天津理工电路习题及答案第八章相量法
- 格式:docx
- 大小:107.96 KB
- 文档页数:9
第八章 相量法8.1 学习指导8.1.1 学习要点(1)正弦量及其三要素。
(2)相位差的概念。
(3)相量的概念及其性质。
(4)KCL 、KVL 的相量形式。
(5)R 、L 、C 元件VAR 的相量形式。
8.1.2内容概述1.正弦量1)正弦量的时域表达式(以i 为例):)t cos(I i m ψω+= ①2)正弦量的三要素、有效值的定义 (1)角频率、频率、周期(要素之一) 角频率:dt)t (d ψωω+=,即正弦量单位时间内变化的电角度,单位:rad /s(弧度/秒)。
频率:f —单位时间内正弦量变化的周波数,单位:Z H周期:T —正弦波变化一次所需要的时间,即一个完整周波在时间轴上的宽度,单位:s 、ms 、s μω、f 、T 之间的关系:f 2πω=T1f = 或 f 1T =(2)最大值、有效值(要素之二)式①中:m I —最大值;I —有效值。
有效值的定义:若i 为周期性电流函数(不一定是正弦量),则i 有效值的定义式为 ⎰=T2dt i T1I上式可写成:含义是:对同一电阻R ,在周期T 内,i 通过R 时产生的热量与恒定电流I 通过R 时产生的热量相等。
正弦量:I 2I m =对电压等量有效值的定义式在形式上与电流i 的定义式相同。
(3)相位角、初相角(要素之三)相位角: ψω+t ,单位:rad 或(o )(弧度或度)。
初相角:ψ,单位:rad 或(o )(弧度或度)。
注意:正弦量的一个周期对应的相位角为2πrad 或360o 3)相位差相位差是正弦稳态电路中的一个重要概念,设两个正弦量分别为 )t cos(f f 1m 11ψω+= )t cos(f f 2m 22ψω+= 则1f 与2f 之间的相位差定义为)t (112ψωϕ+=-)t (2ψω+=21ψψ- ② 设πϕπ≤≤-12则:(1)当12ϕ>0时,称1f 越前(超前) 2f (12ϕ角),或2f 滞后1f (12ϕ角)。
第八章 相 量 法 习 题一、 选择题1.在图8—1所示的正弦稳态电路中,电流表1A 、2A 、3A 的读数分别为3A 、10A 、6A ,电流表A 的读数为___。
A..19A ; B .7A ; C .13A ; D .5A2.在图8—2所示的正弦稳态电路中,电压表1V 、2V 、3V 的读数分别为3V 、10V 、6V ,电压表V 的读数为___。
A .5V ;B .7V ;C .19V ;D .13V3.在正弦电路中,纯电感元件上电压超前其电流090的相位关系___。
A .永远正确;B .在电压、电流为关联参考方向的前提下才成立;C .与参考方向无关;D .与频率有关4.在图8—3所示电路中,L X R =,且501=U V ,402=U V ,则电路性质为___。
A .感性的;B .容性的; C.电阻性的; D.无法确定5.在图8—4所示正弦电路中,设电源电压不变,在电感L 两端并一电容元件,则电流表读数___。
A . 增大;B .减小; C.不变; D.无法确定二、填空题1.正弦量的三要素是___,___,___。
2.在图8—5所示正弦稳态电路中,I=___A 。
3.在图8—6所示正弦稳态电路中,电流表的读数为2A ,u 的有效值为___V ,i 的有效值为___A 。
4.在图8—7所示正弦稳态电路中,电流表的读数为1A ,u 的有效值为___V ,i 的有效值为___A 。
5.在图8—8所示正弦稳态电路中,Ω=-==100C L X X R ,00/2=RI A , 则电压=U___V 。
三、计算题1. 在图8—9所示电路中,21U U U +=,则1R 、1L 、2R 、2L 应满足什么关系?2.在图8—10所示的正弦电路中,电流表1A 、2A 的读数分别为4A 、3A ,试求当元件2分别为R 、L 、C 时,总电流i 的有效值是多少?3.在图8—11所示的正弦电路中,电压表1V 、2V 读数分别为6V 、8V ,试求当元件2分别为R 、L 、C 时,总电压u 的有效值是多少?4.在图8—12所示RL 串联电路中,在有效值为220V 、50=f Hz 的正弦电源作用下,4.4=I A 。
答案第一章 电路模型和电路定律【题1】:D 。
【题2】:D 。
【题3】:D 。
【题4】:P US1=50 W ;P US26=- W ;P US3=0;P IS115=- W ;P IS2 W =-14;P IS315=- W 。
【题5】:C 。
【题6】:3;-3。
【题7】:-5;-13。
【题8】:4(吸收);25。
【题9】:0.4。
【题10】:3123I +⨯=;I =13A 。
【题11】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题12】:I =-7A ;U =-35V ;X 元件吸收的功率为P UI =-=-245W 。
