自动送料冲床机构综合
- 格式:docx
- 大小:580.52 KB
- 文档页数:15
湖南人文科技学院课程设计报告课程名称:机械原理课程设计设计题目:自动送料冲床的机构设计系别:通信与控制工程系专业:机械设计制造及其自动化班级:11级机械二班学生姓名: 倪燮燃,张林,许胜,周天越学号: 11428228,11428246,11428209,11428231起止日期:2013.6.30~2013.7.5指导教师:张斌教研室主任:朱连池11级机械二班自动送料冲床机构课程设计摘要随着现代科技的发展趋势,自动化对机械设计和制造具有非常重要的意义。
我国也正倾向于机械自动化方面的发展,在此前提下,我们就开始设计自动送料冲床机构。
自动送料机构的工作目的是为了实现自动送料,把人为因素造成的误差减到最小,同时减少劳动力成本便于实现机械化和自动化等一系列优点。
在设计过程中,主要是设计了工作台,工作机构的传动和自动送料机构,以及可以实现自动送料的伺服电机和变速箱。
通过对这些方面的设计和研究,可以大大减少劳动力成本,提高了工作效率,减少了误差,同时也简化了机构,重点是机构的运动分析。
正因为它的输送能力大、能耗低、结构简单、维护方便这些特点深受广大企业的青睐。
自动送料冲床机构的设计的主要侧重点是同时实现加工与送料,通过对机械机构的灵活运用,设计出合理的作品。
关键词:自动送料冲床机,自动送料,间歇传动,冲床,伺服电机目录1、课程设计的目标与设计任务 (1)1.1 设计的目标 (1)1.2 设计的要求 (1)1.3 设计的任务 (2)2、机械运动方案的设计 (2)2.1 棘轮式自动送料冲床机构的结构及工作原理 (2)2.2 槽轮式自动送料冲床机构的结构及工作原理 (4)2.3 机械运动方案的选择 (5)2.4 棘轮式自动送料冲床机构的运动循环图 (6)3、棘轮式自动送料冲床机构主要参数的设计计算 (6)3.1 主要参数的设定 (6)3.2 机器参数 (11)4、主要零部件的设计 (14)4.1 电动机的选择 (14)4.2 飞轮的设计 (15)心得体会 (16)参考文献 (16)致谢 (17)附录一 (18)附录二 (19)附录三 (20)附录四 (21)自动送料冲床机构引言现代机械设计要求既要满足市场需求,又要考虑企业的发展;既要解决技术和可靠性问题,又要考虑经济性问题;既要解决设计本身的方法、手段和关键技术问题,又要解决产品寿命周期中各个环节的技术问题。
冲床冲压机构及送料机构设计1.送料机构设计:送料机构是将金属板材沿着设定的方向和距离进行输送,使板材准确进入到冲压机构进行加工。
送料机构设计应考虑以下几个方面:1.1送料方式:一般有齿轮送料、滑块送料和链条送料等。
齿轮送料适用于较精密的工作,滑块送料适用于较高速的工作,而链条送料适用于较长的板材。
1.2送料速度和精度:为确保板材的准确度和加工效率,需要根据工作要求确定送料速度和精度。
1.3送料力和稳定性:考虑到板材的重量和加工过程中的震动,应确保送料机构具有足够的力量和稳定性。
1.4自动化控制:现代的冲床冲压机构多采用自动化控制系统,可以根据预设参数自动调整送料速度和精度,提高生产效率和品质。
2.冲压机构设计:冲压机构是将板材按照所需形状制成零件的部分,它包括下模座、冲头、上模座、传动机构和驱动装置等。
2.1下模座和上模座设计:下模座和上模座是支撑和导向冲头和模具的部件,应具备足够的刚度和稳定性,以保证加工过程中的精度和质量。
2.2冲头设计:冲头是冲压机构中最重要的部件之一,它决定了冲床的工作参数和加工效果。
冲头的设计需要考虑到工件的大小、形状、厚度和硬度等因素。
2.3传动机构设计:传动机构是将驱动装置的动力传递给冲头的部分,常见的传动机构有曲轴传动和连杆传动等。
传动机构设计需要平衡冲头的运动速度、精度和稳定性。
2.4驱动装置设计:驱动装置决定了冲床的工作速度和力量,通常采用液压驱动、机械驱动或电动驱动等。
驱动装置的选择应根据工作需求和设备性能来确定。
综上所述,冲床冲压机构及送料机构的设计应综合考虑设备性能、工作要求和生产效率等因素。
设计师需要根据具体情况选择适当的送料方式、确定合理的送料速度和精度,确保送料机构具有足够的力量和稳定性。
同时,冲压机构的设计需要考虑下模座、上模座、冲头、传动机构和驱动装置等部件,以确保加工过程中的精度和质量。
最后,自动化控制系统的应用也是提高冲床冲压机构效率和品质的关键。
高速冲床自动送料装置(结构图)
自动送料装置冲床送料辊传动系手动齿条机械冲头送进
冲床自动送料装置是配合冲床工作,以提高冲床的工作效率,同时减轻工人的劳动量,提高冲压工艺的自动化程度。
带轮将动力通过齿条传递给齿轮,齿轮和一个单向超越离合器相联结,只传递正向的转矩。
单向超越离合器带动传动轴1转动,由轴1上的齿轮带动送料辊送料。
轴1和轴2通过摩擦离合器联接,由轴2上的齿轮带动卷料筒卷起废料。
卷料筒在卷起废料的过程中直径会不断增加,致使轴2的圆周速度增加,当卷料筒的卷料速度大于送料速度时,由于摩擦离合器所传递的转矩过大,摩擦片就会打滑,从而消减卷料筒的卷料速度。
床之设计原理是将圆周运动转换为直线运动,由主电动机出力,带动飞轮,经离合器带动齿轮、曲轴(或偏心齿轮)、连杆等运转,来达成滑块的直线运动,从主电动机到连杆的运动为圆周运动。
连杆和滑块之间需有圆周运动和直线运动的转接点,其设计上大致有两种机构,一种为球型,一种为销型(圆柱型) ,经由这个机构将圆周运动转换成滑块的直线运动。
高速冲床对材料施以压力,使其塑性变形,而得到所要求的形状与精度,因此必须配合一组模具(分上模与下模),将材料置于其间,由机器施加压力,使其变形,加工时施加于材料之力所造成之反作用力,由冲床机械本体所吸收。
文章编辑:东莞豪辉机械有限公司官方网: huangkaijun。
自动送料冲床机构的课程设计方案一、方案简介本课程设计的主要目的是让机械工程专业的学生深入了解自动送料冲床机构的设计原理和实现方法,通过实践操作和分析,掌握冲床的操作技能和故障排除能力。
二、设计内容(一)实验内容1. 熟悉冲床的基本组成部分及性能指标。
2. 理解自动送料冲床机构的工作原理及电气控制部分的作用。
3. 学习模具设计与选型的基本方法。
4. 进行冲床的装配与调试,并测试不同参数下的工作特性。
5. 分析冲床在运转过程中可能出现的各种故障,并掌握排除方法。
6. 在冲压过程中体验模具受力与碰撞的感觉,了解选材的重要性。
7. 学习机器的维修和保养方法。
(二)实验设备与工具1. 自动送料冲床机构。
2. 有各种形式的手工工具。
3. 需要预制、加工好的要装配的零件。
(三)实验步骤1. 学习冲床的基本组成部分及性能指标,并打印设计图。
2. 熟悉自动送料冲床机构的工作原理及电气控制部分的作用,并分阶段组装冲床。
3. 掌握模具设计与选型的基本方法,在计算机上绘制出冲压产品的3D图形。
4. 调试冲床,确定不同参数下的工作特性,并记录成表格。
5. 分析冲床在运转过程中可能出现的各种故障,并记录排除方法。
6. 练习机器的维修和保养方法,并领取认证证明。
(四)实验时间15~18周。
(五)实验成果1. 冲床的装配、调试记录表格。
2. 冲床的特性及故障排除记录表格。
3. 冲压模具的设计图与产品的3D图形。
4. 维修保养安全培训认证证明。
