C语言 顺序查找和折半查找
- 格式:docx
- 大小:14.91 KB
- 文档页数:3
先看看这个,下面有例子折半查找:二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。
因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
算法要求算法复杂度下面提供一段二分查找实现的伪代码:BinarySearch(max,min,des)mid-<(max+min)/2while(min<=max)mid=(min+max)/2if mid=des thenreturn midelseif mid >des thenmax=mid-1elsemin=mid+1return max折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。
它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。
如果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。
如果x>a[n/2],则我们只要在数组a的右半部继续搜索x。
二分查找法一般都存在一个临界值的BUG,即查找不到最后一个或第一个值。
可以在比较到最后两个数时,再次判断到底是哪个值和查找的值相等。
C语言代码int BinSearch(SeqList * R,int n , KeyType K ){ //在有序表R[0..n-1]中进行二分查找,成功时返回结点的位置,失败时返回-1int low=0,high=n-1,mid;//置当前查找区间上、下界的初值if(R[low].key==K){return low ;}if(R[high].key==k)return high;while(low<=high){ //当前查找区间R[low..high]非空mid=low+((high-low)/2);//使用(low + high) / 2 会有整数溢出的问题(问题会出现在当low + high的结果大于表达式结果类型所能表示的最大值时,这样,产生溢出后再/2是不会产生正确结果的,而low+((high-low)/2)不存在这个问题if(R[mid].key==K){return mid;//查找成功返回}if(R[mid].key>K)high=mid-1; //继续在R[low..mid-1]中查找elselow=mid+1;//继续在R[mid+1..high]中查找}if(low>high)return -1;//当low>high时表示查找区间为空,查找失败} //BinSeareh折半查找程序举例程序要求:1.在main函数中定义一个20个元素的int数组,完成初始化和显示操作。
c语言查找算法
C语言是一种广泛使用的编程语言,它具有高效、简单、易学等特点,因此在各个领域都有广泛的应用。
在C语言中,查找算法是一种非常
重要的算法,它可以帮助我们在大量数据中快速查找到我们需要的数据。
下面我们将详细介绍C语言中的查找算法。
一、顺序查找算法
顺序查找算法是一种最简单的查找算法,它的基本思想是从数据的第
一个元素开始逐个比较,直到找到目标元素或者遍历完整个数据。
顺
序查找算法的时间复杂度为O(n),其中n为数据的长度。
二、二分查找算法
二分查找算法也称为折半查找算法,它的基本思想是将数据分成两部分,然后判断目标元素在哪一部分中,再在该部分中继续进行查找,
直到找到目标元素或者确定目标元素不存在。
二分查找算法的时间复
杂度为O(logn),其中n为数据的长度。
三、哈希查找算法
哈希查找算法是一种利用哈希表进行查找的算法,它的基本思想是将数据通过哈希函数映射到哈希表中,然后在哈希表中查找目标元素。
哈希查找算法的时间复杂度为O(1),但是它需要额外的空间来存储哈希表。
四、树查找算法
树查找算法是一种利用树结构进行查找的算法,它的基本思想是将数据构建成一棵树,然后在树中查找目标元素。
树查找算法的时间复杂度为O(logn),但是它需要额外的空间来存储树结构。
总结:
C语言中的查找算法有顺序查找算法、二分查找算法、哈希查找算法和树查找算法。
不同的算法适用于不同的场景,我们可以根据实际情况选择合适的算法来进行查找。
在实际应用中,我们还可以将不同的算法进行组合,以达到更高效的查找效果。
一、基本算法1.交换(两量交换借助第三者)例1、任意读入两个整数,将二者的值交换后输出。
main(){int a,b,t;scanf("%d%d",&a,&b);printf("%d,%d\n",a,b);t=a; a=b; b=t;printf("%d,%d\n",a,b);}【解析】程序中加粗部分为算法的核心,如同交换两个杯子里的饮料,必须借助第三个空杯子。
