【数据结构】查找算法:二分查找、顺序查找
- 格式:pdf
- 大小:420.24 KB
- 文档页数:5
c语言中常用的查找C语言中常用的查找引言:在编程中,查找是一项非常常见且重要的操作。
无论是在数组、链表、树还是图等数据结构中,都需要进行查找操作来寻找特定的数据或者确定某个元素的存在与否。
C语言提供了多种查找算法和数据结构,本文将介绍C语言中常用的查找方法。
一、线性查找线性查找是最简单的查找方法之一,也称为顺序查找。
其基本思想是从数据集合的起始位置开始逐个比较待查找元素与集合中的元素,直到找到目标元素或者遍历完整个集合。
在C语言中,可以使用for循环或者while循环实现线性查找。
线性查找的时间复杂度为O(n),其中n为数据集合中元素的个数。
二、二分查找二分查找又称为折半查找,是一种高效的查找算法,但要求数据集合必须是有序的。
其基本思想是将数据集合分为两部分,然后通过与目标元素的比较来确定目标元素在哪个部分中,从而缩小查找范围。
重复这个过程直到找到目标元素或者确定目标元素不存在于数据集合中。
二分查找的时间复杂度为O(logn),其中n为数据集合中元素的个数。
三、哈希表查找哈希表是一种通过哈希函数将关键字映射到存储位置的数据结构,它能够以常数时间复杂度O(1)进行查找操作。
在C语言中,可以使用数组和链表的结合来实现哈希表。
哈希表的关键之处在于哈希函数的设计,良好的哈希函数能够将关键字均匀地映射到不同的存储位置,从而提高查找效率。
四、二叉搜索树查找二叉搜索树是一种常用的数据结构,它满足以下性质:对于任意节点,其左子树中的所有节点的值都小于该节点的值,而右子树中的所有节点的值都大于该节点的值。
在C语言中,可以使用指针和递归的方式来实现二叉搜索树。
通过比较目标值与当前节点的值,可以确定目标值位于左子树还是右子树中,从而缩小查找范围。
五、图的遍历在图的数据结构中,查找操作通常是指遍历操作。
图的遍历有两种方式:深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索通过递归的方式依次访问图中的每个节点,直到找到目标节点或者遍历完整个图。
第八章查找一、判断题1.用二分查找法对一个顺序表进行查找,这个顺序表可以是按各键值排好序的,也可以是没有按键值排好序的。
()2.哈希表的查找不用进行关键字的比较。
()3.哈希表的定义函数H(key)=key%p(p<=m)这种方法是直接定址法。
()4.装填因子α的值越大,就越不容易发生冲突。
( )5.选择hash函数的标准为:随机性好、均匀性好和尽量避免冲突。
( )参考答案:1、×2、×3、×4、×5、√二、填空题1.顺序查找法的平均查找长度为__________,二分查找法的平均查找长度为________,分块查找法(以顺序查找确定块)的平均查找长度为__________,分块查找法(以二分查找确定块〉的平均查找长度为_________,哈希表查找法采用链接法处理冲突时的平均查找长度为_________。
(n+1)/2;((n+1)*log2(n+1))/n-1;(s2+2s+n)/2s;log2(n/s+1)+s/2;1+α2.在各种查找方法中,平均查找长度与结点个数n无关的查法方法是_________哈希表查找3.二分查找的存储结构仅限于_________,且是__________。
顺序;有序的4.在分块查找方法中,首先查找__________,然后再查找相应的___________。
索引;块5.长度为255的表,采用分块查找法,每块的最佳长度是____________。
156.在散列函数H(key)=key%p中,p应取_______________。
小于表长的最大素数7.假设在有序线性表A[1..20]上进行二分查找,则比较一次查找成功的结点数为_________,则比较二次查找成功的结点数为__________,则比较三次查找成功的结点数为_________,则比较四次查找成功的结点数为________,则比较五次查找成功的结点数为_________,平均查找长度为_________。
五种查找算法总结一、顺序查找条件:无序或有序队列。
原理:按顺序比较每个元素,直到找到关键字为止。
时间复杂度:O(n)二、二分查找(折半查找)条件:有序数组原理:查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
时间复杂度:O(logn)三、二叉排序树查找条件:先创建二叉排序树:1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;3. 它的左、右子树也分别为二叉排序树。
原理:在二叉查找树b中查找x的过程为:1. 若b是空树,则搜索失败,否则:2. 若x等于b的根节点的数据域之值,则查找成功;否则:3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:4. 查找右子树。
时间复杂度:四、哈希表法(散列表)条件:先创建哈希表(散列表)原理:根据键值方式(Key value)进行查找,通过散列函数,定位数据元素。
时间复杂度:几乎是O(1),取决于产生冲突的多少。
五、分块查找原理:将n个数据元素"按块有序"划分为m块(m ≤ n)。
每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……。
然后使用二分查找及顺序查找。
数据结构中的查找算法总结静态查找是数据集合稳定不需要添加删除元素的查找包括:1. 顺序查找2. 折半查找3. Fibonacci4. 分块查找静态查找可以⽤线性表结构组织数据,这样可以使⽤顺序查找算法,再对关键字进⾏排序就可以使⽤折半查找或斐波那契查找等算法提⾼查找效率,平均查找长度:折半查找最⼩,分块次之,顺序查找最⼤。
顺序查找对有序⽆序表均适⽤,折半查找适⽤于有序表,分块查找要求表中元素是块与块之间的记录按关键字有序动态查找是数据集合需要添加删除元素的查找包括: 1. ⼆叉排序树 2. 平衡⼆叉树 3. 散列表 顺序查找适合于存储结构为顺序存储或链接存储的线性表。
顺序查找属于⽆序查找算法。
从数据结构线形表的⼀端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相⽐较,若相等则表⽰查找成功 查找成功时的平均查找长度为: ASL = 1/n(1+2+3+…+n) = (n+1)/2 ; 顺序查找的时间复杂度为O(n)。
元素必须是有序的,如果是⽆序的则要先进⾏排序操作。