(六)实验总结通过本课程的学习,学生们能够深入了解自动送料冲床机构的设计原理和实现方法,掌握冲床的基本操作技能和故障排除能力,提高应用能力和实际操作技能,对于未来就业和进一步深造具有重要意义。
自动冲床送料机构课程设计一、课程目标知识目标:1. 学生能理解自动冲床送料机构的基本原理与结构,掌握其工作流程及各部件功能。
2. 学生能掌握自动冲床送料机构的参数计算方法,并运用相关公式进行简单计算。
3. 学生能了解自动冲床送料机构在工业生产中的应用及发展趋势。
技能目标:1. 学生能运用CAD软件绘制自动冲床送料机构的三维模型,并进行运动仿真。
2. 学生能通过实际操作,掌握自动冲床送料机构的调试与维护方法。
3. 学生能运用所学知识,解决自动冲床送料机构在实际应用中遇到的问题。
情感态度价值观目标:1. 培养学生对机械工程领域的兴趣,提高其学习积极性。
2. 培养学生的团队合作精神,使其在项目实施过程中学会沟通、协作。
3. 培养学生具备安全生产意识,了解自动化设备在工业生产中的重要性。
课程性质:本课程为机械设计与制造专业的实践性课程,旨在培养学生掌握自动冲床送料机构的设计与制造技能。
学生特点:学生具备一定的机械基础知识和动手能力,对实际操作有较高的兴趣。
教学要求:结合理论教学与实际操作,注重培养学生的动手能力、解决问题能力和创新能力。
通过课程学习,使学生能够独立完成自动冲床送料机构的设计与制造任务。
二、教学内容本课程教学内容主要包括以下几部分:1. 自动冲床送料机构的基本原理与结构:讲解自动冲床送料机构的工作原理、各部件功能及相互关系,结合教材相关章节,使学生了解其基本构成。
2. 自动冲床送料机构的参数计算:教授相关公式和方法,使学生能够进行简单的参数计算,为后续设计奠定基础。
3. 自动冲床送料机构的设计与制造:结合教材内容,指导学生运用CAD软件进行三维模型绘制、运动仿真,并了解制造工艺。
4. 自动冲床送料机构的调试与维护:介绍调试方法、步骤及注意事项,使学生掌握设备维护的基本技能。
5. 自动冲床送料机构在实际应用中的案例分析:分析实际应用中遇到的问题及解决方法,提高学生解决问题的能力。
教学进度安排如下:1. 第1周:自动冲床送料机构的基本原理与结构。
冲床自动送料装置设计介绍冲床自动送料装置在工业生产中扮演着重要的角色,它可以实现自动送料和自动生产,大大提高了生产效率和精度。
本文将探讨冲床自动送料装置的设计,包括设计原理、组成部分和实现方法,让读者了解自动送料装置的基本工作原理和设计要点。
设计原理冲床自动送料装置的设计原理是利用机器人或其他自动装置将工件送入冲床。
在实际生产中,主要采用两种设计方案:方案一:气缸设计这种设计方案主要是通过使用气缸来完成送料装置的自动化。
具体来说,气缸可以通过压缩空气来快速移动操作臂,将工件送入冲床中进行加工。
该方案成本低廉,易于维护,但是其移动速度受到了气源压力和工件重量的限制。
方案二:电机设计该方案则主要通过电机的转动来完成自动送料装置的设计。
电机驱动送料装置移动,将工件送入冲床进行加工。
相对于气缸设计方案,它可以实现快速移动和精准定位,也可以根据需要进行各种精细的控制。
但其成本较高,需要较为复杂的控制系统进行配合,维护难度也相对较大。
组成部分冲床自动送料装置由多个组成部分构成,包括:操作臂操作臂是送料装置的核心传动装置。
它负责将工件送入冲床中进行加工。
根据不同的设计方案,操作臂可以使用气缸或电机控制。
控制器控制器是自动送料装置的关键部分,负责控制送料装置的运动和维护其正常工作。
控制器需要根据业务需要,针对不同的工件进行编程,并完成项目调试、维护和升级等一系列工作。
传感器传感器可以通过检测工件尺寸和位置,快速反馈信息给控制器,控制器再利用反馈的信息进行对走位进行修正,从而保证了送料装置的精度。
其他配件冲床自动送料装置还需要配备一些其他配件,如支架、传动装置、线缆等,来帮助实现正常工作。
实现方法在实际的设计中,我们可以采用以下步骤来完成冲床自动送料装置的设计:步骤一:确定设计方案根据业务和生产需要,我们需要确定适合自己的设计方案。
如何选择方案,需要从成本、效率、精度等不同方面进行评估,并进行一个比较。
步骤二:确定操作臂的类型具体操作臂的选择则要根据自动送料装置的设计方案和工作环境选择。
自动送料机构设计摘要:本课题所设计的自动送料机构的目的,是为了实现自动送料,消除积累误差,同时减少劳动力成本。
在设计过程中,主要是设计了工作台以及工作台面上的夹紧装置,滚珠丝杠的选用,以及可以实现自动送料的伺服电机。
通过对这些方面的设计和研究,可以大大减少劳动力成本,减少了误差,同时也简化了机构。
这在实际生产中具有很好的推广效果和意义。
关键词:冲床工作台滚珠丝杠伺服电机Abstract: the design of this project be automatic conveying mechanism in order to realize the aim, is automatic packing, eliminate accumulation error, while reducing the cost of Labour. In the design process, mainly design on the bench and workbench clamping device, ball screw choose, and can realize automatic feed of servo motors. Based on the design and research of these aspects, can reduce labor costs, reduce the error, also simplifies organization. This in practical production have very good promotion effect and meaning.Keywords: punch workbench ball screw servo motor1.引言1.1 课题的背景在我国和国外的生产和研究中,自动送料方式有很多种,但是在这些产品中,存在着一些问题。
机构分析与综合大作业:选题1:铰链式颚式破碎机机构选题2:压床机构选题3:自动送料冲床机构选题4:平板搓丝机选题5:木地板连接榫舌和榫槽切削机8.13.1 机构简介及设计数据1.机构简介室内地面铺设的木地板是由许多小块预制板通过周边的榫舌和榫槽连接而成的,如图8.13.2设计任务1.设计机械系统总体运动方案并绘制机构运动简图2.推杆驱动机构的运动分析假设凸轮(曲柄)作等速转动,对推动工件以便切削榫槽的推杆驱动机构(凸轮机构或曲柄滑块机构)进行运动分析,作机构1-2个位置的速度多边形和加速度多边形,作推杆的运动线图,以上内容与后面动态静力分析一起画在1号图纸上。
3.推杆驱动机构的动态静力分析已知:在工作行程中,推杆所受的阻力为常数(推杆4工作载荷),在空回行程中,推杆所受的阻力为常数1kN,不考虑各处摩擦、其他构件重力和惯性力的条件下,分析凸轮(曲柄)所需的驱动力矩。
确定机构1-2个位置的各运动副反力及应加于曲柄上的平衡力矩,作图部分画在运动分析的图上。
4.用解析法校核机构运动分析和动态静力分析结果编写机构运动分析和动态静力分析程序,得到给定位置的计算结果。
根据解析法的结果,分析图解法的误差及产生的原因。
