C4馏分的分离与综合利用-田
- 格式:doc
- 大小:223.00 KB
- 文档页数:8
乙烯裂解C4馏分的分离及利用李涛(扬子石化股份公司研究院)摘要介绍了乙烯裂解装置副产C4馏分的分离技术及化工利用状况,并对我国乙烯装置裂解C4馏分的分离利用提出了具体建议。
关键词乙烯裂解C4 丁二烯丁烯-1 正丁烯异丁烯1.前言我国主要使用石脑油和轻油裂解法制备乙烯,该法将联产大量的C4烃和C5烃混合物,如以石脑油为原料,C4烃产率可达乙烯产量的 15%~18% ,C5烃也可达到20%左右。
目前,我国的乙烯生产能力可达 550万t/a ,C4、C5烃的年产量近 100万t。
到 2005年,南京化学工业园区内乙烯产量将达到1400kt/a ,其中抽余C4产量约 220 kt/a, 裂解 C5产量约150 kt/a,裂解C9产量约 130kt/ a。
这些组份量大且稳定,其中烯烃、二烯烃和芳烃等不饱和活性组份所占比重超过了50% (质量分数),而这些活性组份正是精细有机化工的主要原料。
目前我国C4烃的化工利用率只有 41% ,C5烃的化工利用率则更低,仅为10% ,其它基本上是作为燃料利用的。
而国外的化工利用率很高,如美国为 80%~90%,日本为64%,西欧为60%。
因此采用新技术充分利用好这一宝贵资源,综合挖掘它们潜在的利用价值 , 获取高附加值产品,对降低乙烯投资成本,提高经济效益具有重要意义,同时也会直接影响精细化工的发展和未来[1-2]。
2.裂解C4馏分的分离[3-6]乙烯裂解装置副产 C4馏分中含有 1 ,3 -丁二烯、正丁烯、异丁烯、正丁烷等组分(见表1)。
1 ,3 -丁二烯可以用萃取精馏的方法分离出来,用作合成橡胶的原料。
余下的C4抽余液是多种异构体的混合物,各组分的沸点很接近,尤其是异丁烯和丁烯-1 ,沸点只相差 0.6℃,相对挥发度只相差 0.03 ,用一般的精馏方法很难实现二者的分离。
所以一般用化学方法来脱除异丁烯,例如用反应精馏的方法与甲醇反应生产 MTBE而被利用,剩下的正丁烯和正丁烷、异丁烷等组分,过去是用作液化气燃料被烧掉,价值比较低,但自从德国德士古公司(Deuscho)发明了正丁烯水合法生产甲乙酮的工艺后,正丁烯被进一步开发利用。
碳四馏分的综合利用
包世忠
【期刊名称】《炼油技术与工程》
【年(卷),期】2002(032)005
【摘要】介绍了目前我国C4馏分综合利用方面的现状,并结合当前形势对C4馏分的综合利用进行了探讨.
【总页数】3页(P18-20)
【作者】包世忠
【作者单位】巴陵石油化工有限公司,湖南省岳阳市414014
【正文语种】中文
【中图分类】TE62
【相关文献】
1.碳四馏分中异丁烷的利用方案研究 [J], 李涛;
2.萃取共沸精馏分离反应产物中的剩余碳四 [J], 黄能武
3.碳四馏分综合利用现状\r及展望 [J], 赵立伟
4.混合碳四馏分的综合利用 [J], 鲁卫国;周召方
5.萃取精馏分离混合碳四中正丁烯的模拟探讨 [J], 张传磊
因版权原因,仅展示原文概要,查看原文内容请购买。
我国混合C4资源的分离技术及利用1、分离技术及利用现状(1)C4分离技术。
