电机第4章 三相异步电动机的特性与应用
- 格式:ppt
- 大小:880.50 KB
- 文档页数:38
三相异步电动机的工作特性三相异步电动机是一种常见的电机类型,广泛应用于工业、农业、交通运输等领域。
其工作特性主要包括以下几个方面:1.转速特性三相异步电动机的转速与电源频率、电机极数、转差率等因素有关。
在额定负载范围内,电机转速与电源频率成正比,极数越多转速越低。
此外,转差率的变化也会影响电机的转速。
一般来说,电机的转差率在0.01-0.05之间。
2.转矩特性三相异步电动机的转矩与电源电压、电流、磁通量等因素有关。
在额定电压和电流下,电机的转矩与磁通量成正比。
随着负载的增加,电流也会增加,进而导致转矩增大。
但是,当负载超过额定负载时,电机会过载,电流和转矩会超出额定范围,导致电机受损。
3.功率因数特性三相异步电动机的功率因数与负载性质、电源电压、电流等因素有关。
在空载时,电机的功率因数较低;随着负载的增加,功率因数也会逐渐提高。
当负载达到某一值时,电机的功率因数达到最大值;当负载继续增加时,功率因数会逐渐降低。
4.效率特性三相异步电动机的效率与负载性质、电源电压、电流等因素有关。
在空载时,电机的效率较低;随着负载的增加,效率也会逐渐提高。
当负载达到某一值时,电机的效率达到最大值;当负载继续增加时,效率会逐渐降低。
5.温升特性三相异步电动机的温升与负载性质、环境温度、散热条件等因素有关。
在额定负载范围内,电机的温升与工作时间成正比;超过额定负载时,电机的温升会急剧上升,导致电机受损。
因此,使用时要注意控制负载和工作时间,保证电机在安全范围内运行。
6.启动特性三相异步电动机的启动方式有多种,如直接启动、降压启动等。
直接启动时,启动电流较大,会对电网造成一定冲击;降压启动时,启动电流较小,可以减少对电网的冲击。
但是,降压启动时需要使用启动设备或其他辅助设备,增加了使用成本和维护工作量。
7.调速特性三相异步电动机的调速可以通过改变电源频率、电压等方法来实现。
但是,这些方法都存在一定的局限性,如变频调速虽然可以方便地实现调速,但成本较高且对电网有一定的影响。
三相异步电动机的运行特性摘要:本章介绍了三相异步电动机的机械特性的三个表达式。
固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用5.1三相异步电动机的运行特性三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。
和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。
由于转子转速与同步转速、转差率存在下列关系,即(5.1)则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩。
三相异步电动机的机械特性有三种表达式,现介绍如下:5.1.1机械特性的物理表达式由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为(5.2)式中为三相异步电动机的转矩系数,是一常数;为三相异步电动机的气隙每极磁通量;为转子电流的折算值;为转子电路的功率因数;式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。
仅从式(5.2)不能明显地看出电磁转矩与转差率之间的变化规律。
要从分析气隙每极磁通量,转子相电流,以及为转子功率因数与转差率之间的关系,间接地找出其变化规律。
现分析如表5.1所示。
根据表5.1中的分析,可作出曲线、和分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲线。
曲线分为两段:当较小时(),变化不大,,电磁转矩与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时 (),如,减少近一半,很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为段,段为曲线段,称为曲线部分。
由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。
三相异步电动机教案(精)教案:三相异步电动机教学内容:本节课的教学内容主要包括教材中的第四章第二节,即三相异步电动机的基本原理、结构、特性及应用。
具体内容包括:1. 三相异步电动机的原理:电磁感应原理、旋转磁场原理。
2. 三相异步电动机的结构:定子、转子、端盖、轴承等。
3. 三相异步电动机的特性:启动特性、运行特性、调速特性等。
4. 三相异步电动机的应用:工业生产、日常生活等。
教学目标:1. 使学生了解和掌握三相异步电动机的基本原理、结构、特性及应用。
2. 培养学生分析和解决实际问题的能力,提高学生的实践操作技能。
3. 培养学生团队合作精神,提高学生的沟通与协作能力。
教学难点与重点:难点:三相异步电动机的启动原理和调速方法。
重点:三相异步电动机的结构、特性和应用。
教具与学具准备:1. 教具:三相异步电动机实物、电路图、多媒体教学设备等。
2. 学具:笔记本、课本、练习题等。
