十二顺序查找和二分查找
- 格式:doc
- 大小:101.50 KB
- 文档页数:6
二分查找算法经典题一、二分查找算法简介二分查找(Binary Search)是一种在有序数组中查找特定元素的搜索算法。
相较于全序查找,二分查找能够在时间复杂度上实现O(log n)的高效搜索。
该算法基于比较思想,通过不断缩小搜索范围来找到目标元素。
二、二分查找算法的应用场景1.有序数组查找:当数据集已经有序时,使用二分查找可以获得较快的搜索速度。
2.区间查找:在给定一个区间,寻找区间内的特定元素,如最大值、最小值等。
3.有序树查找:在二叉搜索树(BST)中进行查找操作。
三、经典二分查找题目解析1.题目一:有序数组查找特定元素给定一个有序数组,实现一个二分查找函数,找到目标元素的位置。
2.题目二:区间查找给定一个有序数组和一个小于数组平均值的值,找到该值在数组中的位置。
3.题目三:有序链表查找给定一个有序链表,实现一个二分查找函数,找到目标元素的位置。
四、实战案例与代码演示以下是一个使用Python实现的二分查找算法示例:```pythondef binary_search(arr, target):left, right = 0, len(arr) - 1while left <= right:mid = left + (right - left) // 2if arr[mid] == target:return midelif arr[mid] < target:left = mid + 1else:right = mid - 1return -1arr = [1, 3, 5, 7, 9, 11, 13, 15]target = 11print(binary_search(arr, target)) # 输出:4```五、优化与扩展1.线性时间复杂度优化:当数据集无序时,可以通过预处理数据实现有序化,从而将时间复杂度降低到O(n)。
2.外部排序:当数据集过大,无法一次性加载到内存中时,可以通过外部排序实现二分查找。
二分法查找1、二分查找(Binary Search)二分查找又称折半查找,它是一种效率较高的查找方法。
二分查找要求:线性表是有序表,即表中结点按关键字有序,并且要用向量作为表的存储结构。
不妨设有序表是递增有序的。
2、二分查找的基本思想二分查找的基本思想是:(设R[low..high]是当前的查找区间)(1)首先确定该区间的中点位置:(2)然后将待查的K值与R[mid].key比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找,具体方法如下:①若R[mid].key>K,则由表的有序性可知R[mid..n].keys均大于K,因此若表中存在关键字等于K的结点,则该结点必定是在位置mid左边的子表R[1..mid-1]中,故新的查找区间是左子表R[1..mid-1]。
②类似地,若R[mid].key<K,则要查找的K必在mid的右子表R[mid+1..n]中,即新的查找区间是右子表R[mid+1..n]。
下一次查找是针对新的查找区间进行的。
因此,从初始的查找区间R[1..n]开始,每经过一次与当前查找区间的中点位置上的结点关键字的比较,就可确定查找是否成功,不成功则当前的查找区间就缩小一半。
这一过程重复直至找到关键字为K的结点,或者直至当前的查找区间为空(即查找失败)时为止。
3、二分查找算法int BinSearch(SeqList R,KeyType K){ //在有序表R[1..n]中进行二分查找,成功时返回结点的位置,失败时返回零int low=1,high=n,mid;//置当前查找区间上、下界的初值while(low<=high){ //当前查找区间R[low..high]非空mid=(low+high)/2;if(R[mid].key==K) return mid;//查找成功返回if(R[mid].kdy>K)high=mid-1; //继续在R[low..mid-1]中查找elselow=mid+1;//继续在R[mid+1..high]中查找}return 0;//当low>high时表示查找区间为空,查找失败} //BinSeareh二分查找算法亦很容易给出其递归程序【参见练习】4、二分查找算法的执行过程设算法的输入实例中有序的关键字序列为(05,13,19,21,37,56,64,75,80,88,92)要查找的关键字K分别是21和85。
《二分查找》作业一、选择题1. 二分查找算法要求待查找的数组必须是()。
A. 无序的B. 有序的C. 循环的D. 不确定答案:B解析:二分查找算法基于有序数组进行操作。
它通过不断将查找范围减半来定位目标元素,这要求数组必须是有序的。
2. 在二分查找中,如果查找的元素不存在于数组中,算法会返回()。
A. 第一个大于目标元素的值的位置B. 最后一个小于目标元素的值的位置C. -1或类似的标识符D. 数组的长度答案:C解析:当二分查找无法找到目标元素时,通常会返回一个特殊值(如-1)来表示查找失败。
这是因为二分查找算法无法确定目标元素应该插入的位置。
3. 二分查找的时间复杂度是()。