混合C4通常含有丁二烯、异丁烯、1-丁烯、2-丁烯、异丁烷、正丁烷等组分。
其中,前3种组分沸点接近,化学性质较活泼,需用特殊方法分出,后3种组分采用普通精馏就能分开。
(a)丁二烯的分离。
采用萃取精馏法,根据所用溶剂的不同分离方法主要有乙睛法(ACN法)、二甲基甲酰胺法(DMF法)和N-甲基吡咯烷酮法(NMP法)3种。
目前国外常用的3种分离工艺在我国都建有生产装置。
对于引进的技术,国内各生产厂家都进行了多次技术改造。
吉林石油化学工业公司引进日本JSR生产技术,用乙腈经两段萃取精馏及脱重精制后分离聚合级丁二烯,最初能耗较高,经过1986年改造现已达到JSR公司水平;兰州石油化工公司利用自行设计的乙腈法,建成国内第一套丁二烯工业生产装置,但因技术落后,能耗太大,1988年和1996年先后对该装置进行了二次全面改造,改造后丁二烯收率由,94%提高到97%,产品质量提高到99.6%-99.8%,萃余液中丁二烯含量由原来的0.8%下降到40X10-6以下,ACN含量降至1X10-6以下,循环水和蒸汽用量分别减少了57%和32%;北京燕山石油化工公司乙腈装置在1986也进行了技术改造,主要增加了炔烃萃取精馏系统,采取了一些节能措施。
我国对引进的DMF法工艺技术也进行了多次改进。
北京燕山石油化工公司合成橡胶厂自装置投产以来,对原有生产工艺进行了100多项改造,该厂通过对萃取精馏塔系、C4原料蒸发器流程、第一精馏塔循环釆出系统、溶剂精制系统的改造,优化工艺和加强工艺控制。
国内其他几套DMF装置根据各自的特点也进行了改造和提高。
大庆石油化工公司和扬子石油化工公司在二萃塔板上增加了若干个筛孔,形成浮阀-筛孔复合塔板,增加了开孔率,还将各塔的降液管底隙改为40-60mm。
齐鲁石油化工公司也进行了改造,增大了塔板间距,提高二萃塔生产能力。
为适应生产的发展,齐鲁石油化工公司又新建了第2套DMF法装置,并将二萃塔径设计为直径0.6m。
C4馏分的分离与综合利⽤-⽥3.1 C4馏分中丁⼆烯的分离碳四馏分指含有四个碳原⼦的烃类混合物,主要成分有正丁烷、异丁烷、1-丁烯、异丁烯、1,3-丁⼆烯、顺式2-丁烯、反式2-丁烯等。
碳四馏分的来源较多,其中以⽯油炼制过程⽣成的炼⼚⽓和⽯油裂解过程⽣成的裂解⽓为主。
但通常是以液态具有⼯业意义的C4烃主要有七个组分(表1),其中尤以1,3-丁⼆烯(以下简称丁⼆烯)更为重要。
由上表可以看出:混合 C 4中的丁⼆烯、异丁烯、 1 ⼀丁烯沸点和相对挥发度都⽐较⽐较接近,化学性质较活泼,需⽤特殊⽅法分出,我们采⽤⼆甲基甲酰胺(DMF)法进⾏萃取精馏的⽅法分离出丁⼆烯3.1.1 DMF法的介绍DMF法是由⽇本瑞翁公司于1965年实现⼯业化⽣产。
由于该⼯艺⽐较先进、成熟,世界各国都相继采⽤。
该⼯艺采⽤第⼀萃取精馏⼯序、第⼆萃取精馏⼯序、精馏⼯序和溶剂回收4个⼯序。
⼯艺特点是装置能⼒⼤,对原料C4的适应性强,丁⼆烯含量在15%~60%都可以⽣产出合格的产品;装置操作周期长,烃和溶剂分离容易,分离效果好,热能回收利⽤彻底:循环溶剂使⽤量⼩,消耗低,热稳定性和化学稳定性好,但容易引起双烯烃和炔烃的聚合,在有⽔分存在下有⼀定的腐蚀性。