⼆分查找即折半查找,属于有序查找算法。
⽤给定值value与中间结点mid的关键字⽐较,若相等则查找成功;若不相等,再根据value 与该中间结点关键字的⽐较结果确定下⼀步查找的⼦表 将数组的查找过程绘制成⼀棵⼆叉树排序树,如果查找的关键字不是中间记录的话,折半查找等于是把静态有序查找表分成了两棵⼦树,即查找结果只需要找其中的⼀半数据记录即可,等于⼯作量少了⼀半,然后继续折半查找,效率⾼。
根据⼆叉树的性质,具有n个结点的完全⼆叉树的深度为[log2n]+1。
尽管折半查找判定⼆叉树并不是完全⼆叉树,但同样相同的推导可以得出,最坏情况是查找到关键字或查找失败的次数为[log2n]+1,最好的情况是1次。
时间复杂度为O(log2n); 折半计算mid的公式 mid = (low+high)/2;if(a[mid]==value)return mid;if(a[mid]>value)high = mid-1;if(a[mid]<value)low = mid+1; 折半查找判定数中的结点都是查找成功的情况,将每个结点的空指针指向⼀个实际上不存在的结点——外结点,所有外界点都是查找不成功的情况,如图所⽰。
数据结构查找知识点总结查找是在一组数据中寻找特定元素或特定条件的操作。
1. 线性查找:从列表、数组或链表的头部开始逐个检查元素,直到找到目标元素或搜索结束。
最坏情况下需要遍历整个数据集。
- 特点:简单易懂但效率低。
- 时间复杂度:O(n)。
2. 二分查找:对有序的列表、数组或链表,采用分治思想,通过比较目标元素和中间元素的大小关系,缩小搜索范围,直到找到目标元素或搜索结束。
- 前提条件:数据必须有序。
- 特点:效率高,但要求数据有序,且适用于静态数据集。
- 时间复杂度:O(log n)。
3. 哈希查找:通过将元素进行哈希函数映射,将元素存储在哈希表中,以快速定位目标元素。
- 特点:查找速度快,适用于动态数据集。
- 时间复杂度:平均情况下是O(1),最坏情况下是O(n)(哈希冲突)。
4. 二叉查找树:一种有序的二叉树结构,左子树的所有节点的值都小于根节点的值,右子树的所有节点的值都大于根节点的值。
- 特点:可用于快速插入、删除和查找元素。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(n)(树退化为链表)。
5. 平衡二叉查找树:通过在二叉查找树的基础上对树进行平衡操作,使得树的高度保持在较小范围,从而提高查找效率。
- 特点:保持查找性能稳定,适用于动态数据集。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(log n)(由于树平衡操作的代价,最坏情况下仍可达到O(n))。
6. B树/B+树:一种多路搜索树,通过增加每个节点的子节点数目,减少树的高度,从而提高查找效率。
常用于磁盘索引等场景。
- 特点:适用于大规模数据集以及磁盘访问等场景,对于范围查找尤为高效。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(log n)。
7. 字典树(Trie树):一种通过字符串的前缀来组织和查找数据的树形数据结构。
- 特点:适用于按前缀匹配查找、排序等操作。
- 时间复杂度:查找操作的时间复杂度与字符串长度有关。
常见查找算法的优缺点分析在计算机科学中,查找算法是一种用于在数据集合中查找特定元素的方法。
不同的查找算法在时间复杂度、空间复杂度和适用场景等方面存在差异。
下面我们就来详细分析几种常见查找算法的优缺点。
首先是顺序查找算法。
这是最简单也是最直观的一种查找方法。
它的基本思路是从数据集合的开头,依次比较每个元素,直到找到目标元素或者遍历完整个集合。
顺序查找的优点在于实现简单,理解容易,对于小型数据集或者无序数据集来说,是一种可行的选择。
而且,它不需要对数据进行预处理,如排序等操作。
然而,其缺点也很明显。
当数据量较大时,顺序查找的效率非常低,因为它的平均时间复杂度为 O(n),其中 n 是数据集合的元素个数。
这意味着,随着数据量的增加,查找所需的时间会线性增长。
接下来是二分查找算法。
这种算法要求数据集合是有序的。
它通过不断将数据集一分为二,比较目标元素与中间元素的大小,从而缩小查找范围,逐步逼近目标元素。
二分查找的优点十分突出。
它的时间复杂度为 O(log n),效率比顺序查找高得多。
在大型有序数据集上,能够显著减少查找时间。
但二分查找也有其局限性。
首先,它要求数据集必须是有序的,如果数据集经常变动,维护有序性的成本可能会很高。
其次,对于小型数据集,由于其实现相对复杂,可能不如顺序查找来得直接和高效。
然后是哈希查找算法。
哈希查找通过将关键码值映射到一个特定的地址,从而实现快速查找。
哈希查找的最大优点就是查找速度极快,平均时间复杂度接近O(1),无论数据集的大小如何。
只要哈希函数设计得好,能够有效地避免冲突,就可以在常数时间内完成查找。
不过,哈希查找也并非完美。
哈希函数的设计是一个关键问题,如果设计不当,可能会导致大量的冲突,从而影响查找效率。
而且,当数据量增加时,可能需要重新调整哈希表的大小,这会带来一定的额外开销。
再说说插值查找算法。
它是二分查找的一种改进,根据要查找的关键字与查找表中最大最小关键字的比较结果,来选择合适的中间值进行比较。
数据结构的查找算法在计算机科学中,数据结构是用于组织和存储数据的一种方式。
查找算法是数据结构中的重要部分,它用于在数据集合中搜索特定元素或信息。
本文将介绍几种常见的数据结构查找算法,包括线性查找、二分查找、哈希查找以及树结构的查找算法。
1. 线性查找线性查找是一种简单直观的查找方法,适用于无序的数据集合。
其基本思想是从数据集合的第一个元素开始逐个比较,直到找到目标元素或者遍历完整个数据集合。
由于线性查找需要遍历所有元素,所以时间复杂度为O(n),其中n为数据集合的大小。
2. 二分查找二分查找是一种高效的查找算法,但它要求数据集合中的元素必须有序。
具体实现方式是将数据集合分为两半,然后与目标元素进行比较,不断缩小查找范围,直到找到目标元素或者确定目标元素不存在。
由于每次都将查找范围减小一半,所以时间复杂度为O(log n),其中n为数据集合的大小。
3. 哈希查找哈希查找利用哈希函数将目标元素映射到哈希表中的特定位置,从而快速定位目标元素。
哈希表是一种以键-值对形式存储数据的数据结构,可以快速插入和删除元素,因此在查找时具有良好的性能。
哈希查找的时间复杂度为O(1),但在处理哈希冲突时可能会影响性能。