A. O(1)B. O(log n)C. O(n)D. O(n^2)答案:B解析:二分查找算法每次将查找范围减半,因此其时间复杂度是对数级别的,即O(log n)。
4. 对于长度为n的有序数组,二分查找最坏情况下的比较次数大约是()。
A. log₂(n)B. n/2C. nD. 2n答案:A解析:在最坏情况下,二分查找需要比较log₂(n)次才能找到目标元素或确定目标元素不存在。
这是因为每次比较都将查找范围减半。
5. 如果一个有序数组是升序排列的,使用二分查找算法来查找一个不存在的元素,比较次数可能会()。
A. 减少B. 不变C. 增加D. 不确定答案:A解析:虽然二分查找算法不直接利用数组的升序或降序排列特性,但在查找不存在的元素时,由于数组是有序的,一旦某个区间内的所有元素都大于或小于目标元素,就可以立即排除该区间,从而减少比较次数。
6. 在二分查找算法中,如果数组中存在多个相同的目标元素,那么()。
A. 只能找到一个目标元素B. 可以找到所有目标元素的位置C. 只能找到第一个目标元素的位置D. 只能找到最后一个目标元素的位置答案:C解析:二分查找算法在找到目标元素后会停止搜索,并返回该元素的位置。
如果数组中存在多个相同的目标元素,算法只会返回第一个找到的元素的位置。
常用查找算法的分类与特点在计算机科学中,查找算法是一种用于在数据集合中查找特定元素的方法。
查找算法的效率和性能对于许多应用程序来说至关重要,因为它们直接影响到程序的运行速度和资源使用情况。
本文将介绍一些常见的查找算法,并分析它们的特点和适用场景。
一、顺序查找顺序查找是最简单的查找算法之一。
它的基本思想是从数据集合的开头开始,逐个元素进行比较,直到找到目标元素或者遍历完整个数据集合。
顺序查找的优点是实现简单,对于小型数据集合或者无序数据集合来说,是一种可行的选择。
它不需要对数据进行预处理,也不需要额外的存储空间来保存索引或其他辅助信息。
然而,顺序查找的缺点也很明显。
它的平均查找时间复杂度为O(n),其中 n 是数据集合的大小。
这意味着当数据集合规模较大时,查找效率会非常低。
例如,如果我们要在一个包含 10000 个元素的数组中查找一个特定元素,最坏情况下可能需要比较 10000 次才能找到目标元素。
二、二分查找二分查找是一种在有序数据集合中进行查找的高效算法。
它的基本思想是通过不断将数据集合分成两半,比较目标元素与中间元素的大小,然后确定目标元素可能存在的子集合,重复这个过程直到找到目标元素或者确定目标元素不存在。
二分查找的优点是查找效率高,时间复杂度为 O(log n)。
这使得它在处理大规模有序数据集合时表现出色。
但是,二分查找要求数据集合必须是有序的。
如果数据集合是无序的,需要先进行排序,这会增加额外的时间和空间开销。
此外,二分查找在处理动态数据集合(即经常需要插入和删除元素的数据集合)时不太方便,因为每次插入或删除元素都可能破坏数据的有序性,需要重新进行排序。
三、哈希查找哈希查找是一种通过哈希函数将元素映射到哈希表中的特定位置来实现快速查找的算法。
哈希函数的设计至关重要,一个好的哈希函数能够将元素均匀地分布在哈希表中,减少冲突的发生。
当发生冲突时,通常采用链地址法或开放地址法等解决冲突的策略。
二分查找算法是一种在有序数组中查找特定元素的高效算法。
在生活中,我们可以将二分查找算法应用于许多场景,以提高搜索效率。
以下是一些例子:
1. 字典查找:当我们使用字典查找一个单词的定义时,通常会从中间的页码开始查找。
如果所查找的单词在中间页码之前,则在字典的前半部分查找;如果在中间页码之后,则在字典的后半部分查找。
这种查找方式就是应用了二分查找算法。
2. 电话簿搜索:在电话簿中查找一个联系人时,我们可以先大致估计联系人姓名所在的位置,然后根据估计的位置进行查找。
如果找到了联系人,则搜索成功;如果没有找到,则根据姓名首字母在电话簿中的位置,判断联系人可能在前面或后面的部分,然后相应地缩小搜索范围。
这也是二分查找的一种应用。
3. 有序数据库查询:在数据库管理中,当我们需要根据特定关键字查询数据时,如果数据库中的数据是有序的,我们可以使用二分查找算法来加快查询速度。
例如,在电子商务网站中根据价格排序的商品列表中查找特定价格的商品。
4. 软件更新:在软件更新过程中,有时我们需要根据特定条件(如版本号)在大量更新文件中查找对应的更新包。
通过使用二分查找算法,我们可以快速定位到所需的更新文件,从而提高更新效率。
5. 排序比赛:在某些排序比赛中,参赛者需要根据特定的规则对一系列数据进行排序。
在这种情况下,参赛者可以使用二分查找算法来确定自己的排名,从而节省时间并提高效率。
总之,二分查找算法在生活中的许多场景中都有应用,它可以帮助我们更快地找到所需的信息,提高工作和生活的效率。
⼆分查找详解看到⼀个⼤佬的博客,有⼀段内容让我深有感触:我周围的⼈⼏乎都认为⼆分查找很简单,但事实真的如此吗?⼆分查找真的很简单吗?并不简单。
看看 Knuth ⼤佬(发明 KMP 算法的那位)怎么说的:Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky...这句话可以这样理解:思路很简单,细节是魔⿁。
这两个⽉刷题遇到不少要⽤到⼆分查找的题。
