高中数学必修函数模型及其应用优秀课件
- 格式:ppt
- 大小:970.50 KB
- 文档页数:63
第11讲 函数模型及其应用1.了解指数函数、对数函数与一次函数增长速度的差异.2.考试要求理解“指数爆炸”“对数增长”“直线上升”等术语的含义.3.能选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.01聚焦必备知识1.指数、对数、幂函数模型性质比较知识梳理 函数 性质 y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调______单调______单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与______平行随x的增大逐渐表现为与______平行随n值变化而各有不同2.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)与指数函数相关的模f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)型与对数函数相关的模f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)型与幂函数相关的模型f(x)=ax n+b(a,b,n为常数,a≠0)提醒实际问题中函数要有意义,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,增长速度缓慢.常用结论1.回源教材(1)已知甲、乙两种商品在过去一段时间内的价格走势如图所示,假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是( )A.40万元B.60万元C.80万元D.120万元夯基诊断D D 当甲商品的价格为6元时,该商人全部买入甲商品,可以买120÷6=20(万份),在t2时刻全部卖出,此时获利20×2=40(万元);当乙商品的价格为4元时,该商人买入乙商品,可以买(120+40)÷4=40(万份),在t4时刻全部卖出,此时获利40×2=80(万元).故该商人共获利40+80=120(万元).(2)在数学课外活动中,小明同学进行了糖块溶于水的试验,将一块质量为7克的糖块放入到一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得的未溶解糖块的质量为3.5克,同时小明发现可以用指数型函数S=a e-kt(a,k为常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量,则k=( )C 2.易错自纠(1)已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是( )A.f (x )>g (x )>h (x )B.g (x )>f (x )>h (x )C.g (x )>h (x )>f (x )D.f (x )>h (x )>g (x )B B 在同一坐标系内,根据函数图象变化趋势,当x ∈(4,+∞)时,增长速度大小排列为g (x )>f (x )>h (x ).(2)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少C是( )A.8B.9C.10D.1102突破核心命题1.某工厂6年来生产某种产品的情况是前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间 t (年)的函数图象正确的是( )考 点 一利用函数图象刻画实际问题的变化过程A A 前3年年产量的增长速度越来越快,说明呈高速增长,只有A,C 图象符合要求,而后3年年产量保持不变,A中总产量增长,C中总产量不变,因此A正确.2.如图所示,△OAB是边长为2的等边三角形,直线x=t截这个三角形位于此直线左方的图形面积为y(见图中阴影部分),则函数y=f(t)的大致图象为( )D判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际情况的答案.考 点 二已知函数模型解决实际问题ABC已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.反思感悟C 例2 某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A.10.5万元B.11万元C.43万元D.43.025万元考 点 三构造函数模型解决实际问题考向 1构建二次函数模型C C 设在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-10.5)2+0.1×10.52+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.2构建分段函数模型例3 某村利用当地优势引进经济效益好、养殖密度高的“活水围网”养鱼技术.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的连续函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求函数v关于x的函数解析式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.例4 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y(万元)与营运年数x的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.3构建对勾函数模型答案:5在应用函数解决实际问题时需注意以下4个步骤:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型.(3)解模:求解函数模型,得出数学结论.(4)还原:将数学结论还原为实际意义的问题.反思感悟训练2 (2024·临沂测试)已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x千件(0<x≤25)并全部销售完,每千件的销售收入为R(x)(单位:万元),且(1)写出年利润f(x)(单位:万元)关于年产量x(单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)03限时规范训练(十六)A级 基础落实练1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最接近的B 一个是( )x 1.99234 5.15 6.126y 1.517 4.04187.51218.01B 由题中表格可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大得越来越快,分析选项可知B符合,故选B.2.据统计,第x年某湿地公园越冬的白鹭数量y(只)近似满足y=k log3(x +1),观测发现第2年有越冬白鹭1000只,估计第5年有越冬白鹭(ln 2≈0.7,ln 3≈1.1)( )B A.1530只B.1636只C.1830只D.1930只3.某商店每月按出厂价每瓶3元购进一种饮料,根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若零售价每降低(升高)0.5元,则可多(少)销售40瓶,在每月的进货当月销售完的前提下,为D 获得最大利润,销售价应定为( )A.3.75元/瓶B.7.5元/瓶C.12元/瓶D.6元/瓶4.(多选)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2 km.如图所示表示甲同学从家出发到BD 乙同学家经过的路程y(km)与时间x(min)的关系,下列结论正确的是( ) ArrayA.甲同学从家出发到乙同学家走了60 minB.甲从家到公园的时间是30 minC.甲从家到公园的速度比从公园到乙同学家的速度快B 由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e-0.5x+14<20,解得x>5.42,取整数,故为6个小时.故选B.6.(2024·连云港质检)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为B 使该设备年平均费用最低,该企业需要更新设备的年数为( )A.8B.10C.12D.13。