又叫特值法,即通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.
- 格式:docx
- 大小:577.73 KB
- 文档页数:13
2015公务员考试行测之巧用特殊值法解数学运算数学运算作为行测考试里的重要组成部分,历来被看作行测考试的风向标,直接决定了广大考生的行测成绩。
要想在数学运算上有所突破,关键就在于数学方法的灵活使用,今天专家给广大考生介绍一下最重要的方法之——特殊值法。
特殊值法,又叫做特值法,即通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法。
这个特殊值必须满足三个条件:首先,无论这个量的值是多少,对最终结果所要求的量的值没有影响;其次,这个量应该要跟最终结果所要求的量有相对紧密的联系;最后,这个量在整个题干中给出的等量关系是一个不可或缺的量。
特殊值法,最大的特点是变未知为已知,对计算的简化有极大的帮助,但并不是所有的题目都可以用特殊值法来解题,我们今天主要跟大家分享两种比较典型的可以采用特殊值法的题型。
例1.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则代数式a2+b2+c2-ab-bc-ca 的值为( )。
A.0B.1C.2D.3中公解析:由于题目中的x取值未定,因此a,b,c的取值也未定,而a,b,c的取值可以有无数种情况,但是看题目选项发现答案应该有确定的解,因此任意找一组符合题目要求的a,b,c代入就可以得到答案。
为了计算简单,这道题令x= -1,这样对应的a,b,c 就分别为1,2,3,将1,2,3代入代数式经计算结果为3,因此这道题的答案就是3。
例2.某市气象局观测发现,今年第一、二季度降水量分别比去年增加了11%和9%,而两个季度降水量的绝对增量相同。
那么该市上半年降水量同比增长多少?A.9.5%B.10%C.9.9%D.10.5%。
人教版七年级第一学期期中数学试卷及答案一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.﹣2的相反数是()A.﹣2B.2C.±2D.2.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×108B.82×108C.8.2×106D.82×1073.小明家冰箱冷冻室的温度为﹣4℃,调低5℃后的温度为()A.4℃B.﹣9℃C.﹣1℃D.9℃4.若一个数的绝对值是8,则这个数是()A.8B.﹣8C.8或﹣8D.5.下列说法正确的是()A.3πxy的系数是3B.3πxy的次数是3C.﹣xy2的系数是﹣D.﹣xy2的次数是26.下列运算正确的是()A.5xy﹣4xy=1B.3x2+2x3=5x5C.x2﹣x=x D.3x2+2x2=5x27.在简便运算时,把变形成最合适的形式是()A.24×(﹣100+)B.24×(﹣100﹣)C.24×(﹣99﹣)D.24×(﹣99+)8.下列式子是合并同类项的是()A.5a﹣7a=﹣2a B.|π﹣3|=π﹣3C.﹣(x﹣1)=﹣x+1D.﹣(﹣4)=49.下列表述不正确的是()A.某水果的单价是5元/kg,5a表示akg水果的金额B.长方形的长为a,宽为5,5a表示这个长方形的面积C.某校七年级有5个班,平均每个班有a名男生,5a表示全校七年级男生总数D.一个两位数的十位和个位数字分别为5和a,则这个两位数可以表示为5a10.实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点二、填空题:(本大题有6小题,11题6分,12-16每小题6分,共26分)11.计算:(1)﹣10+10=;(2)﹣2﹣(﹣7)=;(3)(﹣5)×(﹣3)=;(4)4÷(﹣8)=;(5)﹣1﹣|﹣9|=;(6)1÷×()2=.12.比较大小:﹣﹣(填“<”或“>”).13.已知单项式3a n b与﹣a2b m是同类项,则n﹣m=.14.多项式2a2c﹣33bc+4ab3﹣4的最高次项为,常数项为.15.如图,长方形纸片上画有两个完全相同的阴影长方形,那么剩余的非阴影长方形的周长为(用含a,b 的代数式表示).16.一组数:根据以上规律,这组数中的第2022个数是.三、解答题:(本大题有9题,共84分)17.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.1.5,﹣2,0,﹣.18.(20分)计算:(1)13+(﹣17)﹣(﹣5)﹣15;(2)(﹣8)×(﹣5)﹣60÷(﹣15);(3);(4)(﹣1)100+[﹣42﹣(1﹣32)×2].19.化简下列各式:(1)7xy2﹣8﹣4xy2+3;(2)(a2+2a)+(4a﹣3a2).20.