相量法
- 格式:ppt
- 大小:987.50 KB
- 文档页数:30
相量法的运算公式
相量的运算公式包括:
1.相量的加减法:
a+b = (a_x + b_x) + (a_y + b_y) j
a-b = (a_x - b_x) + (a_y - b_y) j
其中,a_x和a_y分别为向量a在x轴和y轴上的分量,b_x和b_y分别为向量b在x轴和y轴上的分量,j为虚数单位。
2.相量的乘法:
a*b = (a_magnitude * b_magnitude) * exp(j * (a_angle +
b_angle))
其中,a_magnitude和b_magnitude分别为向量a和b的模长,a_angle和b_angle分别为向量a和b与实部轴之间的夹角,exp为指数函数,j为虚数单位。
相量法拓展:
1.相量法不仅适用于平面向量,在空间向量中同样适用,只是需要增加z轴分量。
2.相量法不仅适用于电学领域中的交流电路分析,还适用于机械学、热力学的分析,以及计算机图形学中的向量运算等领域。
3.利用相量法,可以求解平面图形的面积、角度、垂直平分线、内心、外心等问题。
电路相量法相量法是分析讨论正弦电流电路稳定状态的一种简洁易行的方法。
它是在数学理论和电路理论的基础上建立起来的一种系统方法。
1、问题的提出在上图所示的电路中,依据KVL,列写微分方程如下当激励u(t)是正弦量时,uC(t)及iL(t)均为同频率的正弦量。
这一重要结论具有普遍意义,即线性非时变电路在正弦电源激励下,各支路电压、电流的特解都是与激励同频率的正弦量,当电路中存在有多个同频率的正弦激励时,该结论也成立。
工程上将电路的这一特解状态称为正弦电流电路的稳定状态,简称正弦稳态。
电路处于正弦稳态时,同频率的各正弦量之间仅在有效值(或幅值)、初相上存在差异和联系,这种"差异和联系"正是正弦稳态分析求解中的关键问题。
结论:同频的正弦量相加仍得到同频的正弦量,所以,只需确定初相位和有效值。
因此采纳2、正弦量的相量表示:构造一个复函数,(无任何物理意义)取该复函数的实部,,为一个正弦量,有物理意义。
结论:任意一个正弦时间函数都有唯一与其对应的复数函数。
如复函数F(t) 还可以写成,其中为复常数。
F(t) 包含了正弦量的三要素:幅值(此处为有效值)I、初相Y 、角频率w。
有如下关系同样可以建立正弦电压与相量的对应关系:正弦量除可用上述的相量式表示以外,还可在复平面上用相量图形式表示。
如图所示。
图相量图留意相量的模表示正弦量的有效值;相量的辐角表示正弦量的初相位。
例已知,试用相量表示i和u。
解:3、相量法的应用① 同频率正弦量的加减所以相量关系为:结论:同频正弦量的加减运算变为对应相量的加减运算。
同频率的正弦量相加减,还可以借助相量图进行计算。
令,,下面用相量图求解。
图(a)为平行四边形法则求解,图(b)为三角形法则求解。
(a) (b)图相量图进行相量的加法运算② 正弦量的微分、积分运算令微分运算:积分运算:所以;相量法的优点:① 把时域问题变为复数问题;② 把微积分方程的运算变为复数方程运算;③ 可以把直流电路的分析方法直接用于沟通电路。