矩阵理论作业6:两种算法求三次最佳平方逼近多项式
- 格式:docx
- 大小:244.52 KB
- 文档页数:3
1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限)1.0ln(,121,1011,1014321====x x x x1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位数。
3*5*4*3*2*1100.5,5000,50.31,3015.0,0315.0⨯=====x x x x x1.3 为了使31的近似值的相对误差不超过0.1%, 问应取几位有效数字?1.4 怎样计算下列各题才能使得结果比较精确?(1) x x sin )sin(-+ε,其中ε充分小 (2) ⎰++121N Nx dx,其中N 是充分大的正数(3)xxsin cos 1-,其中x 充分小(4) o 1cos 1- (5) 1001.0-e(6) )11010ln(84--1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。
2.1 证明方程043=-+x x 在区间[1,2]内有且仅有一个根。
如果用二分法求它具有五位有效数字的根,试问需对分多少次?(不必求根)2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求21021-⨯=ε。
2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求210-=ε。
(1) 02=--x x ;(2) 06cos 2=-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。
2.4 考虑方程032=-x e x ,将其改写为3xex ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求310-=ε)。
2.5 为求方程0123=--x x 在5.1=x 附近的一个根,建立下列形式的迭代公式:(1) 2121111kk x x xx +=⇒+=+,;(2) 3212311k k x x x x +=⇒+=+,;(3) 111112-=⇒-=+k k x x x x ,。
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
两种算法求()f x 的三次最佳平方逼近多项式
摘 要
对于一个较复杂的函数,往往需要求一个简单多项式来逼近。
本文选取两种基函数,用两种算法计算一个函数()=exp()sin()f x x x ⋅在[0,]2x π∈上的三次最佳平方逼近多项式及其逼近误差,然后应
用matlab 进行计算作图并对比两种方法的逼近结果。
关键字:三次 最佳平方 逼近 两种算法
引言
多项式的一个重要应用就是可以用来逼近一个区间上的连续函数,往往许多复杂的函数需要用各种方法来进行多项式逼近。
本文参考矩阵理论讲义
[1]
对函数()=e x p
()s i n (f x x x ⋅在[0,]2
x π
∈上进行三次最佳平方逼近,求其逼近
误差,并在matlab 中编程计算和绘图以验证和比较逼近结果的准确性。
求最佳平方逼近的多项式
()=exp()sin()f x x x ⋅,[0,]2
x π
∈求三次的
最佳平方逼近多项式(内积中的权函数()=1x ρ)。
用两种算法实现,一是设{}
23
=1,,,span x x x Φ,
二是设为{}0123=(),(),(),()L x L x L x L x Φ,其中
(),0,1,2,3i L x i =是勒让德多项式。
第一种算法:
{}23=1,,,span x x x Φ,由矩阵形式
(1)
根据[,]C a b 上内积定义
((),())()()()b
a
f x
g x x f x g x dx
ρ=⎰
(2)
其中权函数
()=1x ρ,在[0,]2
x π
∈上计算得
23402345
1345624567
3 2.9052/2/8/24/6
4 3.2781/8/24/64/160 4.0294/24/64/160/384 5.2035/64/160/384/896a a a a ππππππππππππππππ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
⎣⎦⎣⎦(3)解得待定系数00.0201a =,10.7658a =,
2 1.5765a =,20.0708a =-。
即
23()0.02010.7658 1.57650.0708x x x x ϕ=++- (4)
误差2()0.0100x δ (5)
第二种算法:
{}0123=(),(),(),()L x L x L x L x Φ,其中
(),0,1,i L x i
=是勒让德多项式,其表达式为:
21()[(1)],0,1,2,,2!i
i i i i
d L x x i n i dx
=-= (6) 勒让德正交多项式有如下递推关系
0()1L x =,1()L x x =,
()
1121()()(),1,,,111
72i i i i i
L x xL x L x i n i i +-+=-=-++ 可得2231()22L x x =
-,3353
()22
L x x x =- 求得结果,误差为0.3020。
算例分析
在matlab 中编程计算(程序见附录),第一种方法的结果为 >>f=@(x)exp(x).*sin(x); >> [P,error]=polyappro(f,0,pi/2) 得到结果: P =
-0.0708 1.5765 0.7658 0.0201 error = 0.0100
可以看到 A =
[ pi^7/896, pi^6/384, pi^5/160, pi^4/64]
[ pi^6/384, pi^5/160, pi^4/64, pi^3/24] [ pi^5/160, pi^4/64, pi^3/24, pi^2/8 ] [ pi^4/64, pi^3/24, pi^2/8, pi/2 ] B'=
(exp(pi/2)*(pi^3 - 12*pi + 24))/16 (exp(pi/2)*(pi/2 - 1)*(pi/2 + 1))/2 + 1/2 (pi*exp(pi/2))/4 - 1/2
exp(pi/2)/2 + 1/2 第二种方法,勒让德多项式逼近 >> f=inline('exp(x).*sin(x)');
>> [Y,error]=LegendreApproximation(f,4) 得到结果: error = 0.3020
结论
两种方法逼近的效果比较,第一种基函数逼
近的整体效果好,误差小,但是从图上可以看出局部细节不是很准确;而第二种勒让德多项式逼近的结果在前半部分非常好,但后边误差较大,总体误差大。
参考文献
[1]矩阵理论讲义(矩阵论第二章),19-20.
附录
方法一:求内积
>> f=inline('sin(x).*exp(x)','x'); >> fy0=quad(f,0,pi/2) fy0 = 2.9052
>> f=inline('sin(x).*exp(x).*x','x'); >> fy1=quad(f,0,pi/2) fy1 =
3.2781
>> f=inline('x.^2.*sin(x).*exp(x)','x'); >> fy2=quad(f,0,pi/2) fy2 =
4.0294
>> f=inline('x.^3.*sin(x).*exp(x)','x'); >> fy3=quad(f,0,pi/2) fy3 =
5.2035 最佳平方逼近函数:
function [poly,error]=polyappro(f,a,b) syms x
P=[1,x,x.^2,x.^3];
%P=[1,x,1.5*x.^2-0.5,2.5*x.^3-1.5]; m=length(P); for i=1:m
for j=1:m
A(i,j)=int(P(m-i+1).*P(m-j+1),a,b); end
B(i)=int(f*P(m-i+1),a,b); end
poly=A\B';
poly=sym2poly(poly'); xx=a:0.01:b; yy=feval(f,xx);
ypoly=polyval(poly,xx); polysym=poly2sym(poly); delta=f-polysym;
error=sqrt(int(delta.*delta,a,b)); error=sym2poly(error); plot(xx,yy,xx,ypoly,'r-') end
方法二:勒让德多项式 Function
[Y,error]=LegendreApproximation(f,n) xx=0:0.01:0.5*pi;
fval=feval(f,xx); for i=1:n+1
w(i)=(2*(i-1)+1)/2*quad(@(x)f(x).*
mfun('p',i-1,x),-1,1);
YY(i,:)=w(i).*mfun('p',i-1,xx); Y=sum(YY);
error=norm(fval-Y,'inf'); plot(xx,fval,xx,Y,'r'); end end。