第四章_线性空间_S1_线性空间的概念[1][1]资料.
- 格式:ppt
- 大小:326.00 KB
- 文档页数:24
第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。
集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R)和复数域(C)。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。
如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。
则有O x x =-+)(。
(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。
注意以下几点:1)线性空间是基于一定数域来的。
同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。
2)两种运算、八条性质。
数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。
3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。
线性代数中的线性空间和线性映射线性代数是数学中重要的一门学科,它的研究范围包括向量空间、线性变换、矩阵论等多个方面。
其中,线性空间和线性映射是线性代数的重要概念,本文将从这两个方面入手,探讨它们的定义、性质及应用。
一、线性空间线性空间又称向量空间,是线性代数中的基本概念之一。
它是一个具有加法和数乘运算的集合,满足以下条件:1.对于任意两个向量,其和仍为向量;2.对于任意一个向量和任意一个标量,它们的积仍为向量;3.加法和数乘运算遵从结合律和分配律;4.存在一个零向量,满足加法运算返回自身。
线性空间的定义具有很强的普遍性,它可以适用于实数、复数、函数以及其他更广泛的对象集合。
下面举一个实数向量空间的例子。
考虑一个三维实数向量空间,它包含所有形如 $(x,y,z)$ 的三元组,其中 $x,y,z$ 均为实数。
我们可以定义向量的加法和数乘运算如下:$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1+x_2, y_1+y_2,z_1+z_2)$$$$k(x, y, z) = (kx, ky, kz)$$显然,这样定义的加法和数乘运算符合上述线性空间的定义,因此该三维实数向量空间是一个线性空间。
除了上述基本性质外,线性空间还有许多衍生的性质,如基和维数的概念等。
具体来说,一个线性空间的基是指它的极大线性无关组,而线性空间的维数是其基的元素个数。
这些概念在矩阵论等应用中有广泛的应用。
二、线性映射线性映射是一种特殊的函数,它将一个向量空间映射到另一个向量空间,并保持加法和数乘运算的线性性。
考虑两个向量空间 $V$ 和 $W$,一个从 $V$ 到 $W$ 的线性映射 $T$ 应该满足以下条件:1.对于任意向量 $u,v\in V$,有 $T(u+v) = T(u) + T(v)$;2.对于任意向量 $u\in V$ 和标量 $k$,有 $T(ku) = kT(u)$;3.存在一个零向量 $0$,满足 $T(0)=0$。
线性空间知识点总结本文将从定义、性质、例子、拓扑结构等多个方面对线性空间进行总结,以帮助读者更全面地理解这一概念。
一、线性空间的定义线性空间的定义较为抽象,它可以用来表示向量、矩阵、多项式等各种类型的数学对象。
线性空间是一个非空集合V,配上两个操作:加法和数乘。
加法指的是将两个向量或数学对象相加得到一个新的向量或数学对象,数乘指的是将一个标量与一个向量或数学对象相乘得到一个新的向量或数学对象。
具体来说,给定一个域F,一个线性空间V满足以下条件:1. 对于V中的任意两个元素x、y,它们的和x+y也属于V。
2. 对于V中的任意元素x和任意标量c,它们的数乘cx也属于V。
3. 加法满足结合律和交换律。
4. 加法单位元(零向量)存在。
5. 数乘满足分配律。
6. 数乘满足标量乘1等于自身。
换句话说,线性空间V是一个满足上述条件的非空集合,它配备了加法和数乘这两种运算,并且这两种运算满足一定的性质。
二、线性空间的性质线性空间有许多重要的性质,这些性质不仅体现了线性空间的内在结构,也为线性空间的进一步研究提供了重要的基础。
下面介绍线性空间的一些主要性质:1. 线性空间中的元素有唯一加法逆元。
对于线性空间V中的任意元素x,存在一个唯一的元素-y,使得x+y=0,其中0表示线性空间V中的零向量。
2. 线性空间中的元素满足交换律和结合律。
即对于线性空间V中的任意元素x、y、z,有x+y=y+x,(x+y)+z=x+(y+z)。
3. 线性空间中的元素满足分配律。
即对于线性空间V中的任意元素x、y、z和任意标量c,有c(x+y)=cx+cy,(c+d)x=cx+dx。
4. 线性空间中的元素满足数乘单位元的性质。
即对于线性空间V中的任意元素x,有1∙x=x。
5. 线性空间中的元素满足数乘交换律。
即对于线性空间V中的任意元素x和任意标量c、d,有c(dx)=(cd)x。
6. 线性空间中的元素满足数乘结合律。
即对于线性空间V中的任意元素x和任意标量c、d,有(c+d)x=cx+dx。
首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。
线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。
赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。
总之,空间有很多种。
你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。
这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。
我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。
仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,上面的这些性质中,最最关键的是第4条。
第1、2条只能说是空间的基础,不算是空间特有的性质,凡是讨论数学问题,都得有一个集合,大多数还得在这个集合上定义一些结构(关系),并不是说有了这些就算是空间。
而第3条太特殊,其他的空间不需要具备,更不是关键的性质。
只有第4条是空间的本质,也就是说,容纳运动是空间的本质特征。
认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。
事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。
你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。
线性空间定义
直观上可以理解为给元素装配了加法和数乘的非空集合
完成定义我们拆分这句话就成:
1)非空集合
首先它是一个非空集合,我们记为x
2)给元素装配加法(元素与元素加法)
其次我们给x中的元素装配上加法运算,满足4个基本属性
1, 加法结合律:u + (v + w) = (u + v) + w
2, 加法交换律:u + v = v + u
3, 有单位元:存在一个元素 e, 使得对任意u ∈ x,都有u +e = u, 这里e 其实是零元,一般用0表示
4, 有逆元:对任意u ∈ x,都对应存在一个v∈ x, 使得u + v=0
3)给元素装配数乘(数值与元素乘法)
然后给x中的元素装配上数乘,满足数乘的4个基本属性(选择一个数域f,记a,b为其中任意数值)
1. 数乘对元素加法满足分配律:a· (v + w) = a·v +a·w.
2. 数乘对域加法(数值与数值加法)满足分配律:(a +
b) ·v = a·v +b·v.
3. 数乘与域乘法(数值与数值乘法)相兼容:a(b·v) = (ab) ·v
4. 数乘有单位元:存在一个数值e\in f, 使得对于任意v\in x,都有 e·v = v
到此,我们有了装配了加法和数乘的非空集合,要成为空间,在定义两个运算时要包含一个硬性要求即可,这个集合对这两个运算封闭
至于为什么叫线性空间,我想是因为装配了加法和数乘这两个线性运算吧。