1.2计算机中的常用数制及转换(要)
- 格式:ppt
- 大小:430.50 KB
- 文档页数:26
一、常用数制及其相互转换在我们的日常生活中计数采用了多种记数制,比如:十进制,六十进制(六十秒为一分,六十分为一小时,即基数为60,运算规则是逢六十进一),……。
在计算机中常用到十进制数、二进制数、八进制数、十六进制数等,下面就这几种在计算机中常用的数制来介绍一下。
1.十进制数我们平时数数采用的是十进制数,这种数据是由十个不同的数字0、1、2、3、4、5、6、7、8、9任意组合构成,其特点是逢十进一。
任何一个十进制数均可拆分成由各位数字与其对应的权的乘积的总和。
例如:???这里的10为基数,各位数对应的权是以10为基数的整数次幂。
为了和其它的数制区别开来,我们在十进制数的外面加括号,且在其右下方加注10。
2.二进制数在计算机中,由于其物理特性(只有两种状态:有电、无电)的原因,所以在计算机的物理设备中获取、存储、传递、加工信息时只能采用二进制数。
二进制数是由两个数字0、1任意组合构成的,其特点是逢二进一。
例如:1001,这里不读一千零一,而是读作:一零零一或幺零零幺。
为了与其它的数制的数区别开来,我们在二进制数的外面加括号,且在其右下方加注2,或者在其后标B。
任何一个二进制数亦可拆分成由各位数字与其对应的权的乘积的总和。
其整数部分的权由低向高依次是:1、2、4、8、16、32、64、128、……,其小数部分的权由高向低依次是:0.5、0.25、0.125、0.0625、……。
二进制数也有其运算规则:加法:0+0=0????0+1=1???1+0=1????1+1=10乘法:0×0=0????0×1=0????1×0=0????1×1=1二进制数与十进制数如何转换:(1)二进制数—→十进制数对于较小的二进制数:对于较大的二进制数:方法1:各位上的数乘权求和??例如:(101101)2=1×25+0×24+1×23+1×22+0×21+1×20=45(1100.1101)2=1×23+1×22+0×21+0×20+1×2-1+1×2-2+0×2-3+1×2-4=12.8125方法2:任何一个二进制数可转化成若干个100…0?的数相加的总和??例如:(101101)2=(100000)2+(1000)2+(100)2+(1)2而这种100…00形式的二进制数与十进制数有如下关联:1后有n个0,则这个二进数所对应的十进制数为2n。
1 计算机中的常用数制进位计数制,按进位的原则计数,超过基数,向左边进位。
日常生活中有10进制、60进制……计算机中有2进制、8进制、16进制等。
1.1 常用的数制数字66是几?先要确定它是几进制数。
在进位计数制中有数位、基数和位权三个要素。
✧数位:是指数码在一个数中所处的位置。
对于任意禁止—J进制,J个数字符号,逢J进一。
例如十进制,逢十进一;✧基数:是指在某种进位计数制中,每个数位上所能使用的数码的个数。
例如十进制,0,1,2,3,4,5,6,7,8,9。
✧位权:在一个形成数的数码序列中,各位上的基数的幂有所不同。
例如十进制数,各数位的位权(由右至左)分别为100,101,102,……最常见,最熟悉的是10进制;计算机用2进制;8进制和16进制都是从2进制“派生”出来的。
1.2数制转换二←→十进制之间的转换是基础。
1)非十进制→十进制a n ...a1a0.a-1...a-m (r) = a n×r n+ …+ a1×r1 + a0×r0 +a-1×r-1+...a-m×r-ma i是某一位上的数码,r是基数,r i是权。
不同的基数,表示是不同的进制数。
r 进制转化成十进制:数码乘以各自的权的累加例:10101=1×24+1×22+1×20=21101.11(B)=22+1+2-1+2-2=5.75101(O)=82+1=6571(O)=7x8+1=57101A(H)=163+16+10=4106注:(B)—表示该数是二进制数;(O)—表示该数是八进制数;(H) —表示该数是16进制数2) 十进制数→非十进制整数部分和小数部分分别计算。
整数—除2取余,到0为止;小数—乘2取整,到0或满足精度为止。
最先算出的数离小数点近。
例:将十进制数转换成二进制数,小数部分和整数部分分别转换:整数部分:小数部分:2 100 0.6252 50 0 离小数点近× 22 25 0 离小数点近1 1.2502 12 1 × 22 6 0 0 0.502 3 0 × 22 1 1 1 1.00 1100.625=1100100.1013) 二、八、十六进制数制间的转换等价关系,3位二进制数对应1位8进制数;4位二进制数对应1位16进制数。
计算机常用数制有哪些计算机常用数制有哪些数制也称计数制,是用一组固定的符号和统一的规则来表示数值的方法。
下面是一些关于数制的知识,欢迎大家阅读学习!1.数制记数系统(number representation system)简称记数制或数制,是用一组统一的符号和规则来表示数的方法。
根据基数的不同,有十进制、二进制和十六进制等。
日常生活中我们最熟悉十进制数制,但在与计算机打交道时,会接触到二进制。
除此之外,还有八进制、十六进制等等。