我国对引进的DMF法进⾏了多次的改进,⽬前已经形成了我国特⾊的⽣产⼯艺,并且有多套装置采⽤该法进⾏⽣产,在我国⽣产丁⼆烯中占据主要地位。
3.1.2 DMF分离丁⼆烯⽤DMF作溶液从C4馏分中抽提丁⼆烯的⽅法是我国于1976年5⽉由⽇本引进了第⼀套年产4.5万吨的DMF法抽提丁⼆烯的装置。
该⼯艺采⽤⼆级萃取精馏和⼆级普通精馏相结合的流程,包括丁⼆烯萃取精馏,烃烃萃取精馏,普遍精馏和溶剂净化四部分。
其⼯艺流程如图3-2 所⽰。
馏分⽓化后进⼊第⼀萃取精馏塔(l)的中部,⼆甲基甲酰胺则由塔顶部原料C4第七或第⼋板加⼊,其加⼊量约为C馏分进料量的七倍。
第⼀萃取精馏塔顶丁4烯、丁烷馏分直接送出装置,塔釜含丁⼆烯、炔烃的⼆甲基甲酰胺进⼊第⼀解吸塔(2)。
煤/天然气/石油为原料的烃化工综合企业设计一座C4综合加工子系统石脑油蒸汽裂解制乙烯装置的副产C4馏分,若按典型收率约占裂解馏分的8%左右。
C4馏分中主要含有丁烯-1、丁烯-2、异丁烯、丁二烯与正、异丁烷等组分,而其中丁烯、异丁烯、丁二烯含量可达C4馏分的90%以上,其余为丁烷与少量的二烯烃和炔烃。
近年来我国石油化工工业发展十分迅速,2011年全国乙烯生产量为627万吨,2012年随着上海赛科90万吨乙烯工程投入运行,中石化的扬巴工程也正式投产,中海油与壳牌合作的80万吨乙烯项目也将可能于今年底或明年初投产,预计今年全年我国乙烯产量将有可能达到900万吨左右,其副产的C4馏分就可高达110万吨/年左右,因此乙烯副产C4馏分的化工利用具有广阔的发展前景。
目前国内外C4馏分的传统用途和正在开发利用的领域,可归纳为如下几个方面: 1. 用作炼厂、化工厂及一般民用燃料; 2. 用于生产烷基化汽油或叠合汽油;3.用作有机化工原料,这是C4馏分化工利用的主要发展方向;C4馏分的化工利用,主要是使用单一组分,少量使用混合组分。
C4馏分的化工利用可大致归纳为如下原料:1.聚合级或化学级丁二烯;2.脱丁二烯后C4馏分,即异丁烯-正丁烯-正丁烷馏分;3.聚合级或化学级异丁烯;4.聚合级丁烯-1;八十年代以前,C4馏分除抽提丁二烯部分用于丁苯橡胶、顺丁橡胶、氯丁橡胶、SBS弹性体、ABS等聚合物作原料外,其余大部分作为燃料。
而后部分抽余的C4馏分直接用于烷基化汽油与叠合汽油,部分用于生产聚丁烯与聚异丁烯作润滑添加剂,少数厂家抽余C4馏分中的丁烯-1与丁烯-2,用于丁二烯合成橡胶原料。
C4馏分中另外极具化工应用价值的是丁烷、异丁烯。
丁烷主要是与丙烯经氧化制取环氧丙烷、环氧丁烷,并联产叔丁醇。
目前利用丁烷氧化制取顺酐,已经得到突破性进展,并有取代苯氧化制取顺酐的趋势。
丁烷脱氧制取丁烯成为其化工利用一个重要途径。
目前Houdry公司的Catofin工艺、Uop公司的Olefex工艺及Phillips公司的STAR 工艺均已实现工业化。
碳四馏分的综合利用包世忠巴陵石油化工有限公司(湖南省岳阳市414014)摘要:介绍了目前我国C4馏分综合利用方面的现状,并结合当前形势对C4馏分的综合利用进行了探讨。