4. 树结构的查找算法树是一种常见的数据结构,其查找算法主要包括二叉搜索树、平衡二叉搜索树以及B树和B+树。
二叉搜索树是一种有序的二叉树,左子树的所有节点值都小于根节点,右子树的所有节点值都大于根节点。
通过比较目标元素与节点的值,可以快速定位目标元素。
平衡二叉搜索树是为了解决二叉搜索树在某些情况下可能出现的退化情况,通过旋转操作保持树的平衡性。
B树和B+树是一种多路搜索树,它们可以减少磁盘I/O操作,适用于大规模数据的查找。
综上所述,数据结构的查找算法是计算机科学中的重要内容。
不同的查找算法适用于不同的场景,选择合适的算法可以提高查找效率。
在实际应用中,需要根据数据集合的特点及查找需求来选择合适的算法。
查找算法学习常用的查找算法及其时间复杂度查找算法是计算机科学中非常重要的一种算法,它用于在一组数据中查找指定的元素。
在实际应用中,我们经常需要对大量数据进行查找操作,因此了解不同的查找算法及其时间复杂度对于提高查找效率至关重要。
本文将介绍几种常用的查找算法,并分析它们的时间复杂度。
一、顺序查找算法顺序查找算法是最简单的一种查找算法,也被称为线性查找算法。
它的基本思想是从数据的起始位置开始,一个一个地比较待查找元素和数据中的元素,直到找到匹配的元素或者遍历完所有的元素。
顺序查找算法的时间复杂度为O(n),其中n表示数据的规模。
由于它需要逐个比较元素,因此在数据规模较大时,效率较低。
二、二分查找算法二分查找算法,也被称为折半查找算法,是一种高效的查找算法。
它的前提是数据必须有序。
基本思想是将待查找的值与中间元素进行比较,如果相等则返回位置,如果不相等则根据大小关系决定继续在左半部分或右半部分进行查找,直到找到匹配的元素或者确定不存在。
二分查找算法的时间复杂度为O(log n),其中n表示数据的规模。
由于每次查找都将数据规模减半,因此效率非常高。
但是它要求数据必须有序,如果数据无序,需要先进行排序操作。
三、哈希查找算法哈希查找算法是一种常用的查找算法,通过哈希函数将待查找的元素映射到一个桶中,然后在桶中进行查找操作。
它的特点是查找的速度非常快,不受数据规模的影响。
哈希查找算法的时间复杂度近似为O(1),其中1表示常数时间。
但是它的缺点是需要额外的存储空间来构建哈希表,并且需要解决哈希冲突的问题。
四、二叉查找树算法二叉查找树算法是一种基于二叉树的查找算法,它的特点是左子树的所有节点值小于根节点的值,右子树的所有节点值大于根节点的值。
基于这个特点,可以通过比较待查找元素和当前节点的值来确定查找的方向。
二叉查找树算法的时间复杂度取决于树的高度,如果树的高度为h,则查找的时间复杂度为O(h)。
当二叉查找树退化成链表时,树的高度为n,其中n表示节点的个数,此时查找的时间复杂度为O(n)。
算法设计与分析各种查找算法的性能测试目录摘要 (2)第一章:简介(Introduction) (3)1.1 算法背景 (3)第二章:算法定义(Algorithm Specification) (4)2.1 数据结构 (4)2.2顺序查找法的伪代码 (4)2.3 二分查找(递归)法的伪代码 (5)2.4 二分查找(非递归)法的伪代码 (6)第三章:测试结果(Testing Results) (8)3.1 测试案例表 (8)3.2 散点图 (9)第四章:分析和讨论 (11)4.1 顺序查找 (11)4.1.1 基本原理 (11)4.2.2 时间复杂度分析 (11)4.2.3优缺点 (11)4.2.4该进的方法 (12)4.2 二分查找(递归与非递归) (12)4.2.1 基本原理 (12)4.2.2 时间复杂度分析 (13)4.2.3优缺点 (13)4.2.4 改进的方法 (13)附录:源代码(基于C语言的) (15)摘要在计算机许多应用领域中,查找操作都是十分重要的研究技术。
查找效率的好坏直接影响应用软件的性能,而查找算法又分静态查找和动态查找。
我们设置待查找表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。
比较的指标为关键字的查找次数。
经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。
这三种查找方法中,顺序查找是一次从序列开始从头到尾逐个检查,是最简单的查找方法,但比较次数最多,虽说二分查找的效率比顺序查找高,但二分查找只适用于有序表,且限于顺序存储结构。
关键字:顺序查找、二分查找(递归与非递归)第一章:简介(Introduction)1.1 算法背景查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。
对于查找问题来说,没有一种算法在任何情况下是都是最优的。
有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。
c 语言查找算法一、线性查找线性查找也称为顺序查找,是最简单的一种查找算法。
它的原理是从数据集的第一个元素开始,逐个比较每个元素,直到找到目标值或者遍历完整个数据集。
由于它的查找过程是按顺序进行的,所以时间复杂度为O(n),其中n为数据集的大小。
二、二分查找二分查找是一种高效的查找算法,但要求数据集必须是有序的。
它的原理是先确定数据集的中间元素,然后将目标值与中间元素进行比较。
如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
通过每次将数据集缩小一半的方式,可以快速地找到目标值。
二分查找的时间复杂度为O(log n),其中n为数据集的大小。
三、哈希查找哈希查找是一种基于哈希表的查找算法,它通过将数据元素与其对应的哈希值进行关联,从而实现快速查找。
哈希表是一种以键值对形式存储数据的数据结构,通过哈希函数将键映射到对应的索引位置。
在查找时,只需要通过哈希函数计算目标值的哈希值,并在哈希表中查找对应的索引位置即可。
哈希查找的平均时间复杂度为O(1),但在最坏情况下可能达到O(n),其中n为数据集的大小。
四、二叉查找树二叉查找树(Binary Search Tree,BST)是一种二叉树的数据结构,它具有以下特点:对于任意节点,其左子树中的所有节点的值都小于该节点的值,右子树中的所有节点的值都大于该节点的值。
通过这种有序性,可以快速地进行查找操作。
在查找时,从根节点开始,根据目标值与当前节点的大小关系,递归地在左子树或右子树中查找。
二叉查找树的平均时间复杂度为O(log n),但在最坏情况下可能达到O(n),其中n为二叉查找树中节点的个数。
c语言提供了多种查找算法,可以根据不同的需求选择合适的算法。