先化简,再求值:已知A=2x﹣3y2+1,B=5x﹣4y2,求当x=,y=﹣2时A﹣2B的值.21.一出租车一天下午以某植物园南门为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+10,﹣6,﹣4,+4,﹣8,+6,﹣3,+3,﹣7,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?(2)若每千米收费2.5元,司机一个下午的营业额是多少?22.现要从A,B两地运送苹果到C,D两地,A、B两地果园分别有苹果60吨和40吨,C、D两地分别需要苹果70吨和30吨;已知从A、B到C、D的运价如下表:(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为吨,从A果园将苹果运往D 地的运输费用为元;到C地到D地A果园每吨12元每吨15元B果园每吨8元每吨10元(2)用含x的式子表示出总运输费.23.傻羊羊说:“我定义了一种新的运算,叫❈(加乘)运算.”然后它写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+5)❈(+2)=+7;(﹣3)❈(﹣5)=+8;(﹣3)❈(+4)=﹣7;(+5)❈(﹣6)=﹣11;0❈(+8)=8;(﹣6)❈0=6.智羊羊看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)计算(﹣2)❈[0❈(﹣1)]的值;(括号的作用与它在有理数运算中的作用一致)(2)我们知道加法和乘法都有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)24.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:a4x4+a3x3+a2x2+a1x+a0=6x,则:(1)取x=0时,直接可以得到a0=0;(2)取x=1时,可以得到a4+a3+a2+a1+a0=6;(3)取x=﹣1时,可以得到a4﹣a3+a2﹣a1+a0=﹣6.(4)把(2),(3)的结论相加,就可以得到2a4+2a2+2a0=0,结合(1)a0=0的结论,从而得出a4+a2=0.请类比上例,解决下面的问题:已知a6(x﹣1)6+a5(x﹣1)5+a4(x﹣1)4+a3(x﹣1)3+a2(x﹣1)2+a1(x﹣1)+a0=4x,求(1)a0的值;(2)a6+a5+a4+a3+a2+a1+a0的值;(3)a6+a4+a2的值.25.如图1.在数轴上点M表示的数为m,点N表示的数为n,点M到点N的距离记为MN.如图2:在数轴上点A表示数a,点B表示数b,点C表示数c,a是3的相反数,b是最大的负整数,c是多项式2x3y2﹣3x+1的次数.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,求与点B重合的点表示的数;(3)点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时,点A和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,运动时间为t秒;探究:3BC﹣4AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.﹣2的相反数是()A.﹣2B.2C.±2D.【分析】根据相反数的定义进行解答即可.解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×108B.82×108C.8.2×106D.82×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.小明家冰箱冷冻室的温度为﹣4℃,调低5℃后的温度为()A.4℃B.﹣9℃C.﹣1℃D.9℃【分析】根据题意列出算式,利用减法法则计算,即可得到结果.解:根据题意列得:﹣4﹣5=﹣4+(﹣5)=﹣9(℃).故选:B.【点评】此题考查了有理数的减法法则,熟练掌握减法法则是解本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.4.若一个数的绝对值是8,则这个数是()A.8B.﹣8C.8或﹣8D.【分析】根据绝对值的定义解决此题.解:8或﹣8的绝对值是8.故选:C.【点评】本题主要考查绝对值,熟练掌握绝对值的定义是解决本题的关键.5.下列说法正确的是()A.3πxy的系数是3B.3πxy的次数是3C.﹣xy2的系数是﹣D.﹣xy2的次数是2【分析】根据单项式的系数和指数的定义解答即可.解:A.系数应该是3π,不符合题意;B.π是数字,次数应该是2,不符合题意;C.正确,符合题意;D.