第3节液相色谱的固定相与流动相
- 格式:ppt
- 大小:544.00 KB
- 文档页数:12
高压液相色谱HPLC培训教程(六)IV.固定相和流动相在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。
本章着重讨论填料基质、化学键合固定相和流动相的性质及其选择。
一、基质(担体)HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。
无机物基质主要是硅胶和氧化铝。
无机物基质刚性大,在溶剂中不容易膨胀。
有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。
有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。
1.基质的种类1)硅胶硅胶是HPLC填料中最普遍的基质。
除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。
硅胶基质填料适用于广泛的极性和非极性溶剂。
缺点是在碱性水溶性流动相中不稳定。
通常,硅胶基质的填料推荐的常规分析pH范围为2~8。
硅胶的主要性能参数有:①平均粒度及其分布。
②平均孔径及其分布。
与比表面积成反比。
③比表面积。
在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。
④含碳量及表面覆盖度(率)。
在反相色谱法中,含碳量越大,溶质的k值越大。
⑤含水量及表面活性。
在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。
⑥端基封尾。
在反相色谱法中,主要影响碱性化合物的峰形。
⑦几何形状。
硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。
⑧硅胶纯度。
对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。
2)氧化铝具有与硅胶相同的良好物理性质,也能耐较大的pH范围。
它也是刚性的,不会在溶剂中收缩或膨胀。
但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。
不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。
液相色谱基本原理
液相色谱(Liquid Chromatography,简称LC)是一种基于溶
液流动性的分离技术,广泛应用于化学、生物、医药等领域。
其基本原理是将待分析的混合物通过溶液流动,并在固定相上进行分离。
液相色谱的基本原理包括以下几个方面:
1. 手段:液体作为流动相,传递溶解后的待测物进入色谱柱中。
2. 色谱柱:色谱柱是液相色谱的核心部件,通常由一根加有固定相(Stationary Phase)的管道组成。
固定相的选择取决于待
分离物质的性质,如极性、分子大小等。
3. 固定相:液相色谱中的固定相可以是脂肪、硅胶、酸性树脂等。
固定相的选择应根据待测物质的极性、溶解性等特点。
4. 流动相:流动相在液相色谱中起到溶解、输送待测物质的作用。
流动相可以是无机溶液、有机溶剂或其混合物。
5. 分离机理:在液相色谱中,样品分离主要通过样品分子在固定相表面上与流动相的相互作用来实现。
不同成分在固定相上的相互作用力量差异较大,从而导致它们在色谱柱中以不同速度移动。
6. 检测器:液相色谱的检测器用于检测分离出的各个组分,并将其转化为电信号进行记录和分析。
常用的检测器包括紫外-
可见吸收检测器、荧光检测器、电子喷雾检测器等。
液相色谱的基本原理是基于分子之间的相互作用力差异实现物质的分离。
通过调整流动相的成分、固定相的性质或改变操作条件等,可以实现对不同成分的定量分离和分析。
液相色谱具有灵敏度高、分析速度快、选择性好和适用性广等特点,成为许多实验室和工业界的常用分析技术之一。
高压液相色谱HPLC培训教程(六)IV.固定相和流动相在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一。
本章着重讨论填料基质、化学键合固定相和流动相的性质及其选择。
一、基质(担体)HPLC填料可以是陶瓷性质的无机物基质,也可以是有机聚合物基质。
无机物基质主要是硅胶和氧化铝。
无机物基质刚性大,在溶剂中不容易膨胀。
有机聚合物基质主要有交联苯乙烯-二乙烯苯、聚甲基丙烯酸酯。
有机聚合物基质刚性小、易压缩,溶剂或溶质容易渗入有机基质中,导致填料颗粒膨胀,结果减少传质,最终使柱效降低。
1.基质的种类1)硅胶硅胶是HPLC填料中最普遍的基质。
除具有高强度外,还提供一个表面,可以通过成熟的硅烷化技术键合上各种配基,制成反相、离子交换、疏水作用、亲水作用或分子排阻色谱用填料。
硅胶基质填料适用于广泛的极性和非极性溶剂。
缺点是在碱性水溶性流动相中不稳定。
通常,硅胶基质的填料推荐的常规分析pH范围为2~8。
硅胶的主要性能参数有:①平均粒度及其分布。
②平均孔径及其分布。
与比表面积成反比。
③比表面积。
在液固吸附色谱法中,硅胶的比表面积越大,溶质的k值越大。
④含碳量及表面覆盖度(率)。
在反相色谱法中,含碳量越大,溶质的k值越大。
⑤含水量及表面活性。
在液固吸附色谱法中,硅胶的含水量越小,其表面硅醇基的活性越强,对溶质的吸附作用越大。
⑥端基封尾。
在反相色谱法中,主要影响碱性化合物的峰形。
⑦几何形状。
硅胶可分为无定形全多孔硅胶和球形全多孔硅胶,前者价格较便宜,缺点是涡流扩散项及柱渗透性差;后者无此缺点。
⑧硅胶纯度。
对称柱填料使用高纯度硅胶,柱效高,寿命长,碱性成份不拖尾。
2)氧化铝具有与硅胶相同的良好物理性质,也能耐较大的pH范围。
它也是刚性的,不会在溶剂中收缩或膨胀。
但与硅胶不同的是,氧化铝键合相在水性流动相中不稳定。
不过现在已经出现了在水相中稳定的氧化铝键合相,并显示出优秀的pH稳定性。
液相色谱仪的工作原理液相色谱仪(HPLC)是一种高效分离和分析化学物质的仪器,广泛应用于制药、生物化学、环境监测等领域。
其工作原理基于化学物质在液相流动中的分配和分离特性,通过不同化学物质在固定相和流动相之间的相互作用来实现分离和检测。
1. 流动相在液相色谱仪中,流动相是指用于将样品输送到色谱柱中的溶剂。
流动相通常是由溶剂混合而成的,常用的溶剂包括水、甲醇、乙腈等。
流动相的选择取决于待分离的化合物的特性,如极性、溶解度等。
流动相的选择对色谱分离的效果有重要影响。
2. 固定相固定相是色谱柱中的填料,其作用是将化合物分离开来。
固定相通常是由多孔硅胶或者聚合物制成的微小颗粒,颗粒的大小和化学性质对分离效果起着重要作用。
固定相的选择也取决于待分离的化合物的特性,如分子大小、极性等。
3. 样品注入样品注入是将待分析的化合物引入色谱系统的过程。
通常情况下,样品会被溶解在流动相中,然后通过进样器注入色谱柱。
进样器可以采用不同的方式,如手动注射、自动进样器等。
4. 色谱柱色谱柱是液相色谱仪中最关键的部件之一,其内部填充有固定相。
当样品进入色谱柱后,不同化合物会因为与固定相的相互作用而发生分离,从而实现对化合物的分析和检测。
5. 检测器色谱柱中分离的化合物会通过检测器进行检测和定量分析。
常用的检测器包括紫外-可见吸收检测器(UV-Vis)和荧光检测器等。
检测器会根据化合物的特性产生相应的信号,然后通过数据采集系统进行记录和分析。
6. 数据分析最后,液相色谱仪通过数据采集系统将检测到的信号转化为图谱或者色谱图,进而进行数据分析和定量分析。
数据分析可以帮助人们快速准确地获得化合物的信息,如浓度、纯度等。
总的来说,液相色谱仪的工作原理是基于化学物质在固定相和流动相之间的相互作用来实现分离和检测。
通过流动相、固定相、样品注入、色谱柱、检测器和数据分析等步骤,液相色谱仪能够快速准确地分离和分析化合物,为化学分析提供了重要的技术手段。