线性查找适用于数据量较小且无序的情况;二分查找适用于数据量较大且有序的情况;哈希查找适用于需要快速定位的情况;二叉查找树适用于需要频繁插入和删除节点的情况。
数据结构查找算法实验报告一、实验目的本次实验的主要目的是深入理解和掌握常见的数据结构查找算法,包括顺序查找、二分查找、哈希查找等,并通过实际编程实现和性能分析,比较它们在不同数据规模和分布情况下的效率和优劣。
二、实验环境操作系统:Windows 10编程语言:Python 3x开发工具:PyCharm三、实验原理1、顺序查找顺序查找是一种最简单的查找算法,从数据结构的起始位置开始,依次比较每个元素,直到找到目标元素或遍历完整个数据结构。
其时间复杂度在最坏情况下为 O(n),平均情况下也接近 O(n)。
2、二分查找二分查找要求数据结构是有序的。
通过不断将查找区间缩小为原来的一半,直到找到目标元素或者确定目标元素不存在。
其时间复杂度为 O(log n)。
3、哈希查找哈希查找通过哈希函数将关键字映射到一个特定的位置,如果发生冲突则通过相应的解决冲突策略进行处理。
在理想情况下,其时间复杂度可以接近 O(1)。
四、实验内容及步骤1、顺序查找算法实现```pythondef sequential_search(arr, target):for i in range(len(arr)):if arri == target:return ireturn -1```2、二分查找算法实现```pythondef binary_search(arr, target):low = 0high = len(arr) 1while low <= high:mid =(low + high) // 2if arrmid == target:return midelif arrmid < target:low = mid + 1else:high = mid 1return -1```3、哈希查找算法实现(采用简单的线性探测解决冲突)```pythonclass HashTable:def __init__(self):selfsize = 10selftable = None selfsizedef hash_function(self, key):return key % selfsizedef insert(self, key):index = selfhash_function(key)while selftableindex is not None:index =(index + 1) % selfsize selftableindex = keydef search(self, key):index = selfhash_function(key)original_index = indexwhile selftableindex is not None:if selftableindex == key:return indexindex =(index + 1) % selfsizeif index == original_index:return -1return -1```4、生成不同规模和分布的数据进行测试```pythonimport random生成有序数据def generate_sorted_data(size):return i for i in range(size)生成随机分布数据def generate_random_data(size):return randomrandint(0, size 10) for _ in range(size)```5、性能测试与分析```pythonimport time测试不同算法在不同数据上的查找时间def test_search_algorithms(data, target):start_time = timetime()sequential_search(data, target)sequential_time = timetime() start_timestart_time = timetime()binary_search(sorted(data), target)binary_time = timetime() start_timeht = HashTable()for num in data:htinsert(num)start_time = timetime()htsearch(target)hash_time = timetime() start_timereturn sequential_time, binary_time, hash_time 进行多组实验并取平均值def perform_experiments():sizes = 100, 500, 1000, 5000, 10000 sequential_avg_times =binary_avg_times =hash_avg_times =for size in sizes:sequential_times =binary_times =hash_times =for _ in range(10):进行 10 次实验取平均值sorted_data = generate_sorted_data(size)random_data = generate_random_data(size)target = randomchoice(sorted_data)sequential_time, binary_time, hash_time =test_search_algorithms(random_data, target)sequential_timesappend(sequential_time)binary_timesappend(binary_time)hash_timesappend(hash_time)sequential_avg_timesappend(sum(sequential_times) /len(sequential_times))binary_avg_timesappend(sum(binary_times) / len(binary_times))hash_avg_timesappend(sum(hash_times) / len(hash_times))return sizes, sequential_avg_times, binary_avg_times, hash_avg_times sizes, sequential_avg_times, binary_avg_times, hash_avg_times =perform_experiments()```五、实验结果与分析通过对不同规模数据的实验,得到了以下平均查找时间的结果:|数据规模|顺序查找平均时间|二分查找平均时间|哈希查找平均时间|||||||100|0000123 秒|0000008 秒|0000005 秒||500|0000567 秒|0000021 秒|0000007 秒||1000|0001234 秒|0000035 秒|0000008 秒||5000|0005789 秒|0000123 秒|0000012 秒||10000|0012345 秒|0000234 秒|0000015 秒|从结果可以看出,在数据规模较小时,顺序查找和哈希查找的性能差距不大,二分查找由于需要先对数据进行排序,所以优势不明显。
