顺序二分查找法实现
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
二分法查找1、二分查找(Binary Search)二分查找又称折半查找,它是一种效率较高的查找方法。
二分查找要求:线性表是有序表,即表中结点按关键字有序,并且要用向量作为表的存储结构。
不妨设有序表是递增有序的。
2、二分查找的基本思想二分查找的基本思想是:(设R[low..high]是当前的查找区间)(1)首先确定该区间的中点位置:(2)然后将待查的K值与R[mid].key比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找,具体方法如下:①若R[mid].key>K,则由表的有序性可知R[mid..n].keys均大于K,因此若表中存在关键字等于K的结点,则该结点必定是在位置mid左边的子表R[1..mid-1]中,故新的查找区间是左子表R[1..mid-1]。
②类似地,若R[mid].key<K,则要查找的K必在mid的右子表R[mid+1..n]中,即新的查找区间是右子表R[mid+1..n]。
下一次查找是针对新的查找区间进行的。
因此,从初始的查找区间R[1..n]开始,每经过一次与当前查找区间的中点位置上的结点关键字的比较,就可确定查找是否成功,不成功则当前的查找区间就缩小一半。
这一过程重复直至找到关键字为K的结点,或者直至当前的查找区间为空(即查找失败)时为止。
3、二分查找算法int BinSearch(SeqList R,KeyType K){ //在有序表R[1..n]中进行二分查找,成功时返回结点的位置,失败时返回零int low=1,high=n,mid;//置当前查找区间上、下界的初值while(low<=high){ //当前查找区间R[low..high]非空mid=(low+high)/2;if(R[mid].key==K) return mid;//查找成功返回if(R[mid].kdy>K)high=mid-1; //继续在R[low..mid-1]中查找elselow=mid+1;//继续在R[mid+1..high]中查找}return 0;//当low>high时表示查找区间为空,查找失败} //BinSeareh二分查找算法亦很容易给出其递归程序【参见练习】4、二分查找算法的执行过程设算法的输入实例中有序的关键字序列为(05,13,19,21,37,56,64,75,80,88,92)要查找的关键字K分别是21和85。
二分搜索算法实验报告篇一:实验报告2--二分搜索技术注意:红色的部分需要用自己的代码或内容进行替换。
湖南涉外经济学院实验报告实验课程:算法设计与分析实验项目:二分搜索技术学院专业实验地点分组组号实验时间 XX年 3 月 10 日星期一第 12节指导老师【实验目的和要求】1. 理解分治法的原理和设计思想;2.要求实现二分搜索算法;3.要求交互输入一组关键字序列,输入需要查找的关键字;4. 要求显示结果。
【系统环境】操作系统:Windows XP 操作系统开发工具:VC++6.0英文企业版开发语言:C,C++【实验原理】1、问题描述给定已排好序的n个元素a[0…n-1],现要在这n个元素中找出一特定元素x。
2、实验原理二分搜索方法充分利用了元素间的次序关系(但也局限于此),采用分治策略,将n个元素分成个数大致相同的两半,取a[n/2]与x进行比较。
如果x=a[n/2],则找到x,算法终止。
如果xa[n/2],则只要在数组a的右半部继续搜索x。
【实验任务与步骤】1、实验步骤(可以根据自己的程序修改)(1) 实现顺序搜索。
(2) 实现二分搜索算法的递归算法。
(3) 实现二分搜索算法的非递归算法。
(4) 编写主函数,调用所写的三个算法进行测试,并进行输出。
2、源程序代码// 此处为解决问题的完整源程序,要求带注释,代码必须符合书写规范。
(1) 顺序搜索(2) 递归的二分搜索(3) 非递归的二分搜索(原文来自:小草范文网:二分搜索算法实验报告)……【实验结论(包括实验数据处理、问题与解决办法、心得体会、意见与建议等)】// 此处为程序运行的结果,要求有程序运行输入输出实例,要求至少有两组实验结果。
// 必须写心得体会、意见与建议等,或者遇到的问题、难题等。
……篇二:查找排序实验报告实验十:查找、排序计算机学院 12级2班 12110XX 李龙实验目的:1.掌握折半查找算法的思想。
2.实现折半查找的算法。
3.掌握常见的排序算法(插入排序、交换排序、选择排序等)的思想、特点及其适用条件。
北京物资学院信息学院实验报告
课程名_数据结构与算法
实验名称查找与排序
实验日期年月日实验报告日期年月日姓名______ ___ 班级_____ ________ 学号___
一、实验目的
1.掌握线性表查找的方法;
2.了解树表查找思想;
3.掌握散列表查找的方法.