【题13】:由图可得U EB =4V ;流过2 Ω电阻的电流I EB =2A ;由回路ADEBCA 列KVL 得U I AC=-23;又由节点D 列KCL 得I I CD =-4;由回路CDEC 列KVL 解得;I =3;代入上式,得U AC =-7V 。
第二章 电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I ab .=+=9485V ; I U 162125=-=ab .A ;P =⨯6125. W =7.5 W ;吸收功率7.5W 。
【题2】:[解答]【题3】:[解答] C 。
【题4】:[解答] 等效电路如图所示,I 005=.A 。
【题5】:[解答] 等效电路如图所示,I L =0.5A 。
【题6】:[解答]【题7】:[解答]由图可得U=4I-4。
【题8】:[解答]⑴U =-3 V 4⑵1 V 电压源的功率为P =2 W (吸收功率) 7⑶1 A 电流源的功率为P =-5 W (供出功率) 10【题9】:[解答]A【题10】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
第八章相量法求解电路的正弦稳态响应,在数学上是求非齐次微分方程的特解。
引用相量法使求解微分方程特解的运算变为复数的代数运运算,从儿大大简化了正弦稳态响应的数学运算。
所谓相量法,就是电压、电流用相量表示,RLC元件用阻抗或导纳表示,画出电路的相量模型,利用KCL,KVL和欧姆定律的相量形式列写出未知电压、电流相量的代数方程加以求解,因此,应用相量法应熟练掌握:(1)正弦信号的相量表示;(2)KCL,KVL的相量表示;(3)RLC元件伏安关系式的相量形式;(4)复数的运算。
这就是用相量分析电路的理论根据。
8-1将下列复数化为极坐标形式:(1);(2);(3);(4);(5);(6)。
解:(1)(因在第三象限)故的极坐标形式为(2)(在第二象限)(3)(4)(5)(6)注:一个复数可以用代数型表示,也可以用极坐标型或指数型表示,即,它们相互转换的关系为:和需要指出的,在转换过程中要注意F在复平面上所在的象限,它关系到的取值及实部和虚部的正负。
8-2将下列复数化为代数形式:(1);(2);(3);(4);(5);(6)。
解:(1)(2)(3)(4)(5)(6)8-3若。
求和。
解:原式=根据复数相等的定义,应有实部和实部相等,即虚部和虚部相等把以上两式相加,得等式解得所以8-4求8-1题中的和。
解:8-5 求8-2题中的和。
解:8-6若已知。
(1)写出上述电流的相量,并绘出它们的相量图;(2)与和与的相位差;(3)绘出的波形图;(4)若将表达式中的负号去掉将意味着什么(5)求的周期T和频率f。
解:(1)故,和的相量表达式为其相量图如题解图(a)所示。
题解8-6图(2)(3)(t)的波形图见题解图(b)所示。
(4)若将(t)中的负号去掉,意味着的初相位超前了180。
即的参考方向反向。
(5)(t)的周期和频率分别为注:定义两个同频率的正弦信号的相位差等于它们的初相之差,因此在比较相位差时,两个正弦量必须满足(1)同频率;(2)同函数,即都是正弦或都是余弦;(3)同符合,即都为正号或都为负号,才能进行比较。
第八章 相量法求解电路的正弦稳态响应,在数学上是求非齐次微分方程的特解。
引用相量法使求解微分方程特解的运算变为复数的代数运运算,从儿大大简化了正弦稳态响应的数学运算。
所谓相量法,就是电压、电流用相量表示,RLC 元件用阻抗或导纳表示,画出电路的相量模型,利用KCL,KVL 和欧姆定律的相量形式列写出未知电压、电流相量的代数方程加以求解,因此,应用相量法应熟练掌握:(1)正弦信号的相量表示;(2)KCL,KVL 的相量表示;(3)RLC 元件伏安关系式的相量形式;(4)复数的运算。
这就是用相量分析电路的理论根据。
8-1 将下列复数化为极坐标形式:(1)551j F --=;(2)342j F +-=;(3)40203j F +=; (4)104j F =;(5)35-=F ;(6)20.978.26j F +=。
解:(1)a j F =--=551θ∠ 25)5()5(22=-+-=a 13555arctan-=--=θ(因1F 在第三象限) 故1F 的极坐标形式为 135251-∠=F(2) 13.1435)43arctan(3)4(34222∠=-∠+-=+-=j F (2F 在第二象限) (3) 43.6372.44)2040arctan(40204020223∠=∠+=+=j F (4) 9010104∠==j F (5) 180335∠=-=F(6) 19.7361.9)78.220.9arctan(20.978.220.978.2226∠=∠+=+=j F注:一个复数可以用代数型表示,也可以用极坐标型或指数型表示,即θθj ae a ja a F =∠=+=21,它们相互转换的关系为:2221a a a += 12arctan a a =θ和 θcos 1a a = θsin 2a a =需要指出的,在转换过程中要注意F 在复平面上所在的象限,它关系到θ的取值及实部1a 和虚部2a 的正负。