次数应该是3,不符合题意.故选:C.【点评】本题考查了单项式的系数和指数的定义,注意π是数字.6.下列运算正确的是()A.5xy﹣4xy=1B.3x2+2x3=5x5C.x2﹣x=x D.3x2+2x2=5x2【分析】区分是否是同类项,在根据合并同类项的法则合并即可.解:A、5xy﹣4xy=xy,故本选项错误;B、不是同类项,不能合并,故本选项错误;C、不是同类项,不能合并,故本选项错误;D、3x2+2x2=5x2,故本选项正确;故选:D.【点评】本题考查了同类项和合并同类项等知识点的应用,同类项是指所含字母相同,并且相同字母的指数分别相等的项;同类项的系数相加,字母和字母的指数不变.7.在简便运算时,把变形成最合适的形式是()A.24×(﹣100+)B.24×(﹣100﹣)C.24×(﹣99﹣)D.24×(﹣99+)【分析】根据有理数的乘法分配律即可得出答案.解:∵﹣100+=﹣(100﹣)=﹣,∴根据有理数的乘法分配律,把变形成最合适的形式为24×(﹣100+)=﹣24×100+24×=,可以简便运算.故选:A.【点评】本题考查有理数的乘法,正确掌握运算法则是解题的关键.8.下列式子是合并同类项的是()A.5a﹣7a=﹣2a B.|π﹣3|=π﹣3C.﹣(x﹣1)=﹣x+1D.﹣(﹣4)=4【分析】根据合并同类项的法则、绝对值的性质、去括号法则分别对每一项进行分析,即可得出答案.解:A、5a﹣7a=﹣2a,合并同类项,故本选项正确,符合题意;B、|π﹣3|=π﹣3,不是合并同类项,是去绝对值,故本选项不符合题意;C、﹣(x﹣1)=﹣x+1,不是合并同类项,是去括号,故本选项不符合题意;D、﹣(﹣4)=4,不是合并同类项,是去括号,故本选项不符合题意.故选:A.【点评】本题考查了合并同类项的法则、绝对值的性质、去括号法则,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.9.下列表述不正确的是()A.某水果的单价是5元/kg,5a表示akg水果的金额B.长方形的长为a,宽为5,5a表示这个长方形的面积C.某校七年级有5个班,平均每个班有a名男生,5a表示全校七年级男生总数D.一个两位数的十位和个位数字分别为5和a,则这个两位数可以表示为5a【分析】根据代数式表示实际意义的方法分别判断每个选项即可得.解:A.某水果的单价是5元/kg,5a表示akg水果的金额,正确,不符合题意;B.长方形的长为a,宽为5,5a表示这个长方形的面积,正确,不符合题意;C.某校七年级有5个班,平均每个班有a名男生,5a表示全校七年级男生总数,正确,不符合题意;D.一个两位数的十位和个位数字分别为5和a,则这个两位数可以表示为50+a,原表述错误,符合题意;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.10.实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点【分析】分四种情况讨论,利用数形结合思想可解决问题.解:若点A为原点,可得0<x<y<z,且|x|<|y|<|z|,则|z+y|>|x+y|,与题意不符合,故选项A不符合题意;若点B为原点,可得x<0<y<z,且|x|<|y|<|z|,|z+y|>|z|,|x+y|<|y|,则|z+y|>|x+y|,不符合题意,故选项B不符合题意;若点C为原点,可得x<0<y<z,且|y|<|x|<|z|,|x+y|<|x|,|z+y|>|z|,则|z+y|>|x+y|,不符合题意,故选项C不若点D为原点,可得x<y<0<z,且|z|<|y|<|x|,|z+y|<|y|,|x+y|>|x|,则|z+y|<|x+y|,与题意符合,故选项D符合题意;故选:D.【点评】本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.二、填空题:(本大题有6小题,11题6分,12-16每小题6分,共26分)11.计算:(1)﹣10+10=0;(2)﹣2﹣(﹣7)=5;(3)(﹣5)×(﹣3)=15;(4)4÷(﹣8)=;(5)﹣1﹣|﹣9|=﹣10;(6)1÷×()2=1.【分析】(1)利用有理数的加法法则进行运算即可;(2)利用有理数的减法的法则进行运算即可;(3)利用有理数的乘法的法则进行运算即可;(4)利用有理数的除法的法则进行运算即可;(5)先算绝对值,再算减法即可;(6)先算乘方,除法转为乘法,再算乘法即可.解:(1)﹣10+10=10﹣10=0;故答案为:0;(2)﹣2﹣(﹣7)=﹣2+7=7﹣2=5;故答案为:5;(3)(﹣5)×(﹣3)=5×3=15;(4)4÷(﹣8)=4×(﹣)=﹣;故答案为:;(5)﹣1﹣|﹣9|=﹣1﹣9=﹣(1+9)=﹣10;故答案为:﹣10;(6)1÷×()2=1×=1,故答案为:1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.12.