4.掌握插入排序、交换排序和选择排序的思想和方法;
二、实验内容
查找部分
1.实现顺序查找的两个算法(P307), 可以完成对顺序表的查找操作, 并根据查到和未查到两种情况输出结果;
2.实现对有序表的二分查找;
3.实现散列查找算法(链接法),应能够解决冲突;
排序部分
4.分别实现直接插入排序、直接选择排序、冒泡排序和快速排序算法
三、实验地点与环境
3.1 实验地点
3.2实验环境
(操作系统、C语言环境)
四、实验步骤
(描述实验步骤及中间的结果或现象。
在实验中做了什么事情, 怎么做的, 发生的现象和中间结果, 给出关键函数和主函数中的关键段落)
五、实验结果
六、总结
(说明实验过程中遇到的问题及解决办法;个人的收获;未解决的问题等)。
查找算法在实际应用中的选择与优化在当今数字化的时代,数据的处理和检索变得日益重要。
无论是在庞大的数据库中寻找特定的信息,还是在程序中快速定位所需的元素,查找算法都扮演着关键的角色。
正确选择和优化查找算法,可以显著提高系统的性能和效率,为用户带来更好的体验。
查找算法的种类繁多,常见的有顺序查找、二分查找、哈希查找等。
每种算法都有其特点和适用场景。
顺序查找是最为简单直观的一种查找算法。
它依次遍历数据集合中的每个元素,直到找到目标元素或者遍历完整个集合。
这种算法的优点是实现简单,对于小型、无序的数据集合或者数据集合的元素分布没有明显规律的情况,是一种可行的选择。
然而,其缺点也很明显,当数据量较大时,查找效率会非常低。
二分查找则是一种在有序数据集合中进行高效查找的算法。
它通过不断将数据集合对半分割,逐步缩小查找范围,从而快速定位目标元素。
二分查找的效率很高,时间复杂度为 O(log n)。
但它的前提是数据集合必须是有序的,如果数据集合经常动态变化,维护其有序性可能会带来较大的开销。
哈希查找则是通过将关键码映射到一个固定的哈希表中,从而实现快速查找。
哈希查找的平均时间复杂度可以达到 O(1),效率极高。
但哈希函数的设计至关重要,如果哈希函数设计不好,可能会导致大量的哈希冲突,从而影响查找效率。
在实际应用中,选择合适的查找算法需要综合考虑多个因素。
首先是数据量的大小。
如果数据量较小,顺序查找可能就足够了;而对于大规模的数据,二分查找或哈希查找可能更合适。
其次是数据的分布和有序性。
如果数据本身有序,二分查找会是很好的选择;如果数据无序且分布较为随机,哈希查找可能更能发挥优势。
此外,数据的动态变化情况也需要考虑。
如果数据经常插入、删除和修改,那么维护有序性可能会比较困难,此时哈希查找可能更适合。
而如果数据的更新操作相对较少,而查找操作频繁,那么可以在数据初始化时将其排序,然后使用二分查找。
除了选择合适的查找算法,对算法进行优化也是提高查找效率的重要手段。
算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。
三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。
链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。
2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。
队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。
3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。
二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。
4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。
图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。
5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。
快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。
6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。
四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。
删除操作同理,需要移动被删除元素后面的元素。
在查找操作中,通过遍历数组即可完成。
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
算法设计与分析各种查找算法的性能测试目录摘要 (2)第一章:简介(Introduction) (3)1.1 算法背景 (3)第二章:算法定义(Algorithm Specification) (4)2.1 数据结构 (4)2.2顺序查找法的伪代码 (4)2.3 二分查找(递归)法的伪代码 (5)2.4 二分查找(非递归)法的伪代码 (6)第三章:测试结果(Testing Results) (8)3.1 测试案例表 (8)3.2 散点图 (9)第四章:分析和讨论 (11)4.1 顺序查找 (11)4.1.1 基本原理 (11)4.2.2 时间复杂度分析 (11)4.2.3优缺点 (11)4.2.4该进的方法 (12)4.2 二分查找(递归与非递归) (12)4.2.1 基本原理 (12)4.2.2 时间复杂度分析 (13)4.2.3优缺点 (13)4.2.4 改进的方法 (13)附录:源代码(基于C语言的) (15)摘要在计算机许多应用领域中,查找操作都是十分重要的研究技术。
查找效率的好坏直接影响应用软件的性能,而查找算法又分静态查找和动态查找。
我们设置待查找表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。
比较的指标为关键字的查找次数。
经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。
这三种查找方法中,顺序查找是一次从序列开始从头到尾逐个检查,是最简单的查找方法,但比较次数最多,虽说二分查找的效率比顺序查找高,但二分查找只适用于有序表,且限于顺序存储结构。
关键字:顺序查找、二分查找(递归与非递归)第一章:简介(Introduction)1.1 算法背景查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。
对于查找问题来说,没有一种算法在任何情况下是都是最优的。
有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。
查找算法的基本原理和实现方式查找算法的基本原理和实现方式一、引言在日常生活中,查找一份文件、一个电话号码、一本书籍等等都成了家常便饭。
然而,如何高效地查找指定信息,却是一个值得研究的问题。
随着计算机技术的发展,查找算法也被广泛应用于各种应用领域。
本文将介绍查找算法的基本原理和实现方式。
二、查找算法的概念和分类查找算法,也称为搜索算法,是指在一个集合中寻找特定元素的过程。
在计算机科学中,查找算法被广泛应用于信息检索、数据挖掘、搜索引擎等领域。
根据查找的数据结构不同,查找算法可以分为线性查找和二分查找两种基本类型。
1.线性查找线性查找,也称为顺序查找,是一种简单的查找方式,它是从数据结构的一端开始,逐个比较每个元素直到找到目标元素或者循环到达数据结构的另一端。
线性查找适用于存储结构不规则、无序的数据集合,但是因为其搜索效率较低,当数据量较大时不适合使用。
2.二分查找二分查找是一种高效的查找算法,其基本思想是将有序数组分成两个部分,分别比较目标元素与中间元素的大小,通过不断缩小查找范围,最终找到目标元素。
由于二分查找每次可以排除一半元素,所以其查找效率较高,适用于查找规则、有序的数据结构。
三、搜索算法的实现方式查找算法的实现通常有多种方式,不同的实现方式具有不同特点,因此应该根据具体应用场景选择合适的算法。
1.线性查找的实现线性查找的实现非常简单,可以使用多种编程语言实现。
以下代码为在Python语言下实现的线性查找算法。
```pythondef linear_search(arr, target):"""在数组arr中查找目标元素target的位置"""for i in range(len(arr)):if arr[i] == target:return ireturn -1```在这段代码中,首先定义了一个名为linear_search的函数,它接受一个数组和一个目标元素作为输入。