当前位置:文档之家› 信号与系统课件--差分方程齐次解单根例

信号与系统课件--差分方程齐次解单根例

信号与系统课件--差分方程齐次解单根例

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

设系统分别用下面的差分方程描述

因为x(n)以N 为周期,所以: x(n 中kN —m) =x(n -m) 第三套 1.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性时不变的。 (1) y(n)=2x( n)+3 n y(n)= Z x(m) m 鱼 解: (1 ) 令:输入为x(n- n o ),输出为y '(n) =2x(n-山)+3,因为 y(n- n o ) =2x( n- n o )+3= y '(n) 故该系统是时不变的。又因为 T[ax 1 (n) + bx 2( n)] = 2ax 1 (n) + 2bx 2( n) + 3 T[ax i (n)] =2ax i (n)+3,T[bx 2(n)] =2bx 2(n) + 3 T[ax 1(n) + bx 2(n)] h aTIxJn)] +bT[x 2(n)] 故该系统是非线性系统。 n 令:输入为x(n- n o ),输出为y(n)=2: x(m-r t ),因为 m=0 n 』0 I y(n - n 。)= S x(m)北 y (n) m zzO 故系统是时变系统。又因为 n T[ax 1 (n) + bx 2(n)]=送(ax 1 (m) + bx 2(m)^ aT[x 1(n)] +bT[x 2(n)] m =0 2. 故系统是线性系统。 如果时域离散线性时不变系统的单位脉冲响应为 为周期的周期序列, 证明: h(n),输入x(n)是以N 试证明其输出 y(n)亦是以N 为周期的周期序列。 y( n)=h( n)*x( n)= □C y( n+kN)= Z m z=-oc h(m)x(n+kN - m) , k 为整数

基于三阶Adams格式的求解声波方程的多步算法

创新项目论文 一种基于三阶Adams 格式的求解声波方程的多步算法 China University of Mining & Technology-Beijing

摘要 一个准确、高效、低数值频散的正演算法能够提高反演精度、加快反演收敛速度,因此研究地震波场正演模拟技术具有重要意义。区别于传统的空间离散方法,利用空间插值, 用网格点处的函数值及其梯度共同逼近空间高阶偏导数的方法称为近似解析离散化方法。声波方程通过变换,并采用近似解析离散化方法进行空间离散,从而转变成为一个半离散化的常微分方程组,再利用三阶显式Adams格式进行时间推进,求解半离散化的常微分方程组,从而得到了一个新的求解声波方程的有限差分方法(AD-STEM)。对AD-STEM进行了理论误差和数值误差分析、计算效率比较和数值波场模拟。研究表明,与传统方法AD-LWC比较,AD-STEM方法数值精度更高,数值频散更低,更高效,且与解析解匹配更好。AD-STEM方法能够通过压制数值频散而提高计算效率。在无可见数值频散的条件下,AD-STEM的计算速度是AD-LWC的1.88倍,而存储量只有其72%,更适合在粗网格下进行大规模地震波场数值模拟。 关键词:近似解析离散化方法;三阶Adams格式;数值频散;有限差分

目录 1 绪论 (1) 1.1选题背景和研究意义 1.2粘弹性介质国内外研究现状 1.3有限差分国内外研究现状 1.4本文主要研究内容 2 粘弹性介质的基本模型 (6) 3方法介绍....................................................................................................................... 错误!未定义书签。 3.1 Stereo-modeling方法简介 (10) 3.2 Lax-Wendroff correction方法简介 ...................................................................... 错误!未定义书签。 4 粘弹性介质中的波场数值模拟..................................................................................... 错误!未定义书签。 4.1 波场快照 (11) 4.2 波形图.................................................................................................................. 错误!未定义书签。 4.3 SEG模型的地表地震记录 (14) 5 结论 (18) 6 参考文献 (20)