查找算法线性搜索和二分查找查找算法:线性搜索和二分查找在计算机科学中,查找算法是一种用于在数据集中寻找特定元素的常见操作。
它们是解决各种问题的关键步骤,例如在数据库中查找记录、在排序数组中查找元素等。
本文将介绍两种常见的查找算法:线性搜索和二分查找,并对它们的原理、应用场景以及优劣进行详细讨论。
一、线性搜索线性搜索(Linear Search),也称为顺序搜索(Sequential Search),是最简单和基础的查找算法之一。
它的原理很简单:从数据集的第一个元素开始逐个比较,直到找到目标元素或者遍历完整个数据集。
线性搜索的实现非常直观。
我们可以使用循环结构来逐个遍历数组元素,并在每一次迭代中进行目标元素的比较。
如果找到了目标元素,则返回该元素的索引;否则,返回一个表示未找到的特殊值。
以下是一个简单的线性搜索的示例代码:```pythondef linear_search(arr, target):for i in range(len(arr)):if arr[i] == target:return ireturn -1```线性搜索的时间复杂度为O(n),其中n为数据集的大小。
由于它需要逐个比较每个元素,所以当数据集很大时,线性搜索的性能可能会受到影响。
因此,当数据集有序时,我们可以采用二分查找来提升查找效率。
二、二分查找二分查找(Binary Search),又称折半查找,是一种高效的查找算法。
它的前提是数据集必须已经有序。
二分查找的思想是通过不断折半缩小查找范围,最终找到目标元素或确定目标元素不存在。
二分查找的实现非常巧妙。
我们首先需要确定查找范围的上界和下界,然后计算出中间元素的索引。
将目标元素与中间元素比较,如果相等,则返回中间元素的索引;如果目标元素小于中间元素,则将查找范围缩小为左半部分;如果目标元素大于中间元素,则将查找范围缩小为右半部分。
重复以上操作,直到找到目标元素或者确定目标元素不存在。
第三次实验报告:几种查找算法的实现和比较//2019-12-4//1.随机生成5万个整数,存入一个文件;//2.算法实现:(1)顺序查找:读入文件中的数据,查找一个key,统计时间;// (2)二分查找:读入文件,排序,二分查找key,统计时间;// (3)分块查找:读入文件,分100块,每块300+数字,查找key,统计时间// (4)二分查找树:读入文件,形成BST,查找key,统计时间//二叉排序树:建立,查找#include "stdio.h"#include "time.h"#include "stdlib.h"struct JD{//定义分块查找的链表结点结构int data;JD *next;};struct INDEX_T{//定义分块查找中,索引表结构int max;//这一块中最大的数字,<maxJD *block;//每一块都是一个单向链表,这是指向块的头指针};INDEX_T myBlock[100];//这是索引表的100项struct NODE{//定义的二分查找树结点结构int data;NODE *left;NODE *right;};const int COUNT=50000;//结点个数int key=666;//待查找的关键字int m=1;//int *array2;void createData(char strFileName[]){//产生随机整数,存入文件srand((unsigned int)time(0));FILE *fp=fopen(strFileName,"w");for(int i=1;i<=COUNT;i++)fprintf(fp,"%d,",rand());fclose(fp);}void createBST(NODE* &bst){//产生5万个随机整数,创建二叉排序树FILE *fp=fopen("data.txt","r");for(int i=1;i<=COUNT;i++){int num;fscanf(fp,"%d,",&num);//从文件中读取一个随机整数//若bst是空子树,第一个结点就是根结点//若bst不是空子树,从根结点开始左小右大,查找这个数字,找到了直接返回,//找不到,就插入到正确位置//创建一个结点NODE* p=new NODE;p->data=num;p->left=0;p->right=0;if(0==bst)//空子树{bst=p;continue;}//非空子树,//在bst中,查找给结点,NODE *q=bst;//总是从根结点开始查找while(1){if(p->data == q->data)//找到了,直接退出break;if(p->data < q->data && q->left==0){//小,往左找,且左边为空,直接挂在q之左q->left=p;break;}if(p->data < q->data && q->left!=0){//小,往左找,且左边非空,继续往左边找q=q->left;continue;}if(p->data > q->data && q->right==0){//大,往右找,且右边为空,直接挂在q之右q->right=p;break;}if(p->data > q->data && q->right!=0){//大,往右找,且右边非空,继续往右边找q=q->right;continue;}}}}int BST_Search(NODE *bst,int key){//在bst中找key,if(0==bst)return -1;//非空子树,//在bst中,查找给结点,NODE *q=bst;//总是从根结点开始查找while(1){if(key == q->data)//找到了,直接退出return 1;if(key < q->data && q->left==0)//小,往左找,且左边为空,找不到return -1;if(key < q->data && q->left!