5.飞轮设计已知:机器运转的速度不均匀系数=0.01 ,驱动力矩d M 为常数,结合动态静力分析所得的平衡力矩b M ,取凸轮(曲柄轴)为等效构件,确定应加于其上的飞轮转动惯量。
将等效力矩图和能量指示图花在图纸上,按要求编写设计说明书。
选题6:压片机加压机构设计8.14.1 机构简介及设计数据8.14.2 设计任务1.设计机械系统总体运动方案并绘制机构运动简图(备选方案见图7.5)图 7.52.上冲头加压机构的运动分析假设原动件作等速转动,对上冲头加压机构进行运动分析,用图解法作机构1-2个位置的速度多边形和加速度多边形,作冲头的运动线图,以上内容与后面动态静力分析一起画在1号图纸上。
3. 上冲头加压机构的动态静力分析已知:在工作行程中,冲头所受的阻力为常数(冲头压力),在空回行程中,冲头所受的阻力为常数1kN ,不考虑各处摩擦、其他构件重力和惯性力的条件下,分析原动件所需的驱动力矩。
冲床自动送料机构设计
冲床自动送料机构设计一般包括以下几个方面的设计内容:
1. 送料装置设计:根据冲床自动化生产要求,设计并安装适合的送料装置,如滚筒送料装置、气压送料装置或者抓料装置等。
选择合适的送料方式和结构,在保证送料精度和速度的前提下,减少冲床停机时间。
2. 送料系统控制设计:设计适合的电气控制系统,包括传感器、执行器和控制器等,用于实现送料的自动化控制。
可以采用PLC(可编程逻辑控制器)或者CNC(数控机床)等控制技术,确保送料精度和稳定性。
3. 送料力学结构设计:根据产品要求和冲床工艺特点,设计强度合理、刚度足够的送料力学结构,以承受冲床工作时的各种力和负荷,如加工载荷、惯性力、振动力等。
同时要考虑送料部件的重量和体积,在保证性能的同时,尽量减小对冲床结构的影响。
4. 安全保护设计:考虑到冲床工作时可能产生的危险和意外情况,设计相应的安全保护措施,如急停按钮、光栅安全门、安全感应器等,确保操作人员的人身安全和设备的正常运行。
5. 送料自动化控制设计:通过传感器检测和反馈系统的信号,利用自动化控制技术实现送料的自动切换和调整。
可以根据产品要求和工艺参数,设定相应的送料速度、长度和位置等,减少人为干预的程度,提高生产效率和品质。
冲床自动送料机构设计的核心目标是提高生产效率和品质,降低劳动强度和故障率。
同时要考虑到冲床的工艺特点和自动化控制的可行性,确保设计方案的可实施性和经济性。
第二部分机械原理与设计课程设计题目第六章课程设计题目第1题电动线锯机的机构综合与结构设计一、设计题目线锯机又叫直锯机,是木工常用的电动工具,主要用于在木板上开槽,其外形如图6—1所示;电动机通过传动系统带动直线锯条上下往复运动,实现锯切的目的;现要求设计电动线锯机的传动系统;二、设计数据与要求锯条上下往复运动的行程为30mm,最大锯图6-1 电动线锯机外形图切厚度为50mm;假设锯条切削木板时的平均切削力为700N,非切削时锯条与木板间的平均摩擦力为100N;锯条规格为长宽=100mm8mm;要求锯条上下往复运动的速度在500~1500次/分间可调有级可调或无级可调皆可;采用220V单相交流电动机,并要求该机器振动小、噪声小和重量轻;该线锯机的设计寿命为8年,每年300工作日,每日8小时;三、设计任务1.至少提出三种运动方案,然后进行方案分析评比,选出一种运动方案进行机构综合;2.确定电动机的功率与转速;3.设计传动系统中各机构的运动尺寸,绘制线锯机的机构运动简图;4.在假设电动机等速运动的条件下,绘制锯条在一个运动周期中位移、速度和加速度变化曲线;5.如果希望电动机的速度波动系数小于1%,求应在电动机轴上加多大转动惯量的飞轮;6.对所用到的齿轮进行强度计算,确定其尺寸;7.进行线锯机结构设计,绘制其装配图;8.编写课程设计说明书;第2题块状物品推送机的机构综合与结构设计一、设计题目在自动包裹机的包装作业过程中,经常需要将物品从前一工序转送到下一工序;现要求设计一用于糖果、香皂等包裹机中的物品推送机,将块状物品从一位置向上推送到所需的另一位置,如图6-2所示;二、设计数据与要求1. 向上推送距离H=120mm,生产率为每分钟推送物品120件;2. 推送机的原动机为同步转速为3000转/分的三相交流电动机,通过减速装置带动执行机构主动件等速转动;3. 由物品处于最低位置时开始,当执行机构主动件转过1500时,推杆从最低位置运动到最高位置;当主动件再转过1200时,推杆从最高位置又回到最低位置;最后当主动件再转过900时,推杆在最低位置停留不动;4. 设推杆在上升运动过程中,推杆所受的物品重力和摩擦力为常数,其值为500N;设推杆在下降运动过程中,推杆所受的摩擦力为常数,其值为100N;图6-2 推送机工作要求5. 使用寿命10年,每年300工作日,每日工作16小时;6. 在满足行程的条件下,要求推送机的效率高推程最大压力角小于350,结构紧凑,振动噪声小;三、设计任务1. 至少提出三种运动方案,然后进行方案分析评比,选出一种运动方案进行机构综合;2. 确定电动机的功率与满载转速;3. 设计传动系统中各机构的运动尺寸,绘制推送机的机构运动简图;4. 在假设电动机等速运动的条件下,绘制推杆在一个运动周期中位移、速度和加速度变化曲线;5. 如果希望执行机构主动件的速度波动系数小于3%,求应在执行机构主动件轴上加多大转动惯量的飞轮;6. 进行推送机减速系统的结构设计,绘制其装配图和两张零件图;7. 编写课程设计说明书;四、设计提示实现推送机推送要求的执行机构方案很多,下面给出几种供设计时参考;1. 凸轮机构图6-3所示的凸轮机构,可使推杆实现任意的运动规律,但行程较小;2. 凸轮-齿轮组合机构图6-4所示的凸轮-齿轮组合机构,可以将摆动从动件的摆动转化为齿轮齿条机构的齿条直线往复运动;当扇形齿轮的分度圆半径大于摆杆长度时,可以加大齿条的位移量;3. 凸轮-连杆组合机构图6-5所示的凸轮-连杆组合机构也可以实现行程放大功能,但效率较低;图6-3凸轮机构图6-4凸轮-齿轮组合机构图6-5凸轮-连杆组合机构4. 连杆机构图6-6所示的连杆机构由曲柄摇杆机构ABCD与曲柄滑块机构GHK通过连杆EF相联组合而成;连杆BC上E点的轨迹,在部分近似呈以F点为圆心的圆弧形,因此,杆FG在图示位置有一段时间实现近似停歇;5. 固定凸轮-连杆组合机构图6-7所示的固定凸轮-连杆组合机构,可视为连杆长度BD可变的曲柄滑块机构,改变固定凸轮的轮廓形状,滑块可实现预期的运动规律;图6-6 连杆机构图6-7 固定凸轮-连杆组合机构第3题颚式破碎机的机构综合与传动系统设计一、设计题目颚式破碎机是一种利用颚板往复摆动压碎石料的设备;工作时,大块石料从上面的进料口进入,而被破碎的小粒石料从下面的出料口排出;图6-8为一复摆式颚式破碎机的结构示意图;图中连杆2具有扩大衬套c,套在偏心轮1上,1与带轮轴A固联,并绕其轴线转动;摇杆3在C、D两处分别与连杆2和机架相联;连杆2颚臂上装有承压齿板a,石料填放在空间b中,压碎的粒度用楔块机构4调整;弹簧5用以缓冲机构中的动应力;图6-9为一简摆式颚式破碎机的结构示意图;当与带轮固联的曲柄1绕轴心O连续回转时,在构件2、3、4的推动下,动颚板5绕固定点F往复摆动,与固定颚板6一起,将矿石压碎;设计颚式破碎机的的执行机构和传动系统;图6-8 复摆式颚式破碎机图6-9 简摆式颚式破碎机二、设计数据与要求颚式破碎机设计数据如表6-1所示;表6-1 颚式破碎机设计数据分组号进料口尺寸mm颚板有效工作长度mm最大进料粒度mm出料口调整范围mm最大挤压压强Mpa曲柄转速rpm1120×20020010010~30200 3002 150250 120 10210 270×250 ~403200×25030015020~40220 2504250×30035020020~50230 200为了提高机械效率,要求执行机构的最小传动角大于650;为了防止压碎的石料在下落时进一步碰撞变碎,要求动颚板放料的平均速度小于压料的平均速度,但为了减小驱动功率,要求速比系数k压料的平均速度/放料的平均速度不大于;采用380V三相交流电动机;该颚式破碎机的设计寿命为5年,每年300工作日,每日16小时;三、设计任务1.