当年学数据结构的时候觉得这是⼀个相当直观且好理解的算法,但是真正刷题时觉得这个算法需要注意的坑还是挺多的。
最普通的应⽤就是找某个元素的索引(数组有序且不重复),再复杂⼀些的还有找某个元素最左边或最右边的索引。
更⾼端的有对数组的索引或者数组中整数的取值范围进⾏⼆分查找,不过这⼀块还是万变不离其宗,查找的范围依旧是[left, right],难点在于要怎么找到⼆分查找的对象。
⼆分查找基本框架def binarySearch(arr: List[int], target: int):n = len(arr)left, right = 0, ... # 左右边界的赋值可变while left ... right: # 需要注意有没有等号mid = left + (right - left) // 2if arr[mid] == target:... # 要不要直接returnelif arr[mid] < target:left = ... # 要不要加⼀elif arr[mid] > target:right = ... # 要不要减⼀return ... # 有返回mid的,有left的各种上⾯⼀段代码中的...部分是需要根据题⽬需要修改的地⽅,也就是⼆分查找的细节所在。
另外,计算mid的公式也可以写成mid = (left + right) // 2,按上⾯那样写是为了防⽌溢出(虽然在Python⾥并不会有整型溢出的问题,不过最好养成这个习惯)。
查找算法学习常用的查找算法及其时间复杂度查找算法是计算机科学中非常重要的一种算法,它用于在一组数据中查找指定的元素。
在实际应用中,我们经常需要对大量数据进行查找操作,因此了解不同的查找算法及其时间复杂度对于提高查找效率至关重要。
本文将介绍几种常用的查找算法,并分析它们的时间复杂度。
一、顺序查找算法顺序查找算法是最简单的一种查找算法,也被称为线性查找算法。
它的基本思想是从数据的起始位置开始,一个一个地比较待查找元素和数据中的元素,直到找到匹配的元素或者遍历完所有的元素。
顺序查找算法的时间复杂度为O(n),其中n表示数据的规模。
由于它需要逐个比较元素,因此在数据规模较大时,效率较低。
二、二分查找算法二分查找算法,也被称为折半查找算法,是一种高效的查找算法。
它的前提是数据必须有序。
基本思想是将待查找的值与中间元素进行比较,如果相等则返回位置,如果不相等则根据大小关系决定继续在左半部分或右半部分进行查找,直到找到匹配的元素或者确定不存在。
二分查找算法的时间复杂度为O(log n),其中n表示数据的规模。
由于每次查找都将数据规模减半,因此效率非常高。
但是它要求数据必须有序,如果数据无序,需要先进行排序操作。
三、哈希查找算法哈希查找算法是一种常用的查找算法,通过哈希函数将待查找的元素映射到一个桶中,然后在桶中进行查找操作。
它的特点是查找的速度非常快,不受数据规模的影响。
哈希查找算法的时间复杂度近似为O(1),其中1表示常数时间。
但是它的缺点是需要额外的存储空间来构建哈希表,并且需要解决哈希冲突的问题。
四、二叉查找树算法二叉查找树算法是一种基于二叉树的查找算法,它的特点是左子树的所有节点值小于根节点的值,右子树的所有节点值大于根节点的值。
基于这个特点,可以通过比较待查找元素和当前节点的值来确定查找的方向。
二叉查找树算法的时间复杂度取决于树的高度,如果树的高度为h,则查找的时间复杂度为O(h)。
当二叉查找树退化成链表时,树的高度为n,其中n表示节点的个数,此时查找的时间复杂度为O(n)。
算法设计与分析各种查找算法的性能测试目录摘要 (2)第一章:简介(Introduction) (3)1.1 算法背景 (3)第二章:算法定义(Algorithm Specification) (4)2.1 数据结构 (4)2.2顺序查找法的伪代码 (4)2.3 二分查找(递归)法的伪代码 (5)2.4 二分查找(非递归)法的伪代码 (6)第三章:测试结果(Testing Results) (8)3.1 测试案例表 (8)3.2 散点图 (9)第四章:分析和讨论 (11)4.1 顺序查找 (11)4.1.1 基本原理 (11)4.2.2 时间复杂度分析 (11)4.2.3优缺点 (11)4.2.4该进的方法 (12)4.2 二分查找(递归与非递归) (12)4.2.1 基本原理 (12)4.2.2 时间复杂度分析 (13)4.2.3优缺点 (13)4.2.4 改进的方法 (13)附录:源代码(基于C语言的) (15)摘要在计算机许多应用领域中,查找操作都是十分重要的研究技术。
查找效率的好坏直接影响应用软件的性能,而查找算法又分静态查找和动态查找。
我们设置待查找表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。
比较的指标为关键字的查找次数。
经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。
这三种查找方法中,顺序查找是一次从序列开始从头到尾逐个检查,是最简单的查找方法,但比较次数最多,虽说二分查找的效率比顺序查找高,但二分查找只适用于有序表,且限于顺序存储结构。