教学过程:1. 实践情景引入:观察和分析周围环境中三相异步电动机的应用实例,引导学生对三相异步电动机产生兴趣和好奇心。
2. 基础知识讲解:介绍三相异步电动机的原理、结构、特性及应用,通过示例和图示使学生理解和掌握。
3. 例题讲解:分析三相异步电动机的启动原理和调速方法,通过实际案例使学生深入理解和掌握。
4. 随堂练习:布置一些相关的练习题,让学生运用所学知识进行解答,巩固所学内容。
5. 小组讨论:让学生分组讨论三相异步电动机的应用场景和实际问题,培养学生的团队合作和沟通能力。
板书设计:板书设计要清晰、简洁,主要包括三相异步电动机的原理、结构、特性及应用等内容,以便学生随时查阅和复习。
作业设计:1. 请简述三相异步电动机的原理。
2. 请描述三相异步电动机的结构。
3. 请说明三相异步电动机的特性。
4. 请举例说明三相异步电动机的应用场景。
课后反思及拓展延伸:本节课通过讲解和练习,使学生了解了三相异步电动机的基本原理、结构、特性及应用。
1.1 三相异步电动机的构造 第1章三相异步电动机异步电机是交流电机的一种。
异步电动机是工业、农业、国防,乃至日常生活和医疗器械中应用最广泛的一种电动机,它的主要作用是驱动生产机械和生活用具。
其单机容量可从几十瓦到几千千瓦。
随着电气化和自动化程度的不断提高,异步电动机将占有越来越重要的地位。
据统计,在供电系统的动力负载中,约有70%是异步电动机,可见它在工农业生产乃至我们日常生活中的重要性。
异步电机是一种交流电机,其电机的转子转速总落后于电机的同步转速,故称异步电动机。
异步电动机有许多突出的优点,和其它各种电动机相比,它的结构简单,制造、使用和维护方便,效率较高,价格低廉。
因此,从应用的角度来讲,了解异步电机的工作原理,掌握它的运行性能,是十分必要的。
本章将着重讨论三相异步电动机,并对单相异步电动机的工作原理作简要的介绍。
1.1 三相异步电动机的基本构造一个三相异步电动机主要由两部分组成,固定不动的部分称为电动机定子;旋转并拖动机械负载的部分称为电动机转子。
转子和定子之间有一个非常小的空气气隙将转子和定子隔离开来,根据电动机的容量的大小不同,气隙一般在0.4mm~4mm的范围内。
电动机转子和定子之间没有任何电气上的联系,能量的传递全靠电磁感应作用,所以这样的电动机也称感应式电动机。
一个三相异步电动机的基本构造如图1—1所示。
电动机定子由支撑空心定子铁心的钢制机座、定子铁心和定子绕组线圈组成。
定子铁心由0.5mm厚的硅钢片叠至而成。
定子铁心上的插槽是用来嵌放对称三相定子绕组线圈的。
一个三相异步电动机的定子构造见图1—2。
电动机转子由转子铁心、转子绕组和转轴组成。
转子铁心由表面冲槽的硅钢片叠至成一圆柱形。
转子铁心装在转轴上,转轴拖动机械负载。
转子、气隙和定子铁心构成了一个电动机的完整磁路。
异步电动机的转子有两种形式:鼠笼式转子和绕线式转子。
第1章 三相异步电动机图1—1 三相异步电动机的基本构造定子铁心图1—2 三相异步电动机的定子构造鼠笼式转子是在转子铁心槽里插入铜条,再将全部铜条两端焊在两个铜端环上,以构成闭合回路。
三相异步电动机的运行特性摘要:本章介绍了三相异步电动机的机械特性的三个表达式。
固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用5.1三相异步电动机的运行特性三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。
和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。
由于转子转速与同步转速、转差率存在下列关系,即(5.1)则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩。
三相异步电动机的机械特性有三种表达式,现介绍如下:5.1.1机械特性的物理表达式由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为(5.2)式中为三相异步电动机的转矩系数,是一常数;为三相异步电动机的气隙每极磁通量;为转子电流的折算值;为转子电路的功率因数;式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。
仅从式(5.2)不能明显地看出电磁转矩与转差率之间的变化规律。
要从分析气隙每极磁通量,转子相电流,以及为转子功率因数与转差率之间的关系,间接地找出其变化规律。
现分析如表5.1所示。
根据表5.1中的分析,可作出曲线、和分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲线。
曲线分为两段:当较小时(),变化不大,,电磁转矩与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时(),如,减少近一半,很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为段,段为曲线段,称为曲线部分。
由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。