针对图6-8和图6-9所示的颚式破碎机的执行机构方案,依据设计数据和设计要求,确定各构件的运动尺寸,绘制机构运动简图,并分析组成机构的基本杆组;2.假设曲柄等速转动,画出颚板角位移和角速度的变化规律曲线;3.在颚板挤压石料过程中,假设挤压压强由零到最大线性增加,并设石料对颚板的压强均匀分布在颚板有效工作面上,在不考虑各处摩擦、构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4.确定电动机的功率与转速;5.取曲柄轴为等效构件,要求其速度波动系数小于15%,确定应加于曲柄轴上的飞轮转动惯量;6.对曲柄轴进行动平衡计算;7.确定传动系统方案,设计传动系统中各零部件的结构尺寸;8.绘制颚式破碎机的装配图和曲柄轴的零件图;9.编写课程设计说明书;四、设计提示1.动颚板长度取为其工作长度的倍,为了不使石料被挤推出破碎室,两颚板间夹角;2.将动颚板摆角范围取为;3.在进行曲柄轴的动平衡时,应将曲柄上的飞轮分成大小和重量相同的两个轮子,其中一个兼作带轮用;第4题压床机构综合与传动系统设计一、设计题目压床是应用广泛的锻压设备,用于钢板矫直、压制零件等;图6-10所示为某压床的运动示意图;电动机经联轴器带动三级齿轮-、-、-减速器将转速降低,带动冲床执行机构六杆机构ABCDEF的曲柄AB转动图6-11,六杆机构使冲头5上下往复运动,实现冲压工艺;现要求完成六杆机构的尺寸综合,并进行三级齿轮减速器的强度计算和结构设计;二、设计数据六杆机构的中心距、、,构件3的上、下极限位置角、,滑块5的行程H,比值、,曲柄转速以及冲头所受的最大阻力等列于表6-2;三、设计任务1. 针对图6-11所示的压床执行机构方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图,并分析组成机构的基本杆组;图6-10 某压床的运动示意图图6-11 压床六杆机构表6-2 六杆机构的设计数据已知参数分组mmmmmm °°HmmrpmKN15140220612015010062617026061201801205372003106120210992. 假设曲柄等速转动,画出滑块5的位移和速度的变化规律曲线;3. 在压床工作过程中,冲头所受的阻力变化曲线如图6-12所示,在不考虑各处摩擦、构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4. 确定电动机的功率与转速;5. 取曲柄轴为等效构件,要求其速度波动系数小于10%,确定应加于曲柄轴上的飞轮转动惯量;6. 确定传动系统方案,设计传动系统中各零部件的结构尺寸;7. 绘制压床传动系统的装配图和齿轮、轴的零件图;8. 编写课程设计说明书; 图6-12 压床阻力曲线图第5题自动送料冲床机构综合与传动系统设计一、设计题目图6-13 为某冲床机构运动方案示意图;该冲床用于在板料上冲制电动玩具中需要的薄壁齿轮;电动机通过V带传动和单级齿轮传动图中未画出带动曲柄转动,通过连杆带动滑块上下往复运动,实现冲制工艺;针对图6-13所示的冲床机构运动方案,进行执行机构的综合与分析,并进行传动系统结构设计;图6-13 冲床机构运动方案示意图二、设计数据与要求依据冲床工况条件的限制,预先确定了有关几何尺寸和力学参数,如表6-3所示;要求所设计的冲床结构紧凑,机械效率高;图6-14 冲头所受阻力曲线表6-3 冲床机构设计数据1 2 3 4分组已知参数生产率件/min 180 200 220 250送料距离mm 150 140 130 120板料厚度mm 2 2 2 2轴心高度mm 1060 1040 1020 1000冲头行程mm 100 90 80 70辊轴半径mm 60 60 60 60大齿轮轴心坐标mm 270 270 270 270大齿轮轴心坐标mm 460 450 440 430大齿轮轴心偏距mm 30 30 30 30送料机构最小传动角045 45 45 45速度不均匀系数板料送进阻力N 530 520 510 500冲压板料最大阻力N 2300 2200 2100 2000冲头重力N 150 140 130 120三、设计任务1. 绘制冲床机构的工作循环图,使送料运动与冲压运动重叠,以缩短冲床工作周期;2. 针对图6-13所示的冲床的执行机构冲压机构和送料机构方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;3. 假设曲柄等速转动,画出滑块C的位移和速度的变化规律曲线;4. 在冲床工作过程中,冲头所受的阻力变化曲线如图6-14所示,在不考虑各处摩擦、其他构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;5. 确定电动机的功率与转速;6. 取曲柄轴为等效构件,确定应加于曲柄轴上的飞轮转动惯量;7. 确定传动系统方案,设计传动系统中各零部件的结构尺寸;8. 绘制冲床传动系统的装配图和齿轮、轴的零件图;9. 编写课程设计说明书;第6题插床机构综合与传动系统设计一、设计题目插床是常用的机械加工设备,用于齿轮、花键和槽形零件等的加工;图6-15为某插床机构运动方案示意图;该插床主要由带转动、齿轮传动、连杆机构和凸轮机构等组成;电动机经过带传动、齿轮传动减速后带动曲柄1回转,再通过导杆机构1-2-3-4-5-6,使装有刀具的滑块沿道路y-y作往复运动,以实现刀具切削运动;为了缩短空程时间,提高生产率,要求刀具具有急回运动;刀具与工作台之间的进给运动,是由固结于轴上的凸轮驱动摆动从动件和其他有关机构图中未画出来实现的;`图6-15 插床机构运动方案示意图图6-16 插刀所受阻力曲线针对图6-15所示的插床机构运动方案,进行执行机构的综合与分析,并进行传动系统结构设计;二、设计数据与要求依据插床工况条件的限制,预先确定了有关几何尺寸和力学参数,如表6-4所示;要求所设计的插床结构紧凑,机械效率高;表6-4 插床机构设计数据分组已知参数1 2 3 4插刀往复次数次/min 30 60 90 120插刀往复行程mm 150 120 90 60插削机构行程速比系数2 2 2 2中心距mm 160 150 140 130 杆长之比 1 1 1 1 质心坐标mm 60 55 50 45 质心坐标mm 60 55 50 45 质心坐标mm 130 125 120 115 凸轮摆杆长度mm 125 125 125 125 凸轮摆杆行程角015 15 15 15 推程许用压力角045 45 45 45 推程运动角060 90 60 90 回程运动角090 60 90 60 远程休止角010 15 10 15推程运动规律等加速等减速余弦加速度正弦加速度3-4-5次多项式回程运动规律等速等速等速等速速度不均匀系数最大切削阻力N 2300 2200 2100 2000 阻力力臂mm 150 140 130 120 滑块5重力N 350 340 330 320 构件3重力N 150 140 130 120 构件3转动惯量kgm21. 