假设输入的值分别为3、7,则第一行输出为3,7;第二行输出为7,3。
其中t为中间变量,起到“空杯子”的作用。
注意:三句赋值语句赋值号左右的各量之间的关系!【应用】例2、任意读入三个整数,然后按从小到大的顺序输出。
main(){int a,b,c,t;scanf("%d%d%d",&a,&b,&c);/*以下两个if语句使得a中存放的数最小*/if(a>b){ t=a; a=b; b=t; }if(a>c){ t=a; a=c; c=t; }/*以下if语句使得b中存放的数次小*/if(b>c) { t=b; b=c; c=t; }printf("%d,%d,%d\n",a,b,c);}2.累加累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。
“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。
例1、求1+2+3+……+100的和。
main(){int i,s;s=0; i=1;while(i<=100){s=s+i; /*累加式*/i=i+1; /*特殊的累加式*/}printf("1+2+3+...+100=%d\n",s);}【解析】程序中加粗部分为累加式的典型形式,赋值号左右都出现的变量称为累加器,其中“i = i + 1”为特殊的累加式,每次累加的值为1,这样的累加器又称为计数器。
c语言折中查找法折中查找法(也称为二分查找法)是一种在有序数组中查找特定元素的搜索算法。
搜索过程从数组的中间元素开始,如果中间元素正好是目标值,则搜索过程结束;如果目标值大于或小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且同样从中间元素开始比较。
如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
以下是一个用C语言实现的折中查找法:c复制代码#include<stdio.h>int binarySearch(int arr[], int l, int r, int x){if (r >= l) {int mid = l + (r - l) / 2;if (arr[mid] == x)return mid;if (arr[mid] > x)return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); }return-1;}int main(void){int arr[] = {2, 3, 4, 10, 40};int n = sizeof(arr) / sizeof(arr[0]);int x = 10;int result = binarySearch(arr, 0, n - 1, x);(result == -1) ? printf("Element is not present in array"): printf("Element is present at index %d", result);return0;}这个程序首先定义了一个数组arr[],然后使用binarySearch()函数查找特定的元素x。
如果x在数组中,函数将返回其索引;否则,返回-1。
实验五查找的应用一、实验目的:1、掌握各种查找方法及适用场合,并能在解决实际问题时灵活应用。
2、增强上机编程调试能力。
二、问题描述1.分别利用顺序查找和折半查找方法完成查找。
有序表(3,4,5,7,24,30,42,54,63,72,87,95)输入示例:请输入查找元素:52输出示例:顺序查找:第一次比较元素95第二次比较元素87 ……..查找成功,i=**/查找失败折半查找:第一次比较元素30第二次比较元素63 …..2.利用序列(12,7,17,11,16,2,13,9,21,4)建立二叉排序树,并完成指定元素的查询。
输入输出示例同题1的要求。
三、数据结构设计(选用的数据逻辑结构和存储结构实现形式说明)(1)逻辑结构设计顺序查找和折半查找采用线性表的结构,二叉排序树的查找则是建立一棵二叉树,采用的非线性逻辑结构。
(2)存储结构设计采用顺序存储的结构,开辟一块空间用于存放元素。