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

声波方程有限差分正演

题目:使用Ricker 子波,刚性边界条件,并且初值为零,在均匀各向同性介质条件下,利用交错网格法求解一阶二维声波方程数值解。 解: 一阶二维声波方程: 22222221z P x P t P c ??+??=?? (1) 将其分解为: 21P c t P x P z x z x z V V x z V t V t ????=+????????=???????=???? (2) 对分解后的声波方程进行离散,可得到: 1 12211,-1,,,122[]N n n n n m i m j i m j xi j xi j m t V V c P P h + -+---=?=+-∑ 1 1 221 1,1,,,122 []N n n n n m i j m i j m zi j zi j m t V V c P P h +-++---=?=+-∑ 111121 2222,,m 1,,,,11 []N n n n n n n i j i j m xi j xi m j zi j m zi j m m tc P P c V V V V h +++++++-+--=?=+-+-∑ h z x =?=? 针对公式(1),使用二阶中心差商公式: 2P(,,1)2(,,)(,,1)i j n P i j n P i j n t +-+-?222(1,,)2(,,)(1,,)(,1,)2(,,)(,1,)P i j n P i j n P i j n x c P i j n P i j n P i j n z +-+-??+?????=??+-+-??????? (3) 变形: P(,,1)=2(,,)(,,1)i j n P i j n P i j n +--

二维频率域声波方程正演模拟

Open Journal of Natural Science 自然科学, 2020, 8(4), 258-263 Published Online July 2020 in Hans. http://www.hanspub.org/journal/ojns https://doi.org/10.12677/ojns.2020.84034 2D Acoustic Wave Equation Forward Modeling in the Frequency Domain Kun Han, Xiangchun Wang* School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing Received: Jun. 23rd, 2020; accepted: Jul. 6th, 2020; published: Jul. 13th, 2020 Abstract Forward modeling in frequency domain plays an important role in the numerical simulation of seismic waves. Compared with time domain forward modeling, frequency domain forward mod-eling has many advantages, such as suitable multi shot parallel operation, no time dispersion, flexible frequency band selection and small error. The coefficient matrix of different frequencies is relatively independent in the frequency domain forward modeling, which is suitable for the acce-leration of parallel computing and greatly improves the computing efficiency. In this paper, for the optimal 9-point difference scheme of frequency domain acoustic equation, the implicit expression and sparse matrix solution are studied, and the seismic wave field is simulated forward. The ac-curacy and validity of the method are verified by model calculation. Keywords Frequency Domain, Forward Modeling, Acoustic Equation, Parallel Computing 二维频率域声波方程正演模拟 韩坤,王祥春* 中国地质大学(北京),地球物理与信息技术学院,北京 收稿日期:2020年6月23日;录用日期:2020年7月6日;发布日期:2020年7月13日 摘要 频率域正演在地震波数值模拟中占有十分重要的地位。相比于时间域正演,频率域正演具有适合多炮并*通讯作者。

分歧理论及其应用

现代电路理论 -------分歧理论及其应用

分歧理论及其应用 引言:近二、三十年来,分歧现象(bifurcation phenomena)及理论(bifurcation theory)在数学及自然科学上受到格外的重视及研究。随着科学技术的迅速发展,非线性问题大量出现于自然科学、工程技术乃至社会科学的许多领域,成为当前科学研究的热点。分歧现象是普遍存在的,是非线性系统的重要特点之一,它普遍地存在于数学、物理学、化学、经济学、社会学、生态学等各个领域,像数学中的解不唯一、物理学中的相变、工程中的静力与动力失稳、经济学中的马太效应、电子学中的周期振荡等等,都可以从分歧的角度去研究[1]。 1.分歧理论概述 分歧理论是近半个世纪以来逐步形成的有重要应用价值的数学分支,它反映的是流的拓扑结构随参数的变化而引起的质的变异,不论在数学理论上还是在现实应用中都具有极为重要的意义。近半个世纪以来,分歧理论的研究一直受到人们的广泛关注,也得到了很大的发展。国际电力界从20世纪80年代开始研究和应用分歧理论,在电压稳定、轴系扭振以及低频振荡的研究中均取得了新的突破。在上个世纪七十年代初,Crandall和Rabinowitz的两个基本分歧定理是由隐函数定理证明的,至今在数学,生物,工程上广为应用[2]。 分歧的含义是:对于含参数的系统,当参数发生变动并经过某些临界值时,系统的定性性态(即其拓扑结构,例如平衡状态、解的数目、周期运动的数目以及稳定性等)发生突然变化的现象。从数学角度而言,分歧理论主要是研究非线性代数方程(微分方程、积分方程、差分方程等)中参数对解的定性性质的影响,其中参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究重点。 2. 分歧的定义 首先我们来看看一个经常可见到的现象。拿一根细长的金属棒。在棒的两头向内稍稍用力,此时棒不会弯曲。当力量够大时,则棒会弯起来。再继续加大压力,棒可能会弯了两弯。其变化如下图:

FDMOD–声波方程有限差分正演模拟二维

FDMOD –声波方程有限差分正演模拟(二维) 格式: fdmod wfile nx= nz= tmax= xs= zs= [optional parameters] 必需的参数: wfile 波场输出文件(包含每个时间步的波场值wave[nx][nz])nx= x采样点个数(第二维) nz= z采样点个数(第一维) xs= 炮点x坐标 dxs= 炮点x坐标间隔 zs= 炮点z坐标 dzs= 炮点z坐标间隔 ns= 炮点个数 tmax= 最大记录时间 可选参数: nt=1+tmax/dt 时间采样点数(dt决定结果的稳定度) mt=1 波场输出时间切片的时间步长间隔 dx=1.0 x采样间隔 fx=0.0 x起始值 dz=1.0 z采样间隔 fz=0.0 z起始值 fmax = vmin/(10.0*h) 震源子波的最高频率 fpeak=0.5*fmax 雷克子波的峰值频率 dfile= 密度输入文件(包含密度值d[nx][nz]) vsx= 垂直测线的x坐标 hsz= 水平测线的z坐标 rsx= 水平测线的起始检波器x坐标 rlen= 水平测线长度 rivl= 水平测线检波器采样间隔 vsfile= 垂直测线的输出文件data[nz][nt] hsfile= 水平测线的输出文件data[nx][nt] ssfile= 震源点检波器的输出文件data[nt] verbose=0 =1 显示输出信息=2 更多输出信息 abs=1,1,1,1 模型的顶,底,左,右使用吸收边界条件 =0,1,1,1 顶部使用自由边界条件

差分方程及其应用

差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数 )(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+, 则等式两端就是相邻两月库存量的改变量。若记 ))()1()(t R t R t R -+=?, 并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。 按一阶差分的定义方式,我们可以定义函数的高阶差分。函数)(t f y t =在t 的一阶差

数学物理方程--有限差分法

数学物理方程--有限 差分法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学物理方法课程报告题目:声波有限差分法数值模拟 学生姓名:xxx 学号:xxx 学院:地球科学与技术学院 专业班级:xxxx 教师:xxx 2016年 4月12日

声波有限差分法数值模拟 Xxx (地球科学与技术学院研15级 学号:xxx ) 摘要:数值模拟是最常用的正演模拟的方法。它通过给出的结构模型和物理参数, 模拟地震波的传播轨迹,了解其规律以及过程,然后通过计算来推断观测点的地震记录。根据求解方法,地震波方程数值解法可分为有限元法、伪谱法、有限差分法。根据本门课程的要求,并且有限差分法具有内存占用较小,精度较高等优点,本文 主要采用这种方法进行模拟。 关键词:数值模拟,声波,有限差分 正文 1、 引言 在勘探过程中,数值模拟的作用很大。例如:1、采集上,可用于设计或者优化野外观测系统;2、处理上,可以通过数值模拟来检验是否采用了正确的反演方法。将正演反演不断的逼近,从而使结果更加准确;3、解释上,还可以检测一下解释的资料是否正确。 而有限差分法是数值模拟最常用的方法,本文利用有限差分法,通过对声波进行正演模拟,来了解其在地下的传播规律及特点。 2、 二维各向同性介质声波方程数值模拟 使用规则网格差分对二阶方程进行求解。 具体过程: 在x 方向上,关于0x 对称分布的2N 个网格节点的坐标分别为x q x N ?-0,