主题词:4碳 石油馏分 综合利用 20世纪80年代以前,石油炼制特别是来自催化裂化装置的C4馏分主要用于生产烷基化汽油和叠合汽油,或用作工业装置和民用的燃料;蒸汽裂解得到的C4馏分除其中丁二烯部分用作合成橡胶原料外,亦多作为燃料使用。
20世纪90年代以来,由于分离技术的进步,C4馏分作为石油化工原料的应用获得了飞速发展。
有人预测,C4馏分将是继乙烯和丙烯之后可能得到充分利用的石油化工原料。
炼油厂C4馏分主要由正丁烯(包括12丁烯、顺222丁烯和反222丁烯)、异丁烯、丁烷(包括正丁烷和异丁烷)和丁二烯组成,最具有化工利用价值的组分主要是丁二烯和丁烯(正、异丁烯),其次是正丁烷。
C4馏分的应用领域可归纳为以下几个方面:①用作炼油厂、石油化工或一般民用燃料;②用于生产烷基化汽油和叠合汽油;③C4回炼增产乙烯、丙烯;④利用丁烷组分生产车用液化石油气及气雾推动剂;⑤用作石油化工原料,这是C4馏分应用的发展方向。
目前我国C4馏分的化工利用尚处于初期阶段。
炼油厂C4馏分大部分直接进烷基化装置生产烷基化汽油或叠合汽油;部分用于生产聚丁烯和聚异丁烯作润滑油添加剂;此外利用异丁烯生产甲基叔丁基醚;少量异丁烯用于生产烷基酚,正丁烯用于生产仲丁醇等。
可见,C4馏分的利用在我国大有开发前景,目前,这方面的研究工作已经展开,并取得了一定成绩。
1 正丁烯的利用以正丁烯为原料可生产仲丁醇、甲乙酮、环氧丁烷、戊醛、12丁烯、戊醇及异壬醇等产品。
其中只有仲丁醇及甲乙酮的生产在国内已实现工业化,环氧丁烷在国内只有个别厂家有小量生产,其余均处于小试阶段。
2 异丁烯的利用丁烯异构体中,异丁烯化学性质最为活泼。
如要将混合C4中的正丁烯用作化工原料,必须先将异丁烯分离出来,目前一般用甲醇醚化法生产MT BE来提取异丁烯。
3.1 C4馏分中丁二烯的分离
碳四馏分指含有四个碳原子的烃类混合物,主要成分有正丁烷、异丁烷、1-丁烯、异丁烯、1,3-丁二烯、顺式2-丁烯、反式2-丁烯等。
碳四馏分的来源较多,其中以石油炼制过程生成的炼厂气和石油裂解过程生成的裂解气为主。
但通常是以液态具有工业意义的C4烃主要有七个组分(表1),其中尤以1,3-丁二烯(以下简称丁二烯)更为重要。
由上表可以看出:混合 C 4中的丁二烯、异丁烯、 1 一丁烯沸点和相对挥发度都比较比较接近,化学性质较活泼,需用特殊方法分出,我
们采用二甲基甲酰胺(DMF)法进行萃取精馏的方法分离出丁二烯
3.1.1 DMF法的介绍
DMF法是由日本瑞翁公司于1965年实现工业化生产。
由
于该工艺比较先进、成熟,世界各国都相继采用。
该工艺采
用第一萃取精馏工序、第二萃取精馏工序、精馏工序和溶剂
回收4个工序。
工艺特点是装置能力大,对原料C4的适应性强,丁二烯含量在15%~60%都可以生产出合格的产品;装置操作周期长,烃和溶剂分离容易,分离效果好,热能回收利用彻底:循环溶剂使用量小,消耗低,热稳定性和化学稳定性好,但容易引起双烯烃和炔烃的聚合,在有水分存在下有一定的腐蚀性。
我国对引进的DMF法进行了多次的改进,目前已经形成了我国特色的生产工艺,并且有多套装置采用该法进行生产,在我国生产丁二烯中占据主要地位。
3.1.2 DMF分离丁二烯