比较大小:﹣>﹣(填“<”或“>”).【分析】根据两负数比较大小绝对值大的反而小,可得答案.解:|﹣|=,|﹣|=,﹣,故答案为:>.【点评】本题考查了有理数比较大小,两负数比较大小绝对值大的反而小.13.已知单项式3a n b与﹣a2b m是同类项,则n﹣m=1.【分析】直接利用同类项的定义得出m,n的值,进而得出答案.解:∵单项式3a n b与﹣a2b m是同类项,∴n=2,m=1,∴n﹣m=2﹣1=1.故答案为:1.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.14.多项式2a2c﹣33bc+4ab3﹣4的最高次项为4ab3,常数项为﹣4.【分析】利用最高次项和常数项的定义分别得出答案.解:多项式2a2c﹣33bc+4ab3﹣4的最高次项为4ab3,常数项为﹣4.故答案为:4ab3,﹣4.【点评】此题主要考查了多项式的有关定义,正确把握相关定义是解题的关键.15.如图,长方形纸片上画有两个完全相同的阴影长方形,那么剩余的非阴影长方形的周长为4b﹣2a(用含a,b的代数式表示).【分析】直接利用已知图形边长进而表示出各边长,即可得出答案.解:由题意可得,非阴影长方形的周长为:2(b﹣a)+2b=4b﹣2a.故答案为:4b﹣2a.【点评】此题主要考查了列代数式,正确表示出各边长是解题关键.16.一组数:根据以上规律,这组数中的第2022个数是.【分析】观察数列可发现:分母为1的分数有1个,分母为2的数有3个,分母为3的数有5个,可得出:分母为n的分数有(2n﹣1)个,且正负数的个数都是(n﹣1)个,互为相反数,则前n组数的个数为:1+3+5+…+(2n﹣1)=n2,由此即可解决问题.解:观察数列可发现:分母为1的分数有1个,分母为2的数有3个,分母为3的数有5个,∴可得出:分母为n的分数有(2n﹣1)个,∴前n组数的个数为:1+3+5+…+(2n﹣1)=n2,∵452=2025,442=1936,∴第2022个数是以45为分母,∵2025﹣2023=2,∴第2022个数为:.故答案为:.【点评】本题主要考查数字的变化规律,解答的关键是由所给的数总结出存在的规律.三、解答题:(本大题有9题,共84分)17.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.1.5,﹣2,0,﹣.【分析】首先根据在数轴上表示数的方法,在数轴上表示出各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,用“<”号把这些数连接起来即可.解:在数轴上表示下列各数如下:故.【点评】本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的方法是解题的关键.18.(20分)计算:(1)13+(﹣17)﹣(﹣5)﹣15;(2)(﹣8)×(﹣5)﹣60÷(﹣15);(3);(4)(﹣1)100+[﹣42﹣(1﹣32)×2].【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)先算乘法与除法,再算加法即可;(3)利用乘法的分配律进行运算即可;(4)先算乘方,再算括号里的运算,接着算乘法,最后算加法即可.解:(1)13+(﹣17)﹣(﹣5)﹣15=﹣4+5﹣15=1﹣15=﹣14;(2)(﹣8)×(﹣5)﹣60÷(﹣15)=40+4=44;(3)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣12+20﹣33=﹣25;(4)(﹣1)100+[﹣42﹣(1﹣32)×2]=1+[﹣16﹣(1﹣9)×2]=1+(﹣16+8×2)=1+(﹣16+16)=1+0=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.19.化简下列各式:(1)7xy2﹣8﹣4xy2+3;(2)(a2+2a)+(4a﹣3a2).【分析】(1)直接合并同类项,进而得出答案;(2)直接去括号,再合并同类项得出答案.解:(1)7xy2﹣8﹣4xy2+3=3xy2﹣5;(2)(a2+2a)+(4a﹣3a2)=a2+2a+4a﹣3a2=6a﹣2a2.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.20.先化简,再求值:已知A=2x﹣3y2+1,B=5x﹣4y2,求当x=,y=﹣2时A﹣2B的值.【分析】利用整式的加减法的法则进行化简,再把相应的值代入运算即可.