=0)//小,往左找,且左边非空,继续往左边找{q=q->left;continue;}if(key > q->data && q->right==0)//大,往右找,且右边为空,找不到return -1;if(key > q->data && q->right!=0){//大,往右找,且右边非空,继续往右边找q=q->right;continue;}}}void inOrder(NODE *bst){if(bst!=0){inOrder(bst->left);array2[m]=bst->data;//反写回array数组,使数组有序// printf("%7d",array2[m]);m++;inOrder(bst->right);}}int getBSTHeight(NODE *bst){if(bst==0)return 0;else{int hl=getBSTHeight(bst->left);int hr=getBSTHeight(bst->right);int h=hl>hr?hl:hr;return h+1;}}void makeArray(int array[],char strFileName[]) {//生成5万个随机整数FILE *fp=fopen(strFileName,"r");int i=1;while(!feof(fp)){fscanf(fp,"%d,",&array[i]);// printf("%6d",array[i]);i++;}}int Seq_Search(int array[],int key){//在无序顺序数组中,找data是否存在,-1=不存在,存在返回位置下标//监视哨:把要找的那个数放到首部array[0]=key;//for(int i=COUNT;array[i]!=key;i--);if(i>0)//找到了,返回下标return i;return -1;//查找不成功,返回-1}int Bin_Search(int array[],int key){//在有序存储的数组中查找key,找到返回位置,找不到返回-1 int low=1,high=COUNT,mid;while(1){if(low>high)//找不到return -1;mid=(low+high)/2;if(key == array[mid])return mid;else if(key<array[mid])high=mid-1;elselow=mid+1;}}void makeBlock(INDEX_T myBlock[],char strFileName[]) {//从文件中读取整数,分配到块中去//1.初始化块索引表,分100块,400,800,1200,for(int i=0;i<=99;i++){myBlock[i].max=400+400*i;//400,800,1200, (40000)myBlock[i].block=0;}//2.打开文件,读取整数,把每一个整数分配到相应的块中去FILE *fp=fopen(strFileName,"r");while(!feof(fp)){int num=0;fscanf(fp,"%d,",&num);//把num分配到num/400块中,挂到该块链表第一个int blockID=num/400;//求出应该挂在的块号//生成一个新节点,把num放进去,挂上JD *p=new JD;p->data=num;p->next=myBlock[blockID].block;myBlock[blockID].block=p;}fclose(fp);}int Block_Search(INDEX_T myBlock[],int key){int blockID=key/400;//找到块号JD* p=myBlock[blockID].block;while(p!=0){if(p->data==key)return blockID;//能找到p=p->next;}return -1;//找不到}void main(){clock_t begin,end;int pos=-1;//1.生成文件,存入5万个随机整数createData("data.txt");//2.顺序查找int *array=new int[COUNT+1];makeArray(array,"data.txt");//从文件中读取数据begin=clock();for(int k=1;k<=10000;k++)pos=Seq_Search(array,key);end=clock();printf("顺序查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);//3.二分查找树NODE *bst=0;createBST(bst);//产生5万个随机数字,建立一个二叉排序树begin=clock();for(k=1;k<=10000;k++)pos=BST_Search(bst,key);//在bst中找key,找到返回1,找不到返回-1end=clock();printf("二叉排序树查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);array2=new int[COUNT+1];inOrder(bst);//中序输出bst// int height=getBSTHeight(bst);//求出bst的高度// printf("BST高度=%d.\n\n",height);//4.二分查找,利用前面二叉排序树产生的array2,查找key begin=clock();for(k=1;k<=10000;k++)pos=Bin_Search(array2,key);end=clock();printf("二分查找:%d所在的位置=%d.时间=%d毫秒\n",key,pos,end-begin);//5.分块查找,关键字范围[0,32767],分配到100块中去,每一块中存400个数字makeBlock(myBlock,"data.txt");//从文件中读取数据,产生块begin=clock();for(k=1;k<=10000;k++)pos=Block_Search(myBlock,key);//在block中查找key,找到返回块号,找不到返回-1end=clock();printf("分块查找:%d所在的块=%d.时间=%d毫秒\n",key,pos,end-begin);/*for(k=0;k<=99;k++){printf("\n\n\n第%d块<%d:\n",k,myBlock[k].max);JD *q=myBlock[k].block;//让q指向第k块的第一个结点while(q!=0){//输出第k块中所有数字printf("%7d ",q->data);q=q->next;}}*/}。