x q x N ?--10,……,x q x ?-10,x q x ?+10,……x q x N ?+-10,x q x N ?+0。其 中,x ?表示节点间的最小间距;i q 表示任意正整数。2N 个网格节点所对应的函 数值已知,分别为()x q x f N ?-0,()x q x f N ?--10,……,()x q x f ?-10, ()x q x f ?+10……,()x q x f N ?+-10,()x q x f N ?+0。利用Taylor 级数展开求解 ()x f 在点0x 处的一阶导数近似值。 ()()()()()()()()()()()()()[]120220220100! 21 ! 21 +?+?+ +?+ ?+=?+N i N N i i i i x q O x f x q N x f x q x f x q x f x q x f ()()()()()()()()()()()()()[ ] 120220220100! 21 ! 21 +?+?+ +?+ ?-=?-N i N N i i i i x q O x f x q N x f x q x f x q x f x q x f 其中,i=1,2,…,N 将上述两式相加,省略式中的误差项,得到 ()()()[]()()()()()()()()()()022*********! 21 !41!21221 x f x q N x f x q x f x q x q x f x f x q x f N N i i i i i ?+ +?+?=?-+-?+ (1) 将相减后得到的式子整理成矩阵形式,有 ()()()()()()()()()()()()()()()()()()()???? ? ????????-+-?+?-+-?+?-+-?+?=?? ?????? ???????????????????????????-x q x f x f x q x f x q x f x f x q x f x q x f x f x q x f x x f x N x f x x f q q q q q q q q q N N N N N N N N N N 000200201001020222042 0224 2224 2 2221412 1 22221!21!41! 21 (2) 为了简化矩阵,可以记作 ??? ??? ? ???????=N N N N N N q q q q q q q q q A 242224222 214 1 21 ,()()()()()()()()()()???? ? ? ???????-+-?+?-+-?+?-+-?+?=x q x f x f x q x f x q x f x f x q x f x q x f x f x q x f x D N N 00020020100102 22221 同时,构造两个简单矩阵,辅助计算

差分方程在经济学中的应用应用数学

本科毕业论文(设计) 论文题目:差分方程在经济学中的应用 学生姓名:雷晶 学号: 1004970226 专业:数学与应用数学 班级:数学1002班 指导老师:舒蕊艳 完成日期:2014年5月20日

差分方程在经济学中的应用 内容摘要 本文叙述了研究差分方程的意义和背景、差分方程的定义、常见的解法以及差分方程相关模型,重点介绍差分方程经济学中的应用模型—筹措教育经费模型,包括问题的提出、模型举例和分析、提出假设、模型建立、模型求解、结果分析等等步骤对模型进行了更深层次的分析,做了进一步的推广. 本文所介绍的筹措教育经费模型主要研究的是子女的教育费用,假定某家庭从孩子m岁起,每月拿出一部分钱存进银行,用于投资子女的大学教育,并计划n年后支出一些,直到孩子大学毕业,全部用完账户中的资金. 差分方程的理论研究近十年来发展十分迅速,尤其是在经济领域,帮助人们解决了很多实际问题,筹措教育经费模型的建立为广大中国家庭子女教育的费用问题提供了明确的解决方法,是差分方程理论最贴近实际的模型之一. 关键词:差分方程存款模型经济增长模型筹措教育经费模型

, . . , , , , . a . ’s . , ’s ’s m n , . , . a . a ’s . 目录 一、绪论 (1) (一)研究差分方程在经济学中的应用的目的意义 (1) (二)研究背景 (2) 二、研究的理论基础 (2) (一)差分 (2) (二)差分方程 (3) (三)差分方程的解 (4) (四)特征根法 (4)

三、差分方程的经济应用模型简介 (5) (一)贷款模型 (5) (二)存款模型 (6) (三)乘数-加速数模型 (7) (四)哈罗德-多马经济增长模型 (10) (五)投入产出模型 (11) (六)筹措教育经费模型 (12) 四、总结 (14) 参考文献 (16)

规则网格有限差分解声波方程个人总结报告

地球探测科学与技术学院 总结报告 学校:吉林大学 学院:地球探测科学与技术学院 专业:勘查技术与工程(应用地球物理)科目:科学计算方法--有限差分解声波方程姓名: 学号:

目录 一.相关理论基础 (3) 1. 地震波场模拟 (3) 2. 波动方程类型及其局限性 (3) 3. 数值算法类型及其优缺点 (4) 二.有限差分解声波方程基础理论知识 (6) 1.需要的已知条件包括: (6) 2.弹性波方程 (6) 3.声波方程的有限差分法数值模拟 (6) 4. 稳定性条件 (7) 5. 频散关系式 (8) 6. 有限差分参数 (8) 三.程序及结果成图 (8) 四.通过实验所发现的问题和认识 (12) 五.他人所做的有限差分解波动方程程序及结果成图 (12) 参考文献及资料 (19)