解:∵A=2x﹣3y2+1,B=5x﹣4y2,∴A﹣2B=2x﹣3y2+1﹣2(5x﹣4y2)=2x﹣3y2+1﹣10x+8y2=﹣8x+5y2+1,当x=,y=﹣2时,原式=﹣8×+5×(﹣2)2+1=﹣4+20+1=17.【点评】本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握与运用.21.一出租车一天下午以某植物园南门为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+10,﹣6,﹣4,+4,﹣8,+6,﹣3,+3,﹣7,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?(2)若每千米收费2.5元,司机一个下午的营业额是多少?【分析】(1)把行驶记录相加,再根据正负数的意义解答即可;(2)求出行驶记录绝对值的和,然后乘以每千米收费2.5元即可求解.解:(1)10﹣6﹣4+4﹣8+6﹣3+3﹣7+10=5,∴将最后一名乘客送到目的地,出租车离出发点5km远;(2)10+|﹣6|+|﹣4|+4+|﹣8|+6+|﹣3|+3+|﹣7|+10=61(km),司机下午营业额为:61×2.5=152.5(元),∴司机一个下午的营业额是152.5元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.22.现要从A,B两地运送苹果到C,D两地,A、B两地果园分别有苹果60吨和40吨,C、D两地分别需要苹果70吨和30吨;已知从A、B到C、D的运价如下表:(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为(60﹣x)吨,从A果园将苹果运往D地的运输费用为(x﹣30)元;到C地到D地A果园每吨12元每吨15元B果园每吨8元每吨10元(2)用含x的式子表示出总运输费.【分析】(1)由从A果园运到C地的苹果为x吨,知从A果园运到D地的苹果为(60﹣x)吨,从B果园运到C地的苹果为(70﹣x)吨,运到D地的苹果为(x﹣30)吨,据此可得答案;(2)用运送到C、D的吨数分别乘以对应单价,求和即可得出答案.解:(1)∵从A果园运到C地的苹果为x吨,∴从A果园运到D地的苹果为(60﹣x)吨,从B果园运到C地的苹果为(70﹣x)吨,运到D地的苹果为(x ﹣30)吨,故答案为:(60﹣x),(x﹣30);(2)总运输费为12x+15(60﹣x)+8(70﹣x)+10(x﹣30)=12x+900﹣15x+560﹣8x+10x﹣300=﹣x+1160(元).【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,理解A、B两地提供的吨数就是C、D两地缺少的数量是关键.23.傻羊羊说:“我定义了一种新的运算,叫❈(加乘)运算.”然后它写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+5)❈(+2)=+7;(﹣3)❈(﹣5)=+8;(﹣3)❈(+4)=﹣7;(+5)❈(﹣6)=﹣11;0❈(+8)=8;(﹣6)❈0=6.智羊羊看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)计算(﹣2)❈[0❈(﹣1)]的值;(括号的作用与它在有理数运算中的作用一致)(2)我们知道加法和乘法都有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)【分析】(1)根据❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出(﹣2)❈[0❈(﹣1)]的值是多少即可.(2)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.解:(1)(﹣2)❈[0❈(﹣1)]=(﹣2)❈1=﹣3;(2)加法交换律和加法结合律在有理数的❈(加乘)运算中还适用.由❈(加乘)运算的运算法则可知:(+5)❈(+2)=+7,(+2)❈(+5)=+7,所以(+5)❈(+2)=(+2)❈(+5),即加法交换律在有理数的❈(加乘)运算中还适用.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算律的应用.24.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:a4x4+a3x3+a2x2+a1x+a0=6x,则:(1)取x=0时,直接可以得到a0=0;(2)取x=1时,可以得到a4+a3+a2+a1+a0=6;(3)取x=﹣1时,可以得到a4﹣a3+a2﹣a1+a0=﹣6.(4)把(2),(3)的结论相加,就可以得到2a4+2a2+2a0=0,结合(1)a0=0的结论,从而得出a4+a2=0.