矩阵分析第三章-资料
- 格式:ppt
- 大小:1.12 MB
- 文档页数:133
内积空间正规矩阵与第三章内积空间、正规矩阵与H -矩阵定义:设是实数域上的维线性空间,对于中的任意两个向量按照某一确定法则对应着一V R n V ,αβ个实数,这个实数称为与的内积,记为,并且要求内积满足下列运算条件:αβ(,)αβ1()(,)(,)αββα=2()(,)(,)(()(k k αβαβ=34000),,)(,)()(,),(,).αβγαγβγααααα+=+≥==当且仅当时这里是中任意向量,为任意实数,我们称带有这样内积的维线性空间为欧氏空间。
,,αβγV k n V 例1在中,对于nR 1212(,,,),(,,,)n n x x x y y y αβ==""规定11122(,)n nx y x y x y αβ=+++"容易验证是上的一个内积,从而成1(,)n R n R 为一个欧氏空间。
如果规定211222(,)n nx y x y nx y αβ=+++"容易验证也是上的一个内积,这样又成为另外一个欧氏空间2(,)n R n R又成为另外个欧氏空间。
例2在维线性空间中,规定n mR×nm T容易验证这是上的一个内积,这样对于(,):Tr()A B AB =n mR ×n mR ×这个内积成为一个欧氏空间。
例3在维线性空间中,规定2n n nC×(,):()HA B Tr AB =其中H表示中所有元素取共轭复数后再转置,容易验证是上的一个内积,从而连同这个内积一起成为酉空间。
B B (,)n n×n nC ×连同这个内积起成为酉空间。
C欧氏空间的性质)()β欧氏空间的性质:(1)(,,k k αβα==(2)(,)(,)(,))()ttαβγαβαγ++11(3)(,,i i i i i i k k αβαβ===∑∑(4)(,)(,)tti i i i k k αβαβ===∑∑11i i4242ii i ++⎡⎤(1)21i i ⎢⎥−+⎢⎥4212i i ⎢⎥−+−−⎣⎦6123i i +⎡⎤(2)1291i i ⎢⎥−−⎢⎥317i i ⎢⎥−+−⎣⎦⎡018(3)4i i −⎤⎢⎥100i i −−−⎢⎥−−⎦84i i ⎢⎥⎣3132i i +⎡(4)13415i i ⎤⎢⎥−+2155i i ⎢⎥⎢⎥−−⎣⎦标准正交基底与Schmidt 正交化方法定义为一组不含有零向量的向量组如果:设为组不含有零向量的向量组,如果内的任意两个向量彼此正交,则称其为正交向量组{}i α{}i α量组。
第三章矩阵分析及其应用矩阵是线性代数中的重要概念,不仅在理论上有广泛应用,也在实际问题中具有重要的应用价值。
本章将介绍矩阵的基本概念和常用运算,以及矩阵在各个领域中的应用。
1.矩阵的基本概念矩阵是由m行n列的数排成的矩形阵列,通常用A、B、C等大写字母表示,其中A的第i行第j列的元素记作a_ij。
矩阵的大小用m×n表示,m表示行数,n表示列数。
特殊的矩阵有零矩阵、单位矩阵等。
矩阵的转置、相等、相加、相乘等运算是矩阵分析中的基础。
2.线性方程组与矩阵运算线性方程组是线性代数中的基本问题,可以使用矩阵运算来求解。
矩阵运算包括矩阵的相加、相乘等,可以用来简化计算过程,提高求解效率。
矩阵的转置能够将列向量转换为行向量,从而方便计算。
3.矩阵的逆与行列式行列式是矩阵的一个重要特征,可以判断矩阵是否可逆。
如果一个矩阵的行列式不等于0,则称该矩阵可逆,且可以使用其逆矩阵来求解线性方程组。
逆矩阵的计算方法有求伴随矩阵、幻方阵等多种方法。
4.矩阵的应用矩阵在各个领域中都有广泛应用。
在物理学中,矩阵可以描述电磁场、力学系统等;在经济学中,矩阵可以描述供求关系、价格变动等;在计算机科学中,矩阵可以用于图像处理、模式识别等。
总的来说,矩阵分析及其应用是线性代数中一个重要的分支,它不仅有着广泛的理论基础,还具有重要的实际应用价值。
掌握矩阵的基本概念和常用运算,能够帮助我们解决实际问题,提高计算效率。
同时,矩阵也是其他高级数学领域的重要工具,如微积分、概率论等。
因此,矩阵分析的学习和应用具有非常重要的意义。
矩阵分析第3章习题答案第三章1、已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量1212(,,,),(,,,)n n x x x y y y αβ==定义内积为(,)H A αβαβ=(1)证明在上述定义下,nC 是⾣空间;(2)写出nC 中的Canchy-Schwarz 不等式。
2、已知2111311101A --??=?-??,求()N A 的标准正交基。
提⽰:即求⽅程0AX =的基础解系再正交化单位化。
3、已知308126(1)316,(2)103205114A A --??=-=-??----??试求⾣矩阵U ,使得HU AU 是上三⾓矩阵。
提⽰:参见教材上的例⼦4、试证:在nC 上的任何⼀个正交投影矩阵P 是半正定的Hermite 矩阵。
5、验证下列矩阵是正规矩阵,并求⾣矩阵U ,使H U AU 为对⾓矩阵,已知11332611(1)6322312623i i A i i ??--=--???01(2)10000i A i -=??,434621(3)44326962260ii i A i i i i i +--=----?+--??11(4)11A -??=??6、试求正交矩阵Q ,使TQ AQ 为对⾓矩阵,已知220(1)212020A -=---??,11011110(2)01111011A -??-?=-??-??7、试求矩阵P ,使H P AP E =(或T P AP E =),已知11(1)01112i i A i i +=-??-,222(2)254245A -??=---8、设n 阶⾣矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1()()H i E U E U -=-+是Hermite 矩阵。
反之,若H 是Hermite 矩阵,则E iH +满秩,且1()()U E iH E iH -=+-是⾣矩阵。
证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,⽭盾,所以矩阵E U +满秩。