关键字:顺序查找、二分查找(递归与非递归)第一章:简介(Introduction)1.1 算法背景查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。
对于查找问题来说,没有一种算法在任何情况下是都是最优的。
有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。
第三次实验报告:几种查找算法的实现和比较//2019-12-4//1.随机生成5万个整数,存入一个文件;//2.算法实现:(1)顺序查找:读入文件中的数据,查找一个key,统计时间;// (2)二分查找:读入文件,排序,二分查找key,统计时间;// (3)分块查找:读入文件,分100块,每块300+数字,查找key,统计时间// (4)二分查找树:读入文件,形成BST,查找key,统计时间//二叉排序树:建立,查找#include "stdio.h"#include "time.h"#include "stdlib.h"struct JD{//定义分块查找的链表结点结构int data;JD *next;};struct INDEX_T{//定义分块查找中,索引表结构int max;//这一块中最大的数字,<maxJD *block;//每一块都是一个单向链表,这是指向块的头指针};INDEX_T myBlock[100];//这是索引表的100项struct NODE{//定义的二分查找树结点结构int data;NODE *left;NODE *right;};const int COUNT=50000;//结点个数int key=666;//待查找的关键字int m=1;//int *array2;void createData(char strFileName[]){//产生随机整数,存入文件srand((unsigned int)time(0));FILE *fp=fopen(strFileName,"w");for(int i=1;i<=COUNT;i++)fprintf(fp,"%d,",rand());fclose(fp);}void createBST(NODE* &bst){//产生5万个随机整数,创建二叉排序树FILE *fp=fopen("data.txt","r");for(int i=1;i<=COUNT;i++){int num;fscanf(fp,"%d,",&num);//从文件中读取一个随机整数//若bst是空子树,第一个结点就是根结点//若bst不是空子树,从根结点开始左小右大,查找这个数字,找到了直接返回,//找不到,就插入到正确位置//创建一个结点NODE* p=new NODE;p->data=num;p->left=0;p->right=0;if(0==bst)//空子树{bst=p;continue;}//非空子树,//在bst中,查找给结点,NODE *q=bst;//总是从根结点开始查找while(1){if(p->data == q->data)//找到了,直接退出break;if(p->data < q->data && q->left==0){//小,往左找,且左边为空,直接挂在q之左q->left=p;break;}if(p->data < q->data && q->left!=0){//小,往左找,且左边非空,继续往左边找q=q->left;continue;}if(p->data > q->data && q->right==0){//大,往右找,且右边为空,直接挂在q之右q->right=p;break;}if(p->data > q->data && q->right!=0){//大,往右找,且右边非空,继续往右边找q=q->right;continue;}}}}int BST_Search(NODE *bst,int key){//在bst中找key,if(0==bst)return -1;//非空子树,//在bst中,查找给结点,NODE *q=bst;//总是从根结点开始查找while(1){if(key == q->data)//找到了,直接退出return 1;if(key < q->data && q->left==0)//小,往左找,且左边为空,找不到return -1;if(key < q->data && q->left!=0)//小,往左找,且左边非空,继续往左边找{q=q->left;continue;}if(key > q->data && q->right==0)//大,往右找,且右边为空,找不到return -1;if(key > q->data && q->right!=0){//大,往右找,且右边非空,继续往右边找q=q->right;continue;}}}void inOrder(NODE *bst){if(bst!