请类比上例,解决下面的问题:已知a6(x﹣1)6+a5(x﹣1)5+a4(x﹣1)4+a3(x﹣1)3+a2(x﹣1)2+a1(x﹣1)+a0=4x,求(1)a0的值;(2)a6+a5+a4+a3+a2+a1+a0的值;(3)a6+a4+a2的值.【分析】(1)观察等式可发现只要令x=1即可求出a(2)观察等式可发现只要令x=2即可求出a6+a5+a4+a3+a2+a1+a0的值.(3)令x=0即可求出等式①,令x=2即可求出等式②,两个式子相加即可求出来.解:(1)当x=1时,a0=4×1=4;(2)当x=2时,可得a6+a5+a4+a3+a2+a1+a0=4×2=8;(3)当x=0时,可得a6﹣a5+a4﹣a3+a2﹣a1+a0=0①,由(2)得得a6+a5+a4+a3+a2+a1+a0=4×2=8②;①+②得:2a6+2a4+2a2+2a0=8,∴2(a6+a4+a2)=8﹣2×4=0,∴a6+a4+a2=0.【点评】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.25.如图1.在数轴上点M表示的数为m,点N表示的数为n,点M到点N的距离记为MN.如图2:在数轴上点A表示数a,点B表示数b,点C表示数c,a是3的相反数,b是最大的负整数,c是多项式2x3y2﹣3x+1的次数.(1)a=﹣3,b=﹣1,c=5;(2)若将数轴折叠,使得A点与C点重合,求与点B重合的点表示的数;(3)点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时,点A和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,运动时间为t秒;探究:3BC﹣4AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据相反数,负整数的定义和多项式的次数的定义解答即可;(2)由题意容易得出折叠点表示的数是1,再根据1与﹣1的距离可得答案;(3)分别用含t的式子表示出BC与AB,再进行计算即可.解:(1)∵a是3的相反数,b是最大的负整数,c是多项式2x3y2﹣3x+1的次数,∴a=﹣3,b=﹣1,c=5,故答案为:﹣3,﹣1,5;(2)当﹣3与5重合时,折叠点是1,∴1﹣(﹣1)=2,1+2=3,故与点B重合的点表示的数是3;(3)A:﹣3﹣2t,B:﹣1﹣t,C:5+3t,∴BC=(5+3t)﹣(﹣1﹣t)=6+4t,AB=(﹣1﹣t)﹣(﹣3﹣2t)=2+t,∴3BC﹣4AB=3(6+4t)﹣4(2+t)=10+8t;答:3BC﹣4AB=10+8t,值随着时间的变化而改变.【点评】此题考查了列代数式,数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.。
专题3.9 整体思想求值的六大类型-重难点题型【类型1 整体思想之直接代入】【例1】(2021春•拱墅区校级期中)已知2x=y﹣3,则代数式(2x﹣y)2﹣6(2x﹣y)+9的值为.【变式1-1】(2020秋•越秀区期末)如果x+y=2,则(x+y)2+2x+2y+1=.【变式1-2】(2020秋•丹阳市期末)若代数式x2的值和代数式2x+y﹣1的值相等,则代数式9﹣2(y+2x)+2x2的值是()A.7B.4C.1D.不能确定【变式1-3】(2020秋•耿马县期末)若x﹣2y=3,则2(x﹣2y)﹣x+2y﹣5的值是()A.﹣2B.2C.4D.﹣4【类型2 整体思想之配系数】【例2】(2021•滦南县二模)已知整式2a﹣3b的值是﹣1,则整式1﹣4a+6b的值是()A.3B.2C.1D.﹣1【变式2-1】(2021•北碚区校级开学)若x2﹣3y+6=0,则−12x2+32y﹣9的值为()A.0B.6C.﹣6D.1【变式2-2】(2021•杭州模拟)若2x2﹣3y﹣5=0,则6y﹣4x2﹣6的值为()A.4B.﹣4C.16D.﹣16【变式2-3】(2021•恩平市模拟)已知3x2+2x﹣3的值为6,则2﹣x2−23x的值为.【类型3 整体思想之奇次项为相反数】【例3】当x=1时,多项式ax3+bx﹣2的值为2,则当x=﹣1时,该多项式的值是()A.﹣6B.﹣2C.0D.2【变式3-1】(2020秋•海淀区校级期末)当x=2时,整式ax3+bx﹣1的值等于﹣100,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.100B.﹣100C.98D.﹣98【变式3-2】(2020秋•凤凰县期末)已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=.【变式3-3】(2021•广东模拟)当x=﹣2021时,代数式ax7+bx5+cx3+3的值为7,其中a、b、c为常数,当x=2021时,这个代数式的值是.