针对图6-15所示的插床的执行机构插削机构和送料机构方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;2. 假设曲柄1等速转动,画出滑块C的位移和速度的变化规律曲线;3. 在插床工作过程中,插刀所受的阻力变化曲线如图6-16所示,在不考虑各处摩擦、其他构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4. 确定电动机的功率与转速;5. 取曲柄轴为等效构件,确定应加于曲柄轴上的飞轮转动惯量;6. 确定插床减速传动系统方案,设计减速传动系统中各零部件的结构尺寸;7. 绘制插床减速传动系统的装配图和齿轮、轴的零件图;8. 编写课程设计说明书;第7题带式输送机的传动装置设计一、设计题目图6-17所示为带式输送机的六种传动方案,设计该带式输送机传动系统;a b cde f图6-17 带式输送机的六种传动方案二、设计数据与要求带式输送机的已知条件如表6-5所示;输送带鼓轮的传动效率为包括鼓轮和轴承的效率损失,该输送机为两班制工作,连续单向运转,用于输送散粒物料,如谷物、型沙、煤等,工作载荷较平稳,使用寿命为10年,每年300个工作日;一般机械厂小批量制造;表6-5 带式输送机的已知条件方案编号 a b c d e f输送带工作拉力FN270025002300240026002200输送带工作速度vm/s鼓轮直径Dmm262524232221三、设计任务1.分析各种传动方案的优缺点,选择或由教师指定一种方案,进行传动系统设计;2.确定电动机的功率与转速,分配各级传动的传动比,并进行运动及动力参数计算;3.进行传动零部件的强度计算,确定其主要参数;4.对齿轮减速器进行结构设计,并绘制减速器装配图;5.对低速轴上的轴承以及轴等进行寿命计算和强度校核计算;6.对主要零件如轴、齿轮、箱体等进行结构设计,并绘制零件工作图;7.编写课程设计说明书;第8题螺旋输送机的传动装置设计二、设计题目图6-18所示为螺旋输送机的六种传动方案,设计该螺旋输送机传动系统;a b cd e f图6-18 螺旋输送机的六种传动方案二、设计数据与要求螺旋输送机的已知条件如表6-6所示;该输送机为两班制工作,连续单向运转,用于输送散粒物料,如谷物、型沙、煤等,工作载荷较平稳,使用寿命为8年,每年300个工作日;一般机械厂小批量制造;表6-6 螺旋输送机的已知数据方案编号 a b c d e f输送螺旋转速nr/min170160150140130120输送螺旋所受阻力矩TNm10095985875三、设计任务1.分析各种传动方案的优缺点,选择或由教师指定一种方案,进行传动系统设计;2.确定电动机的功率与转速,分配各级传动的传动比,并进行运动及动力参数计算;3.进行传动零部件的强度计算,确定其主要参数;4.对齿轮减速器进行结构设计,并绘制减速器装配图;5.对低速轴上的轴承以及轴等进行寿命计算和强度校核计算;6.对主要零件如轴、齿轮、箱体等进行结构设计,并绘制零件工作图;7.编写课程设计说明书;第9题平板搓丝机的执行机构综合与传动装置设计一、设计题目图6-19为平板搓丝机结构示意图,该机器用于搓制螺纹;电动机1通过V带传动、齿轮传动3减速后,驱动曲柄4转动,通过连杆5驱动下搓丝板滑块6往复运动,与固定上搓丝板7一起完成搓制螺纹功能;滑块往复运动一次,加工一个工件;送料机构图中未画将置于料斗中的待加工棒料8推入上、下搓丝板之间;图6-19 平板搓丝机结构示意图二、设计数据与要求平板搓丝机设计数据如表6-7所示;表6-7 平板搓丝机设计数据该机器室内工作,故要求振动、噪声小,动力源为三相交流电动机,电动机单向运转,载荷较平稳;工作期限为十年,每年工作300天;每日工作8小时;三、设计任务1. 针对图6-19所示的平板搓丝机传动方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;2. 假设曲柄AB等速转动,画出滑块C的位移和速度的变化规律曲线;3. 在工作行程中,滑块C所受的阻力为常数搓丝动力,在空回行程中,滑块C所受的阻力为常数1kN;不考虑各处摩擦、其他构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4. 确定电动机的功率与转速;5. 取曲柄轴为等效构件,确定应加于曲柄轴上的飞轮转动惯量;6. 设计减速传动系统中各零部件的结构尺寸;7. 绘制减速传动系统的装配图和齿轮、轴的零件图;8. 编写课程设计说明书;第10题加热炉推料机的执行机构综合与传动装置设计一、设计题目图6-20为加热炉推料机结构总图与机构运动示意图;该机器用于向热处理加热炉内送料;推料机由电动机驱动,通过传动装置使推料机的执行构件滑块5做往复移动,将物料7送入加热炉内;设计该推料机的执行机构和传动装置;图6-20 加热炉推料机结构总图与机构运动示意图二、设计参数与要求加热炉推料机设计参数如表6-8所示;该机器在室内工作,要求冲击振动小;原动机为三相交流电动机,电动机单向转动,载荷较平稳,转速误差<4%;使用期限为10年,每年工作300天,每天工作16小时;表6-8 加热炉推料机设计参数分组参数1 2 3 4 5滑块运动行程Hmm220210200190180滑块运动频率n次/min23456滑块工作行程最大压力角33333机构行程速比系数K 2构件DC长度mm11501140113011201100构件CE长度mm150160170180200滑块工作行程所受阻力含摩擦阻力N500450400350300滑块空回行程所受阻力含摩擦阻力F r1N100100100100100三、设计任务1. 针对图6-20所示的加热炉推料机传动方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;2. 假设曲柄AB等速转动,画出滑块F的位移和速度的变化规律曲线;3. 在工作行程中,滑块F所受的阻力为常数F r1,在空回行程中,滑块F所受的阻力为常数F r2;不考虑各处摩擦、其他构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4. 确定电动机的功率与转速;5. 取曲柄轴为等效构件,确定应加于曲柄轴上的飞轮转动惯量;6. 设计减速传动系统中各零部件的结构尺寸;7. 绘制减速传动系统的装配图和齿轮、轴的零件图;8. 