用DMF作溶液从C4馏分中抽提丁二烯的方法是我国于1976年5月由日本引进了第一套年产4.5万吨的DMF法抽提丁二烯的装置。
该工艺采用二级萃取精馏和二级普通精馏相结合的流程,包括丁二烯萃取精馏,烃烃萃取精馏,普遍精馏和溶剂净化四部分。
其工艺流程如图3-2 所示。
馏分气化后进入第一萃取精馏塔(l)的中部,二甲基甲酰胺则由塔顶部原料C
4
第七或第八板加入,其加入量约为C
馏分进料量的七倍。
第一萃取精馏塔顶丁
4
烯、丁烷馏分直接送出装置,塔釜含丁二烯、炔烃的二甲基甲酰胺进入第一解吸塔(2)。
解吸塔釜的二甲基甲酰胺溶剂,经废热利用后循环使用。
丁二烯、炔烃由塔顶解吸出来经丁二烯压缩机(8)加压后,进入第二萃取精馏塔(3),由
第二萃取精馏塔塔顶获得丁二烯馏分,塔釜含乙烯基乙炔、丁炔的二甲基甲酰胺进入丁二烯回收塔(4)。
为了减少丁二烯损失,由丁二烯回收塔顶采出含丁二烯多的炔烃馏分,以气相返回丁二烯压缩机,塔底含炔烃较多的二甲基甲酰胺溶液进入第二解吸塔(5)。
炔烃由第二解吸塔顶采出,可直接送出装置,塔釜二甲基甲酰胺溶液经废热利用后循环使用,由第二萃取精馏塔顶送来的丁二烯馏分进入脱轻组分塔(6),用普通精馏的方法由塔顶脱除丙炔,塔釜液进脱重组分塔(7 )。
在脱重组分塔中,塔顶获得成品丁二烯,塔釜采出重组分,主要组分是顺-2-丁烯、乙烯基乙炔、丁炔、l,2-丁二烯以及二聚物、碳五等,其中丁二烯含量小于2﹪,一般作为燃料。
图3-2 二甲基甲酰胺抽提丁二烯流程图
1-第一萃取精馏塔;2-第一解吸塔;3-第二萃取精馏塔;4-丁二烯回收塔;
5-第二解吸塔;6-脱轻组分塔;7-脱重组分塔;8-丁二烯压缩机
为除去循环溶剂中的丁二烯二聚物。
将待再生的二甲基甲酰胺抽出0.5﹪,送入溶剂精制塔顶除去二聚物等轻组分,塔釜得到净化后的再生溶剂(图中未画出)
在C4馏分的分离流程中,首先需要分出丁二烯。
丁二烯的分离目前主要采用萃取精馏法,其原理是从C4馏分中加入极性溶剂以扩大各组分之间的相对挥发度。
此法选择性好,组分与溶剂易于分离,操作稳定,生产成本低。
常用的溶剂有二甲基甲酰胺、Ν-甲基吡咯烷酮及乙腈等。
二甲基
甲酰胺对丁二烯的溶解能力较大,Ν-甲基吡咯烷酮的选择性最高,而乙腈的粘度、沸点和密度最低,有利于操作。
目前,工业上多采用二甲基甲酰胺溶剂。
但近期采用Ν-甲基吡咯烷酮溶剂的有所增加,乙腈溶剂则采用较少。
丁二烯的萃取精馏分离过程,一般分为两个阶段完成,在第一级萃取精馏时,C4馏分中挥发度高的组分如丁烯及丁烷由塔顶分出,通常称为C4馏分抽余液,可作为进一步分离丁烯异构物的原料。
由塔釜分出的萃取液中含有溶剂、丁二烯及少量丁烯和炔烃等杂质,将其进行汽提(即解吸),以丁二烯为主的组分由塔顶蒸出。
所得粗丁二烯经第二级萃取精馏,除去其中所含的对聚合反应有害的炔烃等杂质,然后通过精馏,即可获得纯度为99.5%的聚合级丁二烯。
3.1.3 DMF法工艺的优点
(1)对原料C4的适应性强,丁二烯含量在15%~60%范围内都可以生产出合格的丁二烯产品。
(2)生产能力达,成本低,工艺成熟,安全性好、节能效果较好,产品、副产品回收率高达97%.