【类型4 整体思想之赋值】【例4】(2021春•邗江区期中)已知(x﹣1)3=ax3+bx2+cx+d,则a+b+c+d的值为()A.﹣1B.0C.1D.2【变式4-1】(2020秋•邗江区期末)已知(x﹣2)5=ax5+bx4+cx3+dx2+ex+f,求:a+b+c+d+e+f =()A.2B.0C.﹣1D.﹣2【变式4-2】(2020秋•常州期末)已知(x﹣1)2021=a0+a1x1+a2x2+a3x3+…+a2021x2021,则a1+a2+…+a2021=.【变式4-3】(2021春•安丘市月考)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:a4x4+a3x3+a2x2+a1x+a0=6x,则:(1)取x=0时,直接可以得到a0=0;(2)取x=1时,可以得到a4+a3+a2+a1+a0=6;(3)取x=﹣1时,可以得到a4﹣a3+a2﹣a1+a0=﹣6.(4)把(2),(3)的结论相加,就可以得到2a4+2a2+2a0=0,结合(1)a0=0的结论,从而得出a4+a2=0.请类比上例,解决下面的问题:已知a6(x﹣1)6+a5(x﹣1)5+a4(x﹣1)4+a3(x﹣1)3+a2(x﹣1)2+a1(x﹣1)+a0=4x,求(1)a0的值;(2)a6+a5+a4+a3+a2+a1+a0的值;(3)a6+a4+a2的值.【类型5 整体思想之构造整体(一)】【例5】已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【变式5-1】已知a﹣2b=﹣5,b﹣c=﹣2,3c+d=6,求(a+3c)﹣(2b+c)+(b+d)的值.【变式5-2】已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2﹣3a+2+3c的值;【变式5-3】已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.【类型6 整体思想之构造整体(二)】【例6】(2020秋•蜀山区期末)若2a=b+1,c=3b,则﹣8a+b+c的值为()A.﹣2B.2C.﹣4D.4【变式6-1】(2020秋•天心区期末)已知m2+2mn=13,3mn+2n2=21,则2m2+7mn+2n2﹣44的值为.【变式6-2】(2021春•三明期末)已知a﹣3b=2,m+2n=4,求代数式2a﹣6b﹣m﹣2n的值.【变式6-3】(2021秋•大兴区期末)已知:m2+mn=30,mn﹣n2=﹣10,求下列代数式的值:(1)m2+2mn﹣n2;(2)m2+n2﹣7.。
3.3 代数式的值【提升训练】一、单选题1.已知x ﹣2y =4,xy =4,则代数式5xy ﹣3x +6y 的值为( ) A .32B .16C .8D .﹣82.若2,3x y ==,且y x >,则y x 的值为 ( ) A .8B .-8或8C .-8D .6或-63.计算若3x =-,则5x -的结果是( ) A .2-B .8-C .2D .84.对于多项式534ax bx ++,当1x =时,它的值等于5,那么当1x =-时,它的值为( ) A .5-B .5C .3-D .35.已知|a|=2,b 2=25,且ab >0,则a ﹣b 的值为( ) A .7B .﹣3C .3D .3或﹣36.若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式201520172016a b c ++的值为( )A .2014B .2016C .2-或0D .07.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖,如果按图1、图2、图3…的次序铺设地砖,把第n 个图形用图n 表示,那么图2021中的白色小正方形地砖的块数比黑色小正方形地砖的块数多( )A .8089B .8084C .6063D .141478.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .79.按如图所示的运算程序,能使输出的结果为32的是( )A .2x =,4y =B .2x =,4y =-C .4x =,2y =D .4x =-,2y =10.已知:)(2320b a ++-=,则a b 的值为( ) A .-6B .6C .9D .-911.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7 B .18C .5D .912.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7B .9C .-63D .1213.