编写课程设计说明书;第11题木地板连结榫舌和榫槽切削机的执行机构与传动系统设计一、设计题目室内地面铺设的木地板是由许多小块预制板通过周边的榫舌和榫槽连结而成,如图6-21所示;为了保证榫舌和榫槽加工精度,以减小连结处的缝隙,需设计一台榫舌和榫槽成型半自动切削机;该机器执行构件工作过程如图6-22所示;图6-21 木地板预制板及其上的榫舌先由构件2压紧工作台上的工件,接着端面铣刀3将工件的右端面切平,然后构件2松开工件,推杆4推动工件向左直线移动,通过固定的榫舌或榫槽成型刀,在工件上的全长上切出榫舌或榫槽;图6-22 榫舌和榫槽切削机工艺动作二、设计数据及要求设计已知数据如表6-9所示;表6-9 榫舌和榫槽切削机设计数据分组参数1 2 3 4木地板尺寸a×b×cmm450×50×8550×60×10750×80×12850×90×15榫舌或槽口尺寸d×emm4×3 ×4 5×5 ×6 执行机构主动件1坐标、50、22060、23065、24070、240执行构件行程、、18、20、8020、24、9025、28、10030、32、120推杆4工作载荷N 2000 2500 3000 3500 端面切刀3工作载荷N1500 1800 2000 2200 生产率件/min 80 70 60 50设计要求及任务:推杆在推动工件切削榫槽过程中,要求工件作近似等速运动;室内工作,载荷有轻微冲击,原动机为三相交流电动机,使用期限为10年,每年工作300天,每天工作16小时,每半年作一次保养,大修期为3年;三、设计任务1 设计机构系统总体运动方案,画出系统运动简图,完成系统运动方案论证报告;2 作传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图;3 设计主要零件,完成2张零件工作图;4 编写设计说明书;第12题小型卧式模锻机执行机构与传动系统设计一、设计题目为锻造长杆类锻件如图6—23所示锻件,系用棒料局部镦粗而成,今需设计一台将杆料水平置放后用活动凹模3如图6—24所示及固定凹模2将其夹紧后再用水平置放的冲头1进行顶锻工作的卧式模锻机;拟用电动机通过传动装置带动夹料机构首先使活动凹模3向前移动,与固定凹模2合拢,以夹紧棒料;然后主滑块1带动冲头进行顶锻,锻件成形后,待冲头1返回离开凹模后返回距离约占冲头全行程的1/8~1/3,由夹料机构带着凹模3返回,松开杆料回到初始位置;在顶锻过程中要求两半凹模始终处于夹紧状态,不能自动松开;要求设计该小型卧式模锻机执行机构和传动系统,以满足上述顶锻工艺要求;图6—23 锻件图6—24 卧式模锻机执行构件二、设计数据与要求电动机同步转速:n m=1000r/min或1500r/min;冲头顶锻次数为每分钟50~75次;主滑块1的全行程H=200~380mm;顶锻工艺开始后冲头的工作行程H1=1/2~2/3H;夹紧滑块3的总行程h=60~80mm;作用在主滑块上的顶锻力F1=250~500KN;作用在夹紧滑块3上的夹紧力F2=F1/3;要求该模锻机的机械效率高,振动冲击小;三、设计任务1.根据上述要求进行机构的选型、经运动及动力分析与设计后确定传动方案,绘制机构运动简图;2.确定电动机的功率与转速;3.设计传动系统中V带传动和齿轮传动;4.对大带轮轴进行结构设计和强度校核,并选择其轴承,计算轴承寿命;5.进行传动系统结构设计,绘制其装配图;6.编写课程设计说明书;四、参考方案与设计提示小型卧式模锻机的参考方案如图6—25所示;电动机1经V带传动2-3-4和齿轮传动5-6减速后,带动曲轴7转动;锻压机构采用曲柄滑块机构;活动凹模15的开闭及夹紧动作与主传动机构的运动配合,由固联在曲轴上的主回凸轮机构10推杆与滑块11固联及连杆机构来实现;当杆料放入固定凹模16内以后,活动凹模15向杆料接近并夹紧它,然后,带有冲头的主滑块9就可以完成顶锻工作;图6—25 小型卧式模锻机的参考方案设计提示:1冲头9的行程H 以及曲柄-连杆比确定主传动曲柄滑块机构的主要尺寸,同时对主传动机构进行速度及加速度分析,并可作出运动线图;2根据夹紧行程h、滑块11行程h11,按夹紧要求设计连杆机构,并要求在夹紧行程的最后10mm范围内满足最小传动角γmin的要求;同时按顶锻时活动凹模应处于自锁状态要求,建议先选定杆件的两个极限位置,并选定L CD/L ED及L EF/L ED的值后初步设计六杆机构,再检查是否满足最小传动角的要求;3根据滑块11行程h11即凸轮机构中推杆的行程及运动循环图设计主回凸轮机构;设计时推杆的运动规律由设计者自行选定,凸轮基圆半径按安装凸轮处的轴径确定,转子直径由设计者选定;4对主传动曲柄滑块机构可以进行动态静力分析,求出各运动副中的支反力,亦可求出曲柄O B A上的平衡力矩,进而求得曲柄上的功率,再考虑效率,求得电动机的功率;5根据机器的运转不均匀系数δ<δ的要求,计算飞轮即大带轮4的转动惯量;计算时可忽略控制锻模的连杆机构中各杆11~15等质量的影响;电机转子及小带轮等的转动惯量,在精确计算时应予考虑,本设计暂可忽略不计;6确定在曲轴7上应加的平衡配重凸轮处暂不考虑;。
冲床三合一送料机特点说明及结构床三合一送料机简称三合一送料机,就是冲床配上三合一送料机自动化冲压生产。
三合一送料机因具有省空间,精度及上下料方便,深受企业青睐,越来越多企业喜欢冲床配NC三合一送料机冲压,在选择前定要先了解三合一电脑送料机结构及特点,下面跟佑亿送料机厂家学习学习冲床三合一送料机性能特点:1、结构精致、省空间:三合一送料机由料架、整平、送料三机功能为一体机,其上料、入料、挡料、折料、整平、送料、换料都由一人在独立控制台上点控化操作即可完成,极大了节省了劳动力,从而十分有效的解决了整平送料搭配不协调的问题,实现高速整平送料效果,同时整个外观结实、美观。
2、上料方便、安全:三合一送料机配有油压台车自动上料,省时省力,带有压料臂压住料头防散料及弹伤人、快速进料,实现高效自动化生产。
3、出料速度高:料架部分采用三组光电自动化控制,保证与整平送料部份工作时完成同步性,有效实现高速的开卷、整平、送料,提高出料速度。
4、耐用耐磨:送料滚轮及整平轮经特殊热处理,硬度高(HRC62度)、耐磨、寿命长。
5、操作简便、易学:操作面板采用彩色液晶显示器,大尺寸的触摸屏,高清晰的操作画面,需要什么尺寸输入进去自动调节,非常智能,而且配合操作安全保护系统即便是初次使用者也能安心操作。
还配有末端检测功能避免误冲,保护冲压模具。
冲床三合一送料机有那些优势在选配送料机的时候一定要知道我们这个设备能给我们带来什么优势,提高多少产量,节约多少开支!购买这台设备的好处是什么1.操作简单,保养容易、精度准确,非常耐用。
适合于各种五金、电子、电器、玩具及汽车零件之连续冲压加工,送料矫正,准确耐用。
能有效节省厂房使用面积,2.三合一送料机功能齐全,性能优异,适用范围大大提升。
作为目前冲压行业中科技含量的自动化使用范围大大提升3.本机全采用进口日制伺服马达、电器箱电子零件及控制器等,产品故障率低,寿命长。
滚轮整平机与可使材料不会松散4.三合一冲床送料机安装方便的优点,不占用空间。
自动送料冲压出料机构设计说明题目:自动送料冲压出料机构设计学院:机电工程专业班级:机械工程及自动化学生姓名:学号:指导教师:日期:自动送料冲压出料机构结构二自动冲压机构的工作原理50*50*5的毛坯由送料传送带传到送料口,送料口是内有50*50通孔的管道,毛坯顺送料口进入转盘的毛坯放置口。
转盘是由PLC控制每次转动90°,第一次转动将毛坯带入待冲压位置,第二次转动将毛坯送到冲压位置进行冲压。
冲头是由液压系统控制,当毛坯被送到冲压位置时进行冲压,冲压废料由盘上的废料出口掉出。
转盘第三次转动冲好的零件从转盘的出料口掉出进入出料道再进入出料传送带送出。
三自动冲压机构的各机构零件的设计(1)自动送料机构自动送料机构由送料传送、入料口组成。
送料传送由电机带动起输送毛坯的作用,而入料口是50*50通孔的管道用来将毛坯送至转盘的毛坯放置口。
(2)自动冲压机构自动冲压机构由机架、冲头、转盘、固定圆盘组成。
