由于小波基函数具有时频局部化的特性,它可以有效地消除信号中的噪声,并提取出信号的重要特征。
因此,在语音识别、图像处理和生物医学信号处理等领域,小波变换被广泛应用于信号的预处理和特征提取。
2. 图像处理小波变换在图像处理中也有重要的应用。
通过对图像进行小波变换,可以实现图像的去噪、边缘检测和纹理分析等操作。
由于小波基函数具有多尺度分析的能力,它可以捕捉到图像中不同尺度上的细节信息。
因此,在图像压缩、图像增强和图像分割等领域,小波变换被广泛应用于图像的处理和分析。
3. 数据压缩小波变换在数据压缩中有着重要的应用。
通过对信号或图像进行小波变换,可以将其表示为一组小波系数。
由于小波系数具有稀疏性,即大部分系数都接近于零,可以通过对系数进行适当的量化和编码,实现对信号或图像的高效压缩。
因此,在音频压缩、图像压缩和视频压缩等领域,小波变换被广泛应用于数据的压缩和传输。
结论:小波变换是一种强大的信号处理和图像处理工具,它通过多分辨率分析实现对信号的精确描述和处理。