(3)由于DMF对丁二烯的溶解能力及选择性比其他溶剂高,所以循环溶剂较小,溶剂消耗量低。
(4)无水DMF与任何C4馏分互溶,因而避免了萃取塔中的分层现象。
(5)DMF与任何C4馏分都不会形成共沸物,有利于烃和溶剂的分离,且其沸点较高,溶剂损失小。
(6)热稳定性良好
3.1.4 DMF法工艺的缺点
(1)由于其沸点高,萃取塔及吸收塔的操作温度较高,易引起双烯烃和炔烃的聚合。
(2)无水情况下对碳钢无腐蚀性,但在水分存在下会分离生成甲酸和二甲胺,因而有一定的腐蚀性。
3.2 C4馏分的综合利用
3.2.1 丁二烯的利用
丁二烯的下游产品包括弹性体和非弹性体两大类。
弹性体有丁苯橡胶、顺丁橡胶、氯丁橡胶、丁腈橡胶等;非弹性体有苯乙烯-丁二烯共聚胶乳、己二腈/己二胺、丙烯腈-丁二烯-苯乙烯(ABS)树脂及其它聚合体和其它精细化学品。
目前,国外已经开发成功和即将开发成功的丁二烯化工利用新途径包括1,4-丁二醇和四氢呋喃、丁醇和辛醇、1-辛烯、己内酰胺/己二胺、乙苯和苯乙烯、二甲基萘等。
近年来.我国丁二烯的消费结构发生了很大的变化,从20世纪90年代初期几乎全部用于生产合成橡胶.逐渐扩大到生产合成树脂、热塑性弹性体、丁苯胶乳以及其他有机化工产品,尤其是在ABS树脂、SBS热塑性弹性体和丁苯胶乳等产品的消费量增长幅度最大 2006年.我国丁二烯的消费结构中.聚丁二烯橡胶对丁二烯的需求量最大.丁苯橡胶位居第二.20o7年的消费结构却发生了变化.丁苯橡胶对丁二烯的需求量所占比例位居第一.聚丁二烯橡胶位居第二。
2007年我国丁二烯的消费结构为:聚丁二烯橡胶对丁二烯的需求量约占总消费量的31.44%.丁苯橡胶约占33.93%,SBS弹性体约占11.40%.ABS树脂约占19.00%.其他方面占4.21%。
从以上数据可知:丁二烯的应用主要用于橡胶的合成,以目前国内情
况丁苯橡胶的需求量不断地加大。
所以,我们应将从C4馏分中提取的丁二烯用来合成丁苯橡胶。
3.3 丁苯橡胶
3.1.1 橡胶的合成
丁苯橡胶:由1,3-丁二烯与苯乙烯共聚而得的高聚物,简称SBR,
是一种产量和消耗量最大的通用橡胶。
合成路线如下:
3.3.2 丁苯橡胶的生产生产配方及原理
聚合原理;丁二烯与苯乙烯在乳液中按自由基共聚合反应机理进行聚合反应。
在典型的低温乳液聚合共聚物大分子链中顺式约占 9.5%,反式约占55%,乙烯基约占 12%。
如果采用高温乳液聚合,则其产物大分子链中顺式约占 16.6%,反式约占 46.3%,乙烯基约占 13.7%。
生产丁苯橡胶份配方:
3.3.3 SBR的应用
丁苯橡胶主要用于制作轮胎,世界丁苯橡胶的消费结构中,约53.5%用于轮胎及其制品,11.9%用于橡胶机械制品,34.6%用于其他方面。
丁苯橡胶的生产在高聚物合成工艺学里,拥有着成熟和年轻的魅力。
其典型的自由基低温乳液聚合工艺就像已经走过无数岁月并成为了一个成熟稳重的长者。
而以阴离子聚合为机理的溶液聚合又似一位刚刚成长的青年,即使发展历史不够悠久,但前途无量。
针对市场需求,在乳液聚合生产中
不断完善甚至创新,积极研究溶液聚合相关工艺。
相信丁苯橡胶依然会创造橡胶届的奇迹.
3.4 剩余C4的混合利用
全球大量碳四烃主要用作燃料,以丁烯为例,约90%用于燃料,仅10%用于化学品市场。
相对碳四烃直接作燃料使用而言,将碳四烃加工成烷基化油、甲基叔丁基醚及车用液化石油气等各种液体燃料或添加剂则具有较高的应用价值。
碳四烃生产甲基叔丁基醚作为汽油调合组分和辛烷值改进剂,是全球少数几个发展极为迅速的石化产品。
但由于甲基叔丁基醚对饮用水的污染,导致美国部分地区从2004年1月起限制或禁用甲基叔丁基醚。
全球甲基叔丁基醚产能和需求量已呈明显下降趋势。
相比之下二发展烷基化油是碳四烃燃料利用的一条重要途径。
2003年,全球烷基化产能已达到82.12Mt,比2001年增长了5.4%。
固体酸烷基化工艺由于在环保和安全方面的明显优势而得到广泛关注,它代表了烷基化工艺技术的发展方向。
目前,世界上有多家专利商正在开发固体烷基化工艺,部分已完成中试试验。
而近年来开发的间接烷基化工艺由于适应原料范围更宽,生产成本更低而被石油石化界普遍看好。