=0){inOrder(bst->left);array2[m]=bst->data;//反写回array数组,使数组有序// printf("%7d",array2[m]);m++;inOrder(bst->right);}}int getBSTHeight(NODE *bst){if(bst==0)return 0;else{int hl=getBSTHeight(bst->left);int hr=getBSTHeight(bst->right);int h=hl>hr?hl:hr;return h+1;}}void makeArray(int array[],char strFileName[]) {//生成5万个随机整数FILE *fp=fopen(strFileName,"r");int i=1;while(!feof(fp)){fscanf(fp,"%d,",&array[i]);// printf("%6d",array[i]);i++;}}int Seq_Search(int array[],int key){//在无序顺序数组中,找data是否存在,-1=不存在,存在返回位置下标//监视哨:把要找的那个数放到首部array[0]=key;//for(int i=COUNT;array[i]!=key;i--);if(i>0)//找到了,返回下标return i;return -1;//查找不成功,返回-1}int Bin_Search(int array[],int key){//在有序存储的数组中查找key,找到返回位置,找不到返回-1 int low=1,high=COUNT,mid;while(1){if(low>high)//找不到return -1;mid=(low+high)/2;if(key == array[mid])return mid;else if(key<array[mid])high=mid-1;elselow=mid+1;}}void makeBlock(INDEX_T myBlock[],char strFileName[]) {//从文件中读取整数,分配到块中去//1.初始化块索引表,分100块,400,800,1200,for(int i=0;i<=99;i++){myBlock[i].max=400+400*i;//400,800,1200, (40000)myBlock[i].block=0;}//2.打开文件,读取整数,把每一个整数分配到相应的块中去FILE *fp=fopen(strFileName,"r");while(!feof(fp)){int num=0;fscanf(fp,"%d,",&num);//把num分配到num/400块中,挂到该块链表第一个int blockID=num/400;//求出应该挂在的块号//生成一个新节点,把num放进去,挂上JD *p=new JD;p->data=num;p->next=myBlock[blockID].block;myBlock[blockID].block=p;}fclose(fp);}int Block_Search(INDEX_T myBlock[],int key){int blockID=key/400;//找到块号JD* p=myBlock[blockID].block;while(p!=0){if(p->data==key)return blockID;//能找到p=p->next;}return -1;//找不到}void main(){clock_t begin,end;int pos=-1;//1.生成文件,存入5万个随机整数createData("data.txt");//2.顺序查找int *array=new int[COUNT+1];makeArray(array,"data.txt");//从文件中读取数据begin=clock();for(int k=1;k<=10000;k++)pos=Seq_Search(array,key);end=clock();printf("顺序查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);//3.二分查找树NODE *bst=0;createBST(bst);//产生5万个随机数字,建立一个二叉排序树begin=clock();for(k=1;k<=10000;k++)pos=BST_Search(bst,key);//在bst中找key,找到返回1,找不到返回-1end=clock();printf("二叉排序树查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);array2=new int[COUNT+1];inOrder(bst);//中序输出bst// int height=getBSTHeight(bst);//求出bst的高度// printf("BST高度=%d.\n\n",height);//4.二分查找,利用前面二叉排序树产生的array2,查找key begin=clock();for(k=1;k<=10000;k++)pos=Bin_Search(array2,key);end=clock();printf("二分查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);//5.