但无论哪种数制,其共同之处都是进位记数制,即:如果采用的数制有R个基本符号,则称为基R数制,R称为数制的“基数”,而数制中每一固定的.位置对应的单位值Rn称为“权”。
进位记数制的编码符合“逢R进位”的规则,各位的权是以R为底的幂,一个数A可按权展开成如下多项式:A=an1×Rn1+an2×Rn2+…a0 ×R0+ a1×R1+…am ×Rm其中ai(i=n,…,2,1,0,1,2,…,m)为R数制的任何一个数字符号。
常用进位计数制表示方法如表1-3-1所示。
2.数制转换十进制数和二进制数之间的转换方法如下:(1)十进制数转换成二进制数对整数部分采用“除2取余”法,即把一个十进制的整数部分连续地被2除,将依次得到的余数按相反顺序排列,得到的就是相应二进制数的整数部分。
对小数部分采用“乘2取整”法,即把一个十进制数的小数部分连续地乘以2,将依次得到的整数按顺序排列,得到的就是相应二进制数的小数部分。
(2)二进制数转换成十进制数把二进制数小数点前整数部分的第n位的值乘以2n-1,把小数点后小数部分的第m位的值乘以2-m,然后把这些结果值相加即可。
例如:101101.101B=1×25+0×24+1×23+1×22+0×21+1×20+1×2-1+0×2-2+1×2-3=25+23+22+20+2-1+2-2=45.625(3)不同进制转换二进制数不便于书写和记忆,人们经常采用十六进制数或八进制数来表示它们,因为它们之间的转换非常方便。
数制及数制转换数制是一种用来表示和处理数值的体系,而数制转换则是将一个数从一个数制表示转换为另一个数制表示的过程。
在计算机科学和数学中,常见的数制包括十进制、二进制、八进制和十六进制等。
以下是这些概念的简要解释:数制:1.十进制(Decimal):基数为10,使用0-9的数字表示。
十进制是我们日常生活中常用的数制,人类常用的手指数法也是十进制的。
2.二进制(Binary):基数为2,使用0和1的数字表示。
计算机内部以二进制形式存储和处理数据,因为电子开关只有两个状态(打开或关闭)。
3.八进制(Octal):基数为8,使用0-7的数字表示。
在计算机领域,八进制逐渐被二进制和十六进制所取代,但仍然有时用于表示一些标志和权限。
4.十六进制(Hexadecimal):基数为16,使用0-9以及A-F表示10-15。
十六进制常用于表示计算机领域中的地址、颜色值等。
数制转换:1.二进制到十进制:将二进制数中的每一位与对应的权值相乘,然后相加即可。
2.十进制到二进制:使用除2取余法,将十进制数除以2,记录余数,然后将商再除以2,一直重复这个过程直到商为0。
最后,将所有的余数从下往上排列即可。
3.八进制和十六进制转换:八进制和十六进制的转换与二进制类似,只需将每一组(八进制为3位,十六进制为4位)与对应的权值相乘,然后相加即可。
4.二进制到十六进制:先将二进制数补足为4的倍数,然后将每4位二进制数转为一个十六进制数。
5.十六进制到二进制:将每一位十六进制数转为4位的二进制数即可。
数制转换在计算机领域中经常使用,尤其是在处理数据和编程时。
理解这些概念和转换方法对理解计算机底层原理和进行程序设计非常有帮助。
计算机常用数制及其特点计算机常用的数制有二进制、八进制、十进制和十六进制。
每种数制都有自己的特点和应用场景。
一、二进制(Binary)二进制是计算机中最基本的数制,也是计算机内部数值表示的方式。
二进制只使用两个数字0和1来表示数值,是一种离散的数制。
在二进制中,每一位被称为一个"bit"(比特),它是计算机中最小的存储单位。
二进制的特点:1. 简单易懂:只有两个数字0和1,容易理解和使用。
2. 易于计算:二进制的计算规则与十进制相似,只需要掌握简单的加法和乘法规则即可。
3. 适合电子电路实现:计算机内部的逻辑电路使用二进制信号进行控制和传输,二进制数制可以直接反映电路的状态。
二、八进制(Octal)八进制使用8个数字(0-7)来表示数值,每一位相当于二进制的3位。
八进制一般用于计算机领域的权限管理、文件访问等场景,以及在Unix/Linux系统中的文件权限设置。
八进制的特点:1. 简洁表示:用较少的数字表示相同的数值,比二进制和十六进制更节省空间。
2. 易于转换:八进制数可以直接转换为二进制数,每一位转换为对应的三位二进制数即可。
3. 权限管理:八进制数可用于表示文件的读、写、执行权限,通过三位八进制数可以表示8种权限组合。
三、十进制(Decimal)十进制是我们最常用的数制,使用10个数字(0-9)来表示数值。
十进制数制适用于日常生活中的数值表示和计算,以及大部分编程语言中的数值表示方式。
十进制的特点:1. 直观易懂:十进制是人们最熟悉的数制,可以直接表示日常生活中的数值。
2. 便于计算:十进制的计算规则较为简单,适合进行常规的算术运算。
3. 适用广泛:大部分编程语言和软件都使用十进制来表示数值,具有较好的兼容性。
四、十六进制(Hexadecimal)十六进制使用16个数字(0-9以及A-F)来表示数值,每一位相当于二进制的4位。
十六进制广泛应用于计算机领域,特别是在底层编程、存储器地址和网络通信等方面。