计算机中的数制.docx
- 格式:docx
- 大小:54.27 KB
- 文档页数:6
计算机常用数制及编码1.二进制数制:二进制是计算机中最基本的数制,只包含两个数字0和1、它是一种逢二进一的计数法,每位上的数值以2为底数的幂来表示。
例如,二进制数1101表示1*2^3+1*2^2+0*2^1+1*2^0=13、在计算机中,二进制数被广泛应用于存储和运算等操作。
2.八进制数制:八进制使用8个数字0-7来表示。
它是二进制数制的一种压缩表示方法,每3位二进制数可以表示为一位八进制数。
例如,二进制数1101可以表示为八进制数15、八进制数在计算机界并不常见,但在一些特定场景下仍然有一定的应用。
3.十进制数制:十进制是我们常用的数制,使用10个数字0-9来表示数值,每位上的数值以10为底数的幂来表示。
例如,十进制数123表示1*10^2+2*10^1+3*10^0=123、十进制数制通常用于人类的日常计算中,但在计算机中也会涉及到十进制的处理,例如在涉及到金额、日期和时间等数字的场景中。
4.十六进制数制:十六进制使用16个数字0-9和A-F来表示,其中A-F分别表示十进制数10-15、它是二进制数制的另一种压缩表示方法,每4位二进制数可以表示为一位十六进制数。
十六进制数常用于计算机领域,因为它们可以更紧凑地表示二进制数。
例如,二进制数1101可以表示为十六进制数D。
编码系统是为了实现计算机和人类之间的信息交流而发展的。
下面介绍几种常见的编码系统:1.ASCII码:ASCII(American Standard Code for Information Interchange)是最早和最广泛使用的字符编码系统之一、它使用7位二进制数(扩展ASCII使用8位二进制数)来表示128(或256)个字符,包括英文字母、数字、符号等。
ASCII码可以用于存储和表示文本文件中的字符。
2. Unicode编码:3.UTF-8编码:UTF-8(Unicode Transformation Format - 8-bit)是一种对Unicode进行可变长度编码的字符编码系统。
第2章计算机中数制及转换在计算机科学中,数制是用于表示数字和执行数学运算的一种系统。
计算机中最常用的数制是二进制(base-2),但也存在其他数制如十进制(base-10)和十六进制(base-16)。
在本章中,我们将探讨计算机中的不同数制及如何进行数制转换。
1. 二进制数制(Binary System)二进制数制是计算机中最基础的数制,因为计算机中的所有数据和运算都是以二进制形式进行的。
二进制由两个数字组成:0和1、每个二进制位(也称为比特)表示一位数字,并且位权从右向左递增。
例如,二进制数1101可以转换为十进制数132. 十进制数制(Decimal System)十进制数制是我们常用的数制系统,由0到9的十个数字组成。
每个十进制位表示一位数字,位权从右向左递增。
例如,十进制数1942可以表示为:1942=1*1000+9*100+4*10+2*13. 八进制数制(Octal System)八进制数制由0到7的八个数字组成。
每个八进制位表示三位二进制位。
八进制数制在计算机中不如二进制和十六进制常用,但在一些特定的编程语言中仍然存在。
例如,八进制数57表示为十进制数474. 十六进制数制(Hexadecimal System)十六进制数制由0到9和A到F的16个数字组成。
每个十六进制位表示四位二进制位。
十六进制在计算机科学中非常常见,因为它可以更简洁地表示二进制数。
例如,十六进制数3A7表示为十进制数9355. 数制转换(Number System Conversion)在计算机中,常常需要进行不同数制的转换。
下面介绍了一些常见的数制转换方法:5.1.二进制转十进制将一个二进制数转换为十进制,只需根据位权逐位相乘,并将结果相加。
例如,二进制数1101转换为十进制数的计算过程如下:1*2^3+1*2^2+0*2^1+1*2^0=8+4+0+1=135.2.二进制转八进制或十六进制5.3.十进制转二进制将一个十进制数转换为二进制,可以从左向右依次对每一位除以2,并将余数从右向左排列。
1 计算机中的常用数制进位计数制,按进位的原则计数,超过基数,向左边进位。
日常生活中有10进制、60进制……计算机中有2进制、8进制、16进制等。
1.1 常用的数制数字66是几?先要确定它是几进制数。
在进位计数制中有数位、基数和位权三个要素。
✧数位:是指数码在一个数中所处的位置。
对于任意禁止—J进制,J个数字符号,逢J进一。
例如十进制,逢十进一;✧基数:是指在某种进位计数制中,每个数位上所能使用的数码的个数。