(3)存储结构形式说明分别建立查找关键字,顺序表数据和二叉树数据的结构体进行存储数据四、算法设计(1)算法列表(说明各个函数的名称,作用,完成什么操作)序号 名称 函数表示符 操作说明1 顺序查找 Search_Seq 在顺序表中顺序查找关键字的数据元素2 折半查找 Search_Bin 在顺序表中折半查找关键字的数据元素3 初始化 Init 对顺序表进行初始化,并输入元素4 树初始化 CreateBST 创建一棵二叉排序树5 插入 InsertBST 将输入元素插入到二叉排序树中6 查找 SearchBST在根指针所指二叉排序树中递归查找关键字数据元素 (2)各函数间调用关系(画出函数之间调用关系)typedef struct { ElemType *R; int length;}SSTable;typedef struct BSTNode{Elem data; //结点数据域 BSTNode *lchild,*rchild; //左右孩子指针}BSTNode,*BSTree; typedef struct Elem{ int key; }Elem;typedef struct {int key;//关键字域}ElemType;(3)算法描述int Search_Seq(SSTable ST, int key){//在顺序表ST中顺序查找其关键字等于key的数据元素。
《数据结构(C语言版第2版)》(严蔚敏著)第七章练习题答案第7章查找1.选择题(1)对n个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为()。
A.(n-1)/2B.n/2C.(n+1)/2D.n答案:C解释:总查找次数N=1+2+3+…+n=n(n+1)/2,则平均查找长度为N/n=(n+1)/2。
(2)适用于折半查找的表的存储方式及元素排列要求为()。
A.链接方式存储,元素无序B.链接方式存储,元素有序C.顺序方式存储,元素无序D.顺序方式存储,元素有序答案:D解释:折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
(3)如果要求一个线性表既能较快的查找,又能适应动态变化的要求,最好采用()查找法。
A.顺序查找B.折半查找C.分块查找D.哈希查找答案:C解释:分块查找的优点是:在表中插入和删除数据元素时,只要找到该元素对应的块,就可以在该块内进行插入和删除运算。
由于块内是无序的,故插入和删除比较容易,无需进行大量移动。
如果线性表既要快速查找又经常动态变化,则可采用分块查找。
(4)折半查找有序表(4,6,10,12,20,30,50,70,88,100)。
若查找表中元素58,则它将依次与表中()比较大小,查找结果是失败。
A.20,70,30,50B.30,88,70,50C.20,50D.30,88,50答案:A解释:表中共10个元素,第一次取⎣(1+10)/2⎦=5,与第五个元素20比较,58大于20,再取⎣(6+10)/2⎦=8,与第八个元素70比较,依次类推再与30、50比较,最终查找失败。
(5)对22个记录的有序表作折半查找,当查找失败时,至少需要比较()次关键字。
A.3B.4C.5D.6答案:B解释:22个记录的有序表,其折半查找的判定树深度为⎣log222⎦+1=5,且该判定树不是满二叉树,即查找失败时至多比较5次,至少比较4次。
(6)折半搜索与二叉排序树的时间性能()。
数据结构(C语言版)9-12章练习答案清华大学出版社9-12章数据结构作业答案第九章查找选择题1、对n个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为( A )A.(n+1)/2 B. n/2 C. n D. [(1+n)*n ]/2 2. 下面关于二分查找的叙述正确的是 ( D )A. 表必须有序,表可以顺序方式存储,也可以链表方式存储B. 表必须有序且表中数据必须是整型,实型或字符型 C. 表必须有序,而且只能从小到大排列 D. 表必须有序,且表只能以顺序方式存储3. 二叉查找树的查找效率与二叉树的( (1)C)有关, 在 ((2)C )时其查找效率最低 (1): A. 高度 B. 结点的多少 C. 树型 D. 结点的位置(2): A. 结点太多 B. 完全二叉树 C. 呈单枝树 D. 结点太复杂。
4. 若采用链地址法构造散列表,散列函数为H(key)=key MOD 17,则需 ((1)A)个链表。
这些链的链首指针构成一个指针数组,数组的下标范围为 ((2)C) (1) A.17 B. 13 C. 16 D. 任意(2) A.0至17 B. 1至17 C. 0至16 D. 1至16判断题1.Hash表的平均查找长度与处理冲突的方法无关。
(错) 2. 若散列表的负载因子α<1,则可避免碰撞的产生。
(错)3. 就平均查找长度而言,分块查找最小,折半查找次之,顺序查找最大。
(错)填空题1. 在顺序表(8,11,15,19,25,26,30,33,42,48,50)中,用二分(折半)法查找关键码值20,需做的关键码比较次数为 4 .算法应用题1. 设有一组关键字{9,01,23,14,55,20,84,27},采用哈希函数:H(key)=key mod7 ,表长为10,用开放地址法的二次探测再散列方法Hi=(H(key)+di) mod 10解决冲突。
要求:对该关键字序列构造哈希表,并计算查找成功的平均查找长度。