机架用来固定冲头和固定圆盘。
需要特别介绍的是转盘和固定圆盘的组合a)转盘和固定圆盘的组合工作原理:固定圆盘固定在机架上而转盘由PLC控制每次转速90°在毛坯放置口转盘上有个毛坯大小的毛坯放置位置当毛坯由送料口送入掉入毛坯大小的毛坯放置位置内随转盘转过90°到达待冲为位置,再经过90°到达冲压位置。
冲压后再转90°到达转盘的出料口,因为固定圆盘也有一个出料口所以零件从出料口到达出料道。
b)转盘c)固定圆盘三、自动出料机构自动出料机构由出料道和出料传送带组成。
加工好的零件从出料口掉出后顺出料道滑至出料传送带传送出去。
冲床各部件的构造介绍冲床是一种专门用于冲压加工的机床,主要用于对金属板材进行剪切、冲孔、弯曲等形状加工。
冲床由机床本体、传动系统、控制系统和辅助系统等部分组成,下面将对冲床的各部件进行详细的构造介绍。
1.机床本体:冲床的机床本体通常由上床和下床两部分组成。
上床是支撑和传递压力的主体,下床是安装模具的工作台。
上床和下床之间通过立柱连接,保证机床的工作稳定性和刚性。
2.机械传动系统:机械传动系统是将电机的旋转运动转换为冲击能量的关键部分。
传动系统包括离合器、齿轮装置、连杆机构等。
其中,离合器通过操纵离合器手柄和离合操纵杆,实现上下床的升降运动。
齿轮装置和连杆机构则将电机的旋转运动转换为上下床的往复运动。
通过合理设计传动系统,可以调整冲床的运行速度和冲床行程等参数。
3.模具系统:模具系统是冲床的关键部分,决定了冲床的加工能力和加工精度。
模具系统通常由上模和下模组成,上模安装在上床上,下模安装在下床上。
通过上下模之间的闭合运动,实现对工件的冲压加工。
模具系统还包括模具抱紧装置、导向装置等,用于保证模具的精确定位和牢固固定。
4.控制系统:冲床的控制系统负责控制和调节冲床的运行状态和加工过程。
现代冲床通常采用数控系统,通过电脑编程和操作,可以灵活调整冲床的运行速度、行程和冲击次数等参数。
数控系统还可以实现自动换模、自动送料等功能,提高冲床的生产效率和加工精度。
5.润滑系统:润滑系统是冲床的辅助系统之一,用于保持冲床各部件的润滑和冷却。
冲床在运行过程中需要承受高速摩擦和冲击力,润滑系统可以减少摩擦和磨损,延长冲床的使用寿命。
润滑系统通常包括油泵、油箱、油管和润滑点等部分,通过循环送油,将润滑油供给到冲床的摩擦部位。
6.安全系统:安全系统是保证冲床操作人员的人身安全的重要系统。
冲床的安全系统包括防护罩、传感器、急停按钮和报警器等。
防护罩可以防止操作人员接触到运动中的冲床部件,传感器可以监测冲床的运行状态,及时发出警报。
.目录1.设计任务 (3)1.1设计题目 (3)1.2自动送料冲床简介 (3)1.3设计条件与要求 (4)1.4设计任务 (5)1.5主要参数及性能指标 (5)2. 机构运动简图 (6)3.课题分析 (7)4.工作原理 (7)5.理论计算 (8)5.1曲柄滑块设计 (8)5.2曲柄摇杆机构的设计 (9)5.3棘轮与曲柄摇杆机构的整合 (12)5.4间歇机构设计 (12)5.5 齿轮传动机构 (12)6.图解法分析 (14)6.1曲柄摇杆机构运动分析 (14)6.2 曲柄滑块机构运动分析 (16)6.3发动机的选择 (17)6.4飞轮的选择 (19)7.三维建模及模拟运动仿真 (20)7.1建模 (20)7.2运动分析 (20)7.3三维图片 (21)8. 感想 (22)9.参考文献 (22)21.设计任务1.1设计题目自动送料冲床机构综合1.2自动送料冲床简介自动送料冲床用于冲制、拉伸薄壁零件,本课题设计的自动送料冲床机构主要用于生产玩具车上的薄壁圆齿轮。
冲床的执行机构主要包括冲压机构和送料机构。
工作时,要求送料机构先将原料胚件送至冲头处,然后送料机构要保证原料胚件静止不动,同时冲压机构快速的冲压原料胚件,制成要求的齿轮。
最后,冲头快速返回,执行下一个循环。
送料机构在此期间将原料胚件送至待加工位置,冲床机构运动方案示意图完成一个工作循环。
341.3设计条件与要求①以电动机作为动力源,下板固定,从动件(冲头)作为执行原件,做上下往复直线运动,其大致运动规律如图1所示,具有快速下沉、等速工作给进和快速返回等特性。
②机构应具有较好的传力性能,工作段的传动角r 大于或等于许用传动角[r]=450 ③冲头到达工作段之前,送料机构已将配料送至待加工位置。
④生产率为每分钟180件。
⑤冲头的工作段长度l=100mm ,冲头总行程长度必须大于工作长度两倍以上。
⑥冲头的一个工作循环内的受力如图2所示,在工作段所受的阻力F 1=2300N ,其他阶段所受的阻力为工作段所受阻力的五分之一。
自动送料冲床机构综合 Revised as of 23 November 2020西南交通大学自动送料冲床机构综合1.设计任务设计题目自动送料冲床机构综合自动送料冲床简介自动送料冲床用于冲制、拉伸薄壁零件,本课题设计的自动送料冲床机构主要用于生产玩具车上的薄壁圆齿轮。
冲床的执行机构主要包括冲压机构和送料机构。
工作时,要求送料机构先将原料胚件送至冲头处,然后送料机构要保证原料胚件静止不动,同时冲压机构快速的冲压原料胚件,制成要求的齿轮。
最后,冲头快速返回,执行下一个循环。
送料机构在此期间将原料胚件送至待加工位置,完成一个工作循环。
冲床机构运动方案示意图设计条件与要求①以电动机作为动力源,下板固定,从动件(冲头)作为执行原件,做上下往复直线运动,其大致运动规律如图1所示,具有快速下沉、等速工作给进和快速返回等特性。
②机构应具有较好的传力性能,工作段的传动角r大于或等于许用传动角[r]=450③冲头到达工作段之前,送料机构已将配料送至待加工位置。
④生产率为每分钟180件。
⑤冲头的工作段长度l=100mm,冲头总行程长度必须大于工作长度两倍以上。
⑥冲头的一个工作循环内的受力如图2所示,在工作段所受的阻力F1=2300N,其他阶段所受的阻力为工作段所受阻力的五分之一。
即F=460N。
⑦送料距离Sn=150mm 。
⑧机器运转速度不均匀系数不超过。
图1图2设计任务1.绘制冲床机构的工作循环图,使送料运动与冲压运动重叠,以缩短冲床工作周期;2.针对图所示的冲床的执行机构(冲压机构和送料机构)方案,依据设计要求和已知参数,确定各构件的运动尺寸,绘制机构运动简图;冲头所受阻力曲线3.在冲床工作过程中,冲头所受的阻力变化曲线如图所示,在不考虑各处摩擦、其他构件重力和惯性力的条件下,分析曲柄所需的驱动力矩;4. 取曲柄轴为等效构件,确定应加于曲柄轴上的飞轮转动惯量;5.用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。
6. 图纸上绘出最终方案的机构运动简图(可以是计算机图)并编写说明书。
2.设计背景冲床自动送料机实质上是上料机械手,适用于轴承行业、小五金行业、标准件行业的冲压加工。
它能自动上料和卸料,提高生产效率,保证产品质量,改善工人劳动强度,确保人身安全。
本机节拍与冲床同步,连续生产.总体结构简单、紧凑,传动平稳,性能可靠,使用安全,操作方便,便于加工、装拆、调整、维护、制造经济。
在冷挤压加工行业特别是轴承冲挤压加工中有较大的应用前景。
自动送料是冲压加工实现自动化的最基本要求、也是在一套模具上实现多工位冲压的根本保证。
自动送料机构每次送进带料或条料的距离称为送料步距,送料步距可根据冲压件的形状尺寸及冲压工艺的需要设计确定。