例如十进制,0,1,2,3,4,5,6,7,8,9。
✧位权:在一个形成数的数码序列中,各位上的基数的幂有所不同。
例如十进制数,各数位的位权(由右至左)分别为100,101,102,……最常见,最熟悉的是10进制;计算机用2进制;8进制和16进制都是从2进制“派生”出来的。
1.2数制转换二←→十进制之间的转换是基础。
1)非十进制→十进制a n ...a1a0.a-1...a-m (r) = a n×r n+ …+ a1×r1 + a0×r0 +a-1×r-1+...a-m×r-ma i是某一位上的数码,r是基数,r i是权。
不同的基数,表示是不同的进制数。
r 进制转化成十进制:数码乘以各自的权的累加例:10101=1×24+1×22+1×20=21101.11(B)=22+1+2-1+2-2=5.75101(O)=82+1=6571(O)=7x8+1=57101A(H)=163+16+10=4106注:(B)—表示该数是二进制数;(O)—表示该数是八进制数;(H) —表示该数是16进制数2) 十进制数→非十进制整数部分和小数部分分别计算。
整数—除2取余,到0为止;小数—乘2取整,到0或满足精度为止。
最先算出的数离小数点近。
例:将十进制数转换成二进制数,小数部分和整数部分分别转换:整数部分:小数部分:2 100 0.6252 50 0 离小数点近× 22 25 0 离小数点近1 1.2502 12 1 × 22 6 0 0 0.502 3 0 × 22 1 1 1 1.00 1100.625=1100100.1013) 二、八、十六进制数制间的转换等价关系,3位二进制数对应1位8进制数;4位二进制数对应1位16进制数。
计算机中的数制“数制“是指进位计数制,它是一种科学的计数方法,它以一种科学的计数方法,它以累计和进位的方式进行计数,实现了以很少的符号表示大范围数字的目的。
计算机中常用的数制有二进制、十进制和十六进制。
1.十进制十进制数用0,1,2,…,9十个数码表示,并按“逢十进一“”借一当十“的规则计数。
十进制的基数是10,不同位置具有不同的位权。
例如:680.45=6x102+8x101+0x100+4x10-1+5x10-2十进制是人们最习惯使用的数制,在计算机中一般把十进制作为输入/输出的数据形式。
为了把不同进制的数区分开,将十进制数表示为(N)10。
2.二进制二进制数用0,1两个数码表示,二进制的基数是2,不同位置具有不同的位权。
例如:(1011.101)2=1x23+0x22+1x21+1x20+1x2-1+0x2-2+1x2-3=(11.625)10二进制数的位权展开式可以得到其表征的十进制数大小。
二进制数常用(N)2来表示,也可以记做(N)B。
二进制数的运算很简单,遵循“逢二进一“、”借一当二“的规则。
1+1=0(进1) 1+0=1 0+1=1 0+0=01-1=0 1-0=1 0-1=1(借1) 0-0=01x1=1 1x0=0 0x1=0 0x0=03.十六进制十六进制数用0,1,2,…,9,A,B,C,D,E,F十六个数码表示,A 表示10,B表示11,……,F表示15。
基数是16,不同位置具有不同的位权。
例如:(3AB.11)16=3X162+AX161+BX160+1X16-1+1X16-2=(939.0664)10十六进制数的位权展开式可以得到其表征的十进制数大小。
十六进制数常用(N)16或(N)H来表示。
十六进制数的运算,遵循“逢十六进一“、”借一当十六“的规则。
下表所示为3种数制的对照关系。
计算机常用数制及其特点计算机常用的数制有二进制、八进制、十进制和十六进制。
每种数制都有自己的特点和应用场景。
一、二进制(Binary)二进制是计算机中最基本的数制,也是计算机内部数值表示的方式。
二进制只使用两个数字0和1来表示数值,是一种离散的数制。
在二进制中,每一位被称为一个"bit"(比特),它是计算机中最小的存储单位。
二进制的特点:1. 简单易懂:只有两个数字0和1,容易理解和使用。
2. 易于计算:二进制的计算规则与十进制相似,只需要掌握简单的加法和乘法规则即可。
3. 适合电子电路实现:计算机内部的逻辑电路使用二进制信号进行控制和传输,二进制数制可以直接反映电路的状态。
二、八进制(Octal)八进制使用8个数字(0-7)来表示数值,每一位相当于二进制的3位。
八进制一般用于计算机领域的权限管理、文件访问等场景,以及在Unix/Linux系统中的文件权限设置。
八进制的特点:1. 简洁表示:用较少的数字表示相同的数值,比二进制和十六进制更节省空间。
2. 易于转换:八进制数可以直接转换为二进制数,每一位转换为对应的三位二进制数即可。