习题8-1题8-1图所示的对称三相电路中,已知Z = (3+j6)Ω,Z l= 1Ω,负载相电流为I p= 45A,求负载和电源的相电压有效值及线电流的有效值。
+_A+_+_BZlZ ZZA'B'C' AUBUCUZlZl题8-1图8-2某Y—Y连接的对称三相电路中,已知每相负载阻抗为Z=(10+j15)Ω,负载线电压的有效值为380 V,端线阻抗为零,求负载的线电流。
例9.2—1 某Y —Y 连接的对称三相电路中,已知梅相匹配负载阻抗为()315Z j =+Ω,,负载线电压的有效值为380V ,求负载的线电流。
解:由题意,得负载线电压的有效值为122033p U V === 所以,负载的线电流为 ()12212.21015p p U I I A Z====+Ω8-3 已知负载△连接的对称三相电路,电源为Y 形连接,其相电压为110V ,负载每相阻抗Z = (4+j 3)Ω,端线阻抗为零。
求负载的相电流和线电流。
8-4 一组对称的三相负载Z = (5+j8.66) Ω接于对称三相电压,其线电压为380 V,试求:(1)负载星形联接时,在该电源作用下,各相电流及中线电流;(2)负载三角形联接时,在该电源作用下,各相电流与线电流。
例8.2-1 一组对称的三相负载Z=5+j8.66Ω接于对称三相电压,其线电压为380V,试求:(1)负载星形联接时,在该电源作用下,各相电流及中线电流;(2)负载三角形联接时,在该电源作用下,各相电流与线电流。
解(1)负载作星形联接U设AB3800 V则AB A3803022030 V 330330U U负载阻抗 5+j8.661060 Z相电流A A 22030===2290 A 1060U I Z则B A =1120=22210=22150 A I IA C =1120=2230 A I I由于整个电路为对称三相电路,因此其中线上电流N =0I(2)负载作三角形联接相电流 AB AB 3800===3860 A 1060U I Z则 BC AB =1120=38180=38180 A I ICA AB =1120=3860 A I I 故线电流 A AB =330=3303860=6690 A I IB BC =330=33038180=66150 A I I CA C =330=3303860=6630 A I I8-5 在三相四线制电路中,已知对称三相电源线电压380 V ,线路阻抗Z l = (20+j 20) Ω,负载阻值Z = (30+j 30)Ω,中线阻抗为Z N = (8+j 6)Ω,计算线电流。
电路理论课后习题解答08第八章相量法8-1如果已知I1??5秒?314t?60?? a、 i2?10罪?314t?60?? a、 i3?4cos?314t?60?? a、(1)写出上述电流的相量并绘制相量图;(2) I1和I2之间以及I1和I3之间的相位差;(3)绘制I1的波形图;(4)若将i1表达式中的负号去掉将意味着什么?(5)求i1的周期t和频率f。
解决方案:(1)I1??5秒?314t?60 5秒?314t?60?? 180度?A.5秒?314t?120度?i2?10si?n3t1?4.因此,I1、I2和I3的相量表达式为.??6?041ts?3?1?0coo30i1?52??120a,i2?o.102??30a,i3?o.42?60aO其相量图如图(a)所示5+ji1?t?060?120??0??30+1-2.5-5t(a)题解8-1图(b)(2)? 12?? 1.2.90度?13?? 1.3.有关180o(3)波形图,请参见图(b)(4)意味着i1的初相位超前了180o,即i1的参考方向反向。
(5)t?220ms,f?1t?50hz8-2如果已知具有相同频率的两个正弦电压的相量为U1?50? 30,u2??100?? 150伏o..其频率f?100hz。
求:(1)写出u1,u2的时域形式;(2)u1与u2的相位差。
解决方案:(1)OU1?T502cos?2.英尺?30度??502cos?628t?30点?五、u2?t1002cos?2?ft?150.o.o??1002cos?628t?150?180oo??1002cos?628t?30o?v(2) u1?50? 30岁,u2?100? 30ov,所以相位差是??0,即它们是同相的。
8-3已知三个电压源的电压分别为:ua?2202cos??t?10??v,乌布?2202cos??T110? 五、加州大学?2202cos??T130?? v、求:(1)三个电压之和;(2)uab,ubc;(3)画出它们的相量图。