主要参数及性能指标生产率(件/min)180送料距离(mm)150板料厚度(mm) 2轴心高度(mm)1060冲头行程(mm)100辊轴半径(mm)60大齿轮轴心坐标(mm)270大齿轮轴心坐标(mm)460大齿轮轴心偏距(mm)30送料机构最小传动角(0)45速度不均匀系数板料送进阻力(N)530冲压板料最大阻力(N)2300冲头重力(N)1503.课题分析一般来讲,我们要设计一个机构,包括根据该机构的功能要求选择机构的类型,即确定机构运动简图的形式,也就是通常所说的机构的型综合或构型综合设计;确定机构运动简图之后,我们需要计算它的尺寸参数,称为机构的尺寸综合或运动设计;之后才是机构的结构强度、有限元与加工工艺设计等。
由于本课题已经给出了自动送料冲床机构的运动形式,不必再确定运动简图。
所以,只需要考虑运动设计。
也就是说,题目中的综合指的是尺寸综合。
4.工作原理送料过程:电动机通过V带传动和单级齿轮传动带动曲柄转动,将一定量的薄钢板送入冲床工作台面位置冲制过程:飞轮飞轮驱动曲柄摇杆机构,曲柄摇杆机构中曲柄为主动件,带动摇杆摆动,摇杆与棘轮共轴,从而将摇杆的连续往复摆动转换成棘轮的单向间歇运动,棘轮与辊轴中心轴线重合,最后依靠辊轴的压紧将一定量的板料送到工作位置。
5.机构选择方案一:小齿轮与辊轴的压紧考虑到小齿轮与工件直接接触不仅起不到压紧的作用还会损伤工件,所以该方案不合适。
方案二:辊轴与辊轴的压紧调整适当的间隙便于进料,可以保证工件稳定运动且工件表面无划痕。
比较两个方案后决定采用方案二。
辊轴的直径为60mm,上下辊旋转一周的送料长度为L,则:L=π×D=3.14×60=188.5mm>150mm 所以符合要求。
间歇机构设计当板料送到滑块底部时要被冲制,存在冲压加工时间,所以应该设计间歇机构。
这里选择了棘轮机构。
棘轮与摇杆有共同的中心轴线,摇杆上安装了棘爪。
设棘轮的棘齿数Z=11,冲床往复一次的送料长度为L1,棘轮每转一齿,摇杆转角为α ,则α=36011=32048‘’38‘取棘轮的模数m=6,则外径D=6×11=66mm运动方案设计方案一:如图所示本机构用了连杆和椭圆形的凸轮机构,齿轮—连杆冲压机构和椭圆形的凸轮—连杆送料机构。
正如图所示一样但在设计椭圆形的凸轮机构时不好计算和加工,这大大的增加了加工的难度和设计。
方案二:题目给出的方案根据压紧机构选择的结果,采用双辊压紧机构,则不采用齿轮啮合。
所以要在该方案的基础上改进。
此方案的优点:送料误差较小,且每次送料距离相同,结构简单,载荷平稳缺点:体积较大,有死点存在,但在主动轮采用飞轮可避免死点,且不符合设计要求中的最小传动角要求。
方案三:在方案二的基础上改进。
冲制机构方案不变,采用曲柄滑块机构。
曲摇杆机构中曲柄为主动件,带动摇杆转动,摇杆与棘轮共轴,从而将摇杆的连续往复摆动转换成棘轮的单向间歇运动,采用双辊轴压紧送料机构。
此方案的优点:棘轮机构可把摇杆的往复运动改成单一方向运动,曲柄摇杆的急回特性不影响机构运动,机构体积较小缺点:结构复杂,计算复杂,有一定的误差,但可以通过增加棘轮的齿数来减小误差,噪声较大。
综合上述三种方案,选择第三种方案。
6.理论计算曲柄滑块设计已知条件冲压行程H=100mm B1+B=22mm N=180转/分,则每转需要时间T=0.33S 设飞轮的角速度为ω,则速度为V=O1A×ωT1=100+20V,T2=100−20V,T1T2=12080=32 T1=0.198S ,T2=0.132S根据冲头行程H=100mm(O1A+AC)−(AC−O1A)=100mm 得O1A=50mmAC=500mmC到冲头为245mm 冲头高20mm 滑块共高510mm曲柄摇杆机构的设计可采用最小传动角设计曲柄摇杆机构。
已知最小传动角为450,则由此知L O1O2=√2702+4602=533.38mm 确定各杆长度当a和d杆共线的位置有最小传动角γ存在分别为γ1,γ2当γ1=γ2=γmin时为最佳传动机构,可根据余弦公式cosγ1=c2+b2−(a−b)22bccosγ2=(a+d)2−c2−b22bc解得c=√2adf+a2e+ed2√(2adf+a2e+ed2)2−16a2d2−+2eb=2adce式中e=cosγ1+cosγ2f=cosγ1−cosγ2且γ1=γ2=γmin=450解得:e=√2f=0曲柄长度应非负,则(2adf+ea2+ed2)2−16a2d2≥0所以a≤220.933mm (其他值不符合要求舍去!)可取a=100mm解得c=523.14mm b=144.19mm或者c=144.27mm b=522.85mm因为c<b,所以取c=144.27mm b=522.85mm棘轮与曲柄摇杆机构的整合因为舍弃了齿轮啮合传动,所以可以直接设计为与棘轮共轴的摇杆,棘爪安装在摇杆上。
发动机的选择本设计中已经采用了λ=0.01的设计,所以可得到速度v=0.05ωR[sin+0.052sin2](mm/s)可得瞬时功率N=p×0.05ωR[sin+0.052sin2](mm/s)按照一个工作循环中的平均能量选择电机功率N dN d=k2π∫Nd RπK安全系数= ,算的N d=3.45kw 冲床传动系统如图3所示电动机转速经带传动、齿轮传动降低后驱动机器主轴运转。
原动机为三相交流异步电动机,其同步转速选为1500r/min,可选用如下型号:图3由生产率可知主轴转速约为180r/min,且题目要求使用单级齿轮传动,电动机暂选为Y112M—4,则传动系统总的传动比传动比约为i总=8。
带传动的传动比i b=2,则齿轮减速器i g=4。
飞轮的选择采用近似法算飞轮,根据设计条件所给出的最大阻力电机型号额定功率(kw)额定转速(r/min)Y100L2—4 1420 Y112M—4 1440Y132S—4 1440F r=2300N 最大盈亏功[A]=12(2300−460)×78×π2×100=126449.1N?mm[δ]=0.03飞轮安装在主动轴上ωm=10.742rad/s算得J M=36527.8(kJ.mm2)飞轮选盘形飞轮选用铸铁为飞轮材质,飞轮半径为100mm,求得厚度。
7.三维建模以及模拟运动仿真根据上面的计算数据,通过三维软件CATIA建模,并约束其零件之间的装配关系,完了本设计的仿真。
建立的三维模型通过CATIA中的数字分析模块,分别测量出了冲头的运动过程中的速度曲线和加速度曲线。
冲头的速度曲线冲头的加速度曲线由于大齿轮做来回的回转往复运动,同样的也测量了其在3秒时间内的速度和加速度曲线。
大齿轮的速度曲线大齿轮的加速度曲线由于大齿轮同时也在转动,所以同样测出了其角速度和角加速度曲线。
大齿轮的角速度曲线大齿轮的角加速度曲线8.实物照片根据要求,本设计在机械实验室里面,搭建了按比例缩小的模型。
通过实验,搭建的模型基本符合设计要求。
实验室搭建的实物模型如下9.模型运动图和实物介绍图根据设计要求,根据本次实验做的CATIA模拟运动动画和实物模型介绍的视屏,随本说明书一并上交。
10.设计感想(总结)11.参考文献:[1].谢进.反平行铰链四杆机构的连杆曲线方程.西南交通大学学报.第18卷4期.[2].张新华.冲床自动送料机的原理与设计.锻压技术.1993年.[4] 谢泗淮主编.机械原理.北京:中国铁道出版社.2001.[5] 曹惟庆着.平面连杆机构分析与综合.北京科学出版社.1989.[6] 作品设计说明书格式.百度文库附:CATIA中的三维图。