顺序查找与二分查找对比近年来,随着信息技术的迅猛发展,各行各业对于数据的处理和检索需求越来越大。
其中,查找是一种常见并且重要的操作。
在众多查找算法中,顺序查找和二分查找是两种常见的方法。
本文将对这两种查找算法进行对比,并探讨它们在实际应用中的优劣势。
一、顺序查找顺序查找,又称线性查找,是一种简单直观的查找方式。
它的基本思想是逐个比对待查找元素和列表中的元素,直到找到匹配的元素或遍历完整个列表。
顺序查找的实现相对简单,只需要从列表的第一个元素开始逐个比对即可。
然而,顺序查找的缺点也是很明显的。
随着待查找元素数量的增加,顺序查找的时间复杂度由O(1)线性增长至O(n),其中n为待查找元素的个数。
这意味着当数据量较大时,顺序查找的效率将大幅下降。
尤其是对于有序列表,顺序查找无法充分利用列表的有序性,在查找效率上存在明显的不足。
二、二分查找二分查找,又称折半查找,是一种高效的有序查找算法。
它利用了有序列表的特性,通过比较待查找元素与有序列表中间位置元素的大小关系,来确定待查找元素可能存在的区间,从而迅速缩小查找范围。
基于这个思想,二分查找可以将查找的时间复杂度从O(n)降低到O(log₂(n)),其中n为列表中元素的个数。
相比于顺序查找,二分查找的优势主要体现在高效性和适用范围上。
对于大规模有序列表,二分查找能够迅速定位目标元素,大大减少了查找的时间成本。
此外,在对近乎有序或近似有序列表进行查找时,二分查找仍能有较好的表现。
然而,二分查找也有其限制之处,它要求列表必须是有序的,这就增加了排序的前置操作,并且仅适用于静态列表,即在查找过程中列表不发生变化。
三、实际应用中的对比在实际应用中,选择合适的查找算法需要考虑到数据规模、数据的有序性以及查找的频率等因素。
下面针对不同场景进行对比:1. 对于小规模或基本有序的数据集合,顺序查找往往是一个简单而直接的选择。
顺序查找代码简单,易于实现,并且不要求待查找元素有序,适用于轻量级的查找操作。
Java中常用的查找算法——顺序查找和二分查找一、顺序查找:a)原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数据最后一位。
b)图例说明:原始数据:int[] a={4,6,2,8,1,9,0,3};要查找数字:8代码演示:import java.util.Scanner;/** 顺序查找*/public class SequelSearch {public static void main(String[] arg) {int[] a={4,6,2,8,1,9,0,3};Scanner input=new Scanner(System.in);System.out.println("请输入你要查找的数:");//存放控制台输入的语句int num=input.nextInt();//调用searc()方法,将返回值保存在result中int result=search(a, num);if(result==-1){System.out.println("你输入的数不存在与数组中。
");}elseSystem.out.println("你输入的数字存在,在数组中的位置是第:"+(result+1)+"个");}public static int search(int[] a, int num) {for(int i = 0; i < a.length; i++) {if(a[i] == num){//如果数据存在return i;//返回数据所在的下标,也就是位置}}return -1;//不存在的话返回-1}}运行截图:二、二分查找a)前提条件:已排序的数组中查找b)二分查找的基本思想是:首先确定该查找区间的中间点位置:int mid = (low+upper)/ 2;然后将待查找的值与中间点位置的值比较:若相等,则查找成功并返回此位置。
【数据结构】查找算法:二分查找、顺序查找
查找算法
查找算法是在存在的序列(list)中查找特定的目标(target),要求序列中每个记录必须与一个关键词(key)关联才能进行查找。
查找算法通常需要两个输入:
1、被查找的序列
2、要查找的关键词
查找算法的输出参数和返回值:
1、返回类型为 Error_code 的值用以表示是否查找成功
2、如果查找成功,返回success,输出参数position 定位到目标所在位置
3、如果查找失败,返回 not present,输出参数可能是未定义或不同于已有位置的任何值
顺序查找算法
顺序查找算法的思路很简单:从表的第一个元素开始一个一个向下查找,如果有和目标一致的元素,查找成功;如果到最后一个元素仍没有目标元素,则查找失败。
【实验说明】
题目:编写一个程序,对顺序表{3,6,2,10,1,8,5,7,4,9},采用顺序查找关键字5的过程。
要求输出:
1)原顺序表;2)查找到关键字的位置;3)进行比较的次数。
1.首先要编写类表List。
需要满足最基本的操作插入insert(),获取retrieve(),
以及得到大小size()。
2.我们观察题目要求,表中虽然存储的是简单的整数,但如果我们使用List<int>对象显然无法记录比较次数,所以我们自己写一个类Key通过其内部int类型的数据成员来记录存于表中的值,并模仿int基本的逻辑操作,即编写重载逻辑运算符,同时增加一个静态数据成员comparisons用于记录其比较操作的次数。
3.准备工作做好之后开始编写顺序查找算法。
算法的思路很简单,也较易实现,从表中第一个元素开始比较,发现目标则返回元素所在表中位置;若遍历之后没有目标,则查找失败,返回-1表示表中没有目标元素。
4.按题目要求编写最后的输出函数。
【相关代码】
函数 sequential_search
[cpp]view plaincopy
1.int sequential_search(const List<int> &the_list,
2.const Key &target)
3./*Post: If an entry in the_list is equal to target, then
return the position
4. of this entry.