3. 权限管理:八进制数可用于表示文件的读、写、执行权限,通过三位八进制数可以表示8种权限组合。
三、十进制(Decimal)十进制是我们最常用的数制,使用10个数字(0-9)来表示数值。
十进制数制适用于日常生活中的数值表示和计算,以及大部分编程语言中的数值表示方式。
十进制的特点:1. 直观易懂:十进制是人们最熟悉的数制,可以直接表示日常生活中的数值。
2. 便于计算:十进制的计算规则较为简单,适合进行常规的算术运算。
3. 适用广泛:大部分编程语言和软件都使用十进制来表示数值,具有较好的兼容性。
四、十六进制(Hexadecimal)十六进制使用16个数字(0-9以及A-F)来表示数值,每一位相当于二进制的4位。
十六进制广泛应用于计算机领域,特别是在底层编程、存储器地址和网络通信等方面。
1.2。
1数制及其转换教学目标1、理解数制,基数,位权的概念。
2、掌握R(八、十、十六)进制与二进制之间的转换教学重点、难点:R(八、十、十六)进制与二进制之间的转换教学过程:引入:一、数制数制:用一组固定的数字符号和一套通用的规则来表示数的方法。
如:十进制规定了10个数字,则十进制的基数就为10.数码:数制中固定的数字符号。
基数:数制中固定数字符号的个数。
如:十进制的基数是0~9。
位权:一个数码(即数字符号)处在不同的位置上所代表的值不同。
每个数码所表示的数值等于该数码乘以一个与数码所在位置相关的常数,这个常数叫做位权。
比如:3333.3,数码3,在十分位上表示0.3,在个位上表示为3,在十位上表示为30,在百位上表示为300,在千位上表示为3000 3333.3=3000+300+30+3=3*103+3*102+3*101+3*100 +3*10-1 这里个(100)、十(101)、百(102)、千(103),称为位权,位权的大小是以基数为底,数码所在位置序号为指数的整数次幂。
我们日常生活中通常采用十进制进行计数,而我们的电脑是采用二进制计数。
问:什么是十进制,它是如何构成的?(1)由0、1、2、3、4、5、6、7、8、9十个数码组成;(2)进位方法,逢十进一;(基数为10)(3)采用位权表示法,即一个数码在不同位置上所代表的值不同。
问:什么是二进制?引入二进制1、二进制代码的特征(构成)①由0、1两个数码组成;②进位方法,逢二进一;(基数为2)③位权大小为2—n…、2—1、20、21、22、…2n如11001,记为11001⑵= 1×24 + 1×24 + 3×22 +1×21 + 1×20通过按权位展开,就可以把二进制转化为十进制,这也是权位的妙处。
二、数制的转换1、R(二、八、十六)进制数向十进制的转换(用“按权相加"法)(76512。
计算机中的数制及其编码1.数制的定义:数制是用来表示和运算数字的一种符号系统。
常见的数制包括二进制、八进制、十进制和十六进制。
2.二进制:二进制是数字系统的一种数制,只包含两个数字0和1、在计算机中,所有的信息都被转换为二进制形式进行存储和处理。
3.八进制:八进制是一种数制,基数为8、它使用了8个数字0-7,通过每一位上的数来表示数值。
4.十进制:十进制是我们日常生活中最常用的数制,基数为10。
它使用了10个数字0-9来表示数值。
5.十六进制:十六进制也是一种常见的数制,基数为16、它使用了16个数字0-9和字母A-F来表示数值。
十六进制常用于计算机科学和工程领域,特别是在内存地址和颜色编码中。
6.数制之间的转换:在计算机中,不同的数制之间可以进行相互转换。
例如,将十进制数转换为二进制数可以使用除2取余的方法,将十进制数一直除以2,直到商为0,然后将每次的余数倒序排列即可得到二进制数。
而将二进制数转换为十进制数,则可以通过每一位数乘以2的幂次方后相加得到结果。
7.数制的编码:在计算机中,数制的编码主要指对不同的字符和数字进行表示和存储的方式。
常见的编码方式包括ASCII码、Unicode、UTF-8等。
-ASCII码:ASCII码是一种基于拉丁字母的字符编码标准,使用7位或8位二进制(0-127或0-255)表示128个不同的字符。
它包括英文字母、数字、标点符号和控制字符等。
- Unicode:-UTF-8:UTF-8是一种可变长度的Unicode编码,使用8位二进制(0-255)表示字符。
它通过对不同的字符使用不同长度的编码,实现了用较少的存储空间表示更多的字符。
总结:数制是用来表示和运算数字的一种符号系统,常见的数制包括二进制、八进制、十进制和十六进制。
数制之间可以进行相互转换,常见的编码方式包括ASCII码、Unicode和UTF-8、这些数制和编码在计算机中起着重要的作用,帮助实现了数字的存储、处理和通信。