有限差分解声波方程总结报告 一.相关理论基础 1.地震波场模拟 地震波场模拟即地震正演,是指已知模型结构,通过物理或数值计算的方法模拟该地质结构下的地震波的传播,最终合成地震记录,也可以认为其是野外数据采集过程的室内再现。物理模拟花费昂贵,人们一般采用比较经济的数值模拟技术。地震波场数值模拟是在给定数学模型(如弹性波方程,声波方程等)、震源和地下几何界面、物性参数(岩层密度、速度等)情况下,研究弹性波或声波的传播规律。 2.波动方程类型及其局限性 (1)声波方程: 二阶标量声波方程: 一阶压力-速度方程组: 波动方程能够描述且只能描述纵波的传播规律,包括直达波、反射波、透射波、折射波等,但不能描述转换波传播规律。 需要的已知条件包括:震源函数、地层速度、密度边界条件 S(t) z p x p v t p +??+??=??)(22222 2 2)(2z v y v x v C t P z y x ??+??+??-=??ρ)(1x P t v x ??-=??ρ)(1y P t v y ??-=??ρ)(1z P t v z ??-=??ρ

给定下述系统的差分方程

第四套 1. 给定下述系统的差分方程,试判定系统是否是因果、稳定系统,并说明理 由。 (1) 1 1()()N k y n x n k N -== -∑ (2) ()()(1)y n x n x n =++ (3) () ()x n y n e = 解: (1)只要N ≥1,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果|()|x n M ≤,则|()|y n M ≤,因此系统是稳定系统。 (2)该系统是非因果系统,因为n 时刻的输出还和n 时刻以后((n+1)时间)的输入有关。如果|()|x n M ≤,则|()||()||(1)|2y n x n x n M ≤++≤,因此系统是稳定的。 (3)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果 |()|x n M ≤,则() |()| |()|||x n x n M y n e e e =≤≤,因此系统是稳定的。 2. 工程实际中,经常采用数字滤波器对模拟信号进行滤波处理,处理系统框 图如图所示。图中T 为采样周期,假设T 满足采样定理(无频率混叠失真)。把从()a x t 到y(t)的整个系统等效成一个模拟滤波器。 (a)如果数字滤波器h(n)的截止频率为8 c w ra d π = , 1T =10 kHz ,求整个等 效系统的截止频率c Ω。 (b)对于1T =20 kHz ,重复(a)。 解: (a) 对采样数字滤波器,w T =Ω,所以

8 c c w T π =Ω= 8c c w T T π Ω= = 最后一级理想低通滤波器的截止频率为T π rad/s ,因此整个系统截止频 率由8c T π Ω= rad/s 确定。 110000625 21616 c c f T πΩ= = == Hz (b) 当1/T=20 Hz 时,与(a)同样道理得: 1200001250 1616 c f T = == Hz 3. 求以下序列x(n)的频谱()jw X e (1)1()()|1jw jw a jw z e X e X z e e --=== - (2) ()an e u n - 解: (1)0 0()[()][()]n X z Z x n Z n n z δ-==-= ()()|jw jn w jw z e X e X z e -=== (2)1 1()[()]1an a X z Z e u n e z ---==- 1()()|1jw jw a jw z e X e X z e e --=== - 4. 设h(n)为一个LSI 系统的单位采样响应,h(n)= 21 ()(2)3 n u n +-,求其频 率响应。 解:其频率响应为: 2 2 1 ()()() 3n jw jnw jnw n H e h n e e +∞ ∞ --=-∞ = = ∑ ∑ 改变这个和的下限以使其开始于n=0,得: 4 (2)4 20 1 1 1 ()() ()() 33 3n n jw j n w jw jw n n H e e e e +∞ ∞ -+--====∑∑ 利用几何级数,得