分块查找,关键字范围[0,32767],分配到100块中去,每一块中存400个数字makeBlock(myBlock,"data.txt");//从文件中读取数据,产生块begin=clock();for(k=1;k<=10000;k++)pos=Block_Search(myBlock,key);//在block中查找key,找到返回块号,找不到返回-1end=clock();printf("分块查找:%d所在的块=%d.时间=%d毫秒\n",key,pos,end-begin);/*for(k=0;k<=99;k++){printf("\n\n\n第%d块<%d:\n",k,myBlock[k].max);JD *q=myBlock[k].block;//让q指向第k块的第一个结点while(q!=0){//输出第k块中所有数字printf("%7d ",q->data);q=q->next;}}*/}。
实验十二实现顺序和二分查找算法
班级计算机三班学号 2009131334 姓名尹亮
一、实验目的
掌握顺序和二分查找算法的基本思想及其实现方法。
二、实验内容
对给定的任意数组(设其长度为n),分别用顺序和二分查找方法在此数组中查找与给定值k相等的元素。
三、实验要点及说明
查找根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素或(记录)的操作,应用十分广泛。
顺序查找是一种最简单的查找方法。
它的基本思路是:从表的一端开始,顺序扫描线性表,依次将扫描到的关键字和给定值k相比较,若当前扫描到的关键字与k相等,则查找成功;若扫描结束后,仍未找到关键字等于k的记录,则查找失败。
二分查找也称为折半查找要求线性表中的结点必须己按关键字值的递增或递减顺序排列。
它首先用要查找的关键字k与中间位置的结点的关键字相比较,这个中间结点把线性表分成了两个子表,若比较结果相等则查找完成;若不相等,再根据k与该中间结点关键字的比较大小确定下一步查找哪个子表,这样递归进行下去,直到找到满足条件的结点或者该线性表中没有这样的结点。
#include<stdio.h>
#define maxl 100
typedef int keytype;
typedef char infotype [10];
typedef struct
{
keytype key;
infotype data;
}nodetype;
typedef nodetype seqlist[maxl];
int binsearch(seqlist r,int n,keytype k)
{
int low=0,high=n-1,mid,count=0;
while (low<=high)
{
mid=(low+high)/2;
printf("第%d次查找:在[%d,%d]中查找到元素r[%d]:%d\n",++count,low,high,mid,r[mid].key);
if(r[mid].key==k)
return mid;
if(r[mid].key>k)
high=mid-1;
else
low=mid+1;
}
return -1;
}
int seqsearch(seqlist r,int n,keytype k) {
int i=0;
while (i<n && r[i].key!=k)
{
printf(" %d ",r[i].key);
i++;
}
if(i>=n)
return -1;
else
{
printf(" %d ",r[i].key );
return i;
}
}
void main()
seqlist r;
int n=10;
keytype k=5;
int a[]={3,6,2,10,1,8,5,7,4,9},i;
for(i=0;i<n;i++)
r[i].key=a[i];//建立顺序表
printf("\n");
printf("二分法查找:\n");
if((i=binsearch(r,n,k))!=-1)
printf("元素%d的位置是%d\n",k,n); else
printf("元素%d不在表中\n",k);
printf("\n");
printf("顺序查找:\n");
if((i=seqsearch(r,n,k))!=-1)
printf("\n元素%d的位置是%d\n",k,i); else
printf("\n元素%d不在表中\n",k); printf("\n");
算法思想:
顺序查找
从表的一端开始,顺序扫描线性表,依次将扫描到的关键字和给定值k 相比较,若当前扫描到的关键字与k 相等,则查找成功;若扫
描结束,仍未扫描到关键字,则查找失败。
二分查找:
设r[low..high]是当前的查找区间,首先确定该区间的中点位置mid=(low+high)/2,然后将待查的k值与r[mid].key比较:(1)若r[mid].key=k,则查找成功并返回该位置。
(2)若r[mid].key>k,则由表的有序性可知r[mid..n-1].key 均大于k,因此若表中存在关键字等于k的记录,则该记录
必定在位置mid左边的子表
(3)若r[mid].key<k,则要查找的k必在mid的右子表中,即新的查找区间在右子表。
四实验结论
经过试验掌握了顺序查找和二分查找的算法及其实现的程序。