计算机中的数制
在数字计算机中,每个数字和字符都是由一系列的电脉冲信号表示的。
在计算机中电路有脉
冲时表示“ 1 ”,否则表示“0”。
因此,可以用一连串的“0 ”、“ 1 ”代码来表示数字和
字符,这样表示的数据容易移动和存储。
一、数制
1.基本概念
表示数的方法称为数制。
通常人们习惯以十进制来计量事物,但在生活中也使用其他的数字
系统。
例如:月与年使用12 进制来计算。
十进制是我们最熟悉的进制,以十进制为例介绍数制的相关概念。
(1)数码:十进制有 0~9 十个数字符号组成, 0~9 这些数字符号称为“数码”。
(2)基数:全部数码的个数称“基数”,十进制的基数为10 。
(3)计数原则:“逢十进一”。
即用“逢基数进位”的原则计数,称为进位计数制。
(4)位权:数码所处位置的计数单位为位权,位权的大小以基数为底。
例如,十进制的个位
的位权是 100 ,十位上的位权为101 ,百位上的位权为102 ,以此类推。
而在小数点后第1位上的位权为10-1 。
由此可见,各位上的位权值是基数10 的若干次幂。
例如,十进制数234.13用位权表示为:
常用计数制的基数、位权和数字符号如表 1 所示。
表 1 常用数制的基数、位权和数字符号
数制十进制二进制八进制十六进制
基数102816
位权10i2i8i16i
数字符号 0~90,10~70~9,A,B,C,D,E,F
2.计算机常用数制
计算机能够直接识别的只有二进制数。
这意味着它处理的数字、字符、图形、图像、声音等
信息,都是以 1 和 0 组成的二进制数的某种编码。
在计算机中采用二进制数是因为:
·二进制数易于表示。
二进制数只用0 和 1 两个不同的数码,所以具有两个稳定状态的元件均可用来表示二进制数。
如开关的通、断;电路电平的高、低等。
·二进制数运算规则简单。
简单的运算规则,会使运算器的运算控制容易实现。
·二进制数适于逻辑运算。
二进制数中只有 1 和 0 ,可代表逻辑代数中的真和假。
由于二进制在表达数字时,位数太长,不易识别,书写麻烦。
因此,在编写计算机程序时,
经常应用到八进制、十进制、十六进制,其目的是简化二进制的表示。
(1)常用数制的表示方法
常用数制的表示方法如表 2 所示。
表 2 常用数制的表示方法
十进制二进制八进制十六进制十进制二进制八进制十六进制
000081000 108
111191001 119
21022101010 12A
31133111011 13B
410044121100 14C
510155131101 15D
611066141110 16E
711177151111 17F
(2)书写规则
为了区别各种数制,在数字后面加写相应的英文字母标识或在括号外加数字下标。
表示方法如表 3 所示。
其中在括号外加数字下标的方法更直观。
一般约定十进制数的后缀或下标可以省略。
表 3 常用数制的书写规则
数制字母字母示例数字下示例
二制 B101B(101)2
八制 O267O(267)8
十制 D123D(123)10
十六制 H103H(103)16
二、数制
1.r 制十制
基数 r 的数字,只要将各位数字与它的相乘,然后按照逢十位的算法求和,即可将其成十制数。
方法:按位展开并求和。
(ai 第 i 位上的数, r 基数)
(a n⋯ a 1a0.a-1⋯a -m )r=a n×r n + ⋯+a 1×r1 +a 0×r 0+a -1×r -1 + ⋯+a -m×r-m
【例 1 】 (11011.1011)2=1×24+1×23+0×22+1×21+1×20+1×2-1+0×2-2+1×2-3+1×2-4
=16+8+2+1+0.5+0.125+0.0625
=(27.6875)10
【例 2 】 (576.5)8 =5×82+7×81+6×80+5×8-1
=320+56+6+0.625
=(382.625)10
【例 3 】 (1B2A.5)16=1×163+11×162+2×161+10×160+5×16-1
=4096+2816+32+10+0.31
=(6954.31)10
2.十进制转换为r 进制
将十进制数转换为r 进制数,可将整数部分与小数部分分别转换,然后相加。
方法:整数部分:整数除以r ,取余数,余数倒排序。
小数部分:小数乘以r,取整数,整数正排序。
【例 4 】将十进制数62.75 转换为二进制数(小数部分保留 3 位)。
求整数部分:
(62)10 = (111110)2
求小数部分:
【例 5 】将十进制数62 转换为八进制数。
【例 6 】将十进制数62 转换为十六进制数。