差分方程模型在交通流计算中的应用研究_周林华

收稿日期:2013-11-05 基金项目:国家自然科学基金(51278221,51378076) 作者简介:周林华(1981-),男,博士,E-mail :zhoulh@cust.edu.cn 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition ) Vol.37No.2Apr.2014 第37卷第2期2014年4月 差分方程模型在交通流计算中的应用研究 周林华,胡宏华,梁辰,刘琪,李军,李延忠 (长春理工大学 理学院,长春130022) 摘 要:针对交通流计算中车道被占对道路通行能力的影响以及所导致的车辆排队长度等问题,本文给出了一种能快速计 算车辆排队长度的数学模型,且以此可以分析不同车道被占对道路实际通行能力的影响。首先明确道路实际通行能力的定义,并将车道被占后的时间离散化,然后根据车辆流动数量关系建立车辆排队长度的差分方程计算模型。通过实际视频资料的验证,利用差分方程模型计算的结果能很好地与实际情况相吻合。该研究结果能用于车道被占后,为上游路口车辆放行数量与放行方向等交通信号控制提供预判依据。关键词:交通流;差分方程;道路通行能力中图分类号: U491.1+12 文献标识码:A 文章编号:1672-9870(2014)02-0117-07 Research on Difference Equation Model in Traffic Flow Calculation ZHOU Linhua ,HU Honghua ,LIANG Chen ,LIU Qi ,LI Jun ,LI Yanzhong (School of Science ,Changchun University of Science and Technology ,Changchun 130022) Abstract :In order to analyze the influence of an accident on the road capacity and calculate the vehicle queue length ,a mathematic model was provided ,which could quickly obtain the vehicle queue length.Firstly ,the definition of the actual road capacity is made sure ,and after the lane being occupied the time discretization is got ,then a difference equation model was proposed based on the quantitative relation of the vehicle.The feasibility of the difference equation model is verified by actual video data.The results could be used to provide basis of predictions of the vehicles release quantity and orientation in the upstream intersection when the lanes are occupied.Key words :traffic flow ;difference equation ;road capacity 由于城市化进程的加快,交通问题日趋严重,因 此对于交通流问题的正确了解与分析成为解决交通问题的关键。交通流问题理论是分析研究道路上行人和机动车辆(主要为汽车)在个别或成列行动中的规律,探讨车流流量、流速和密度之间的关系,以求减少交通时间的延误,事故的发生和提高道路交通设施使用效率的理论。目前对此研究的方法主要有概率论方法,流体力学方法和动力学方法等,其中动力学方法[1],即跟车理论,就是在交通流中追随前车的后车,假设其向前移动有某种规律性,据此可求得各车辆动力学状态的微分方程式。后两种方法使用较多,主要应用于道路服务水平与通行能力的评价,交通量与交通事故预测,交通信号控制和估算、消除 汽车排队长度等方面。 对道路实际通行能力给出了定义,然后利用差 分方程[2, 3] 建立了车辆排队长度的计算模型,进而可以讨论交通流问题中车道被占用对车辆排队长度的影响,为上游车辆放行数量与方向等交通信号控制提供预判依据;利用两个具体的视频材料对模型进行了验证分析,结果表明差分方程模型能很好的与实际情况吻合。 1 道路实际交通能力及车辆排队长度计算的数学建模 1.1道路实际通行能力 为了研究车道被占对道路实际通行能力的影

差分方程模型的稳定性分析及其应用毕业设计论文

差分方程模型的稳定性分析及其应用The Stability Analysis and Application of the Differential Equation Model

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

全概率公式及其应用范文

全概率公式及其应用 (清华大学数学科学系 叶俊) 命题趋势: 即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求大家能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。 1. 全概率公式和Bayes 公式 概率论的一个重要内容是研究怎样从一些较简单事件概率的计算来推算较复杂事件的概率,全概率公式和Bayes 公式正好起到了这样的作用。对一个较复杂的事件A ,如果能找到一伴随A 发生的完备事件组 ,,21B B ,而计算各个i B 的概率与条件概率)| (i B A P 相对又要容易些,这时为了计算与事件A 有关的概率,可能需要 使用全概率公式和Bayes 公式。 背景:例如,在医疗诊断中, 中的哪一种,可用Bayes 完备事件组的理解:所有病因都知道,且没有并发症。 定义 称事件族 ,,21B B 为样本空间Ω的一个划分(也称 ,,21B B 为一个完备的事件组),如果满足)(j i B B j i ≠=φ 且Ω=∞ =i i B 1 。进而,如还有 ,,2,1,0)( =>i B P i 则称 ,,21B B 为样本空间Ω的一个正划分。 一般地,划分可用来表示按某种信息分成的不同情况的总和,若划分越细,则相应的信息更详尽。 定理1 (全概率公式) 设事件...,21B B 为样本空间Ω的一个正划分,则对任 有 )()()(1 i i i B A P B P A P ∑∞ == 定理 2 (Bayes 公式) 设 ,,21B B 为样本空间Ω的一个正划分,事件A 满足 则

相关主题
文本预览
相关文档 最新文档