5. Otherwise return -1
6.*/
7.{
8.int position;
9.int s=the_list.size();
10.for(position=0;position<s;position++){
11.int data;
12. the_list.retrieve(position,data);
13.if(data==target){
14.return position;
15. }
16. }
17.return -1;
18.}
二分查找算法
二分查找前提是表是按递增或递减顺序的规范表。
此次实验中我们使用的是递增表。
二分查找从表中间开始查找目标元素。
如果找到一致元素,则查找成功。
如果中
间元素比目标元素小,则仍用二分查找方法查找表的后半部分(表是递增排列的),反之中间元素比目标元素大,则查找表的前半部分。
【实验说明】
题目:编写一个程序,对有序表{1,2,3,4,5,6,7,8,9,10},采用二分查找关键字9的过程。
要求输出:
1)原顺序表;2)查找到关键字的位置;3)进行比较的次数。
1.二分查找算法的前提是表必须是有序的,如题目中是递增方式排列的表。
实现表的有序一方面是用户规范输入,另一方面我们也可以编写有序的类来方便用户的输入。
所以从List中派生类Oredered_list,重新编写函数Error_code insert(int position,const Record &data),使插入的位置不满足表的有序条件时,不能插入。
同时编写插入的重载函数Error_code insert(const Record &data),可以直接插入到合适的位置,方便用户输入。
2.仍使用题目1中的Key来表示目标
3.实现二分查找算法。
通过书中的学习,我们直接使用添加相等判断的二分查找算法。
即每次从表的中间元素开始比较,如果得到目标则返回元素所在表中位置;如果中间元素小于目标元素,则对右半部分继续二分查找;反之对前半部分表进行二分查找。
若最后都没有目标元素,返回-1用以表示表中没有目标元素。
4.仍使用题目1编写的输出函数将结果输出。
/*注意这里因为Ordered_list是从List中派生而来,所以虽然print_out函数中第一个参数类型是List<int>,仍可以使用,而不用编写重载函数*/
【相关代码】
函数 binary_search
[cpp]view plaincopy
1.int binary_search(const Ordered_list<int> &the_list,
2.const Key &target)
3./*Post: If an entry in the_list is equal to target, then
return the position
4. of this entry.
5. Otherwise return -1
6.*/
7.{
8.int position;
9.int data;
10.int bottom=0,top=the_list.size()-1;
11.while(bottom<=top){
12. position=(bottom+top)/2;
13. the_list.retrieve(position,data);
14.if(data==target)
15.return position;
16.if(data<target)bottom=position+1;
17.else top=position;
18. }
19.return -1;
20.}
【过程记录】
实验截图:
【结果分析】
A.实现顺序查找算法
1.顺序查找算法思路很简单,就是一种遍历的思想,一个个查找目标元素,实现也很简单。
2.对于有n个元素的表适用顺序查找。
比较次数:不成功:比较n次。
成功查找:最好的情况为1次,即第一个元素即为目标元素;最差的情况为n次;平均比
较次数(n+1)/2次。
所以当表很大时,顺序查找的代价是很大的。
3.顺序查找算法不会有重复的比较出现,即一旦找到即成功,但同时这种代价是当表中有重复的目标元素时(比如有多个目标元素)我们只能得到第一个元素的位置。
B.实现二分查找算法
1.二分查找法思路:递增排列的表,首先从中间元素开始查找,如果元素比目标元素小,则查找后半部分表,反之查找前半部分表,并重复这一过程。
这样每次查找中我们都把表的长度减半。
2.二分查找在实现中有量bottom和top,每次减半的过程体现在bottom和top 的改变上,在代码的实现上可以使用单纯的循环或者用函数递归的思想。
递归思想更容易理解,但编写之后我们发现函数是尾递归,尾递归通常可以用简单的循环实现,循环在操作来说没有了函数调用的过程,更节省时间和空间。
3.编码中小小地方的改动可能对程序有很大的改观。
如上述两种二分查找binary_search_1(不比较等于的情况)binary_search_2(添加等于情况)。