如果a 与b 互为相反数且x 与y 互为倒数,那么2()2a b xy +-的值为( ) A .0B .-2C .-1D .无法确定14.若23a b +=,则多项式241a b +-的值为( ) A .3B .4C .5D .615.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,代数式31px qx ++的值为( ) A .2020B .-2020C .2019D .-201916.若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则201820182019a b c ++的值为( ) A .2019B .2014C .2015D .217.若2x -与()21y -互为相反数,则多项式()222y x y --+的值为( )A .7-B .5C .5-D .13-18.已知:23x y -=;那么代数式22()(3)x y y x x -----的值为( ) A .3B .-3C .6D .919.设代数式212x a A +=+,代数式22ax B -=,a 为常数,x 的取值与A 的对应值如下表:小明观察上表并探究出以下结论:①5a =;①当4x =时,7A =;①当1x =时,1B =;①若A B =,则4x =.其中所有正确结论的编号有( )A .①①B .①①C .①①①D .①①①20.当m 使得关于x 的方程()221(1)30m x m x ---+=是一元一次方程时,代数式3324am bm -+的值为9,则代数式2133a b --的值为( ) A .163-B .-2C .43D .221.若21x y -=-,则342x y +-的值是( ) A .5B .-5C .1D .-122.如果2220x x --=,那么2631x x --的值等于( ) A .5B .3C .-7D .-923.已知2210a b --=,则多项式2242a b -+的值等于( ) A .1B .4C .-1D .-424.已知x 2①3x ①2①那么多项式x 3①x 2①8x +9的值是( ① A .9B .11C .12D .1325.若代数22x 3x +的值为5,则代数式24x 6x 9--+的值是( ) A .4B .-1C .5D .1426.已知a -2b=-2,则4-2a+4b 的值是( ) A .0B .2C .4D .827.若3a b +=,则226a b b -+的值为( ) A .3B .6C .9D .1228.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣729.如果m -n=5,那么-3m+3n -7的值是 A .22B .-8C .8D .-2230.代数式2346x x -+的值为9,则2463x x -+的值为( ) A .7 B .18C .12D .9二、填空题31.已知|a |=6,|b |=8,且a <0,b >0,那么ab 的值为_____. 【答案】-4832.若a ,b 互为相反数,c ,d 互为倒数,e 的绝对值等于3,则2e ﹣3cd +(a +b )2=_____. 33.若2x 2+3x ﹣1=5,则4x 2+6x +1的值为_____.34.已知代数式4323ax bx cx dx ++++,当x =2时,代数式的值为20;当x =-2时,代数式的值为16,当x =2时,代数式423ax cx ++的值为____________;35.当1x =-时,多项式31mx nx ++的值等于2,那么当1x =时,则该多项式的值为________. 三、解答题36.已知210x x +-=,求代数式()()2312x x x +--的值 37.观察下列表格中两个代数式及其相应的值,回答问题:(初步感知)(1)根据表中信息可知:a =______;b =______; (归纳规律)(2)表中25x -+的值的变化规律是:x 的值每增加1,25x -+的值就都减少2.类似地,27x -的值的变化规律是:______; (问题解决)(3)请从A ,B 两题中任选一题作答.我选择______题.A .根据表格反应的变化规律,当x ______时,25x -+的值大于27x -的值.B .请直接写出一个含x 的代数式,要求x 的值每增加1,代数式的值就都减小5,且当0x =时,代数式的值为-7.38.小张去水果批发市场采购苹果,他关注了A 、B 两家苹果铺.这两家苹果品质一样,零售价都为10元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的90%优惠;批发数量超过1000而不超过2100千克,全部按零售价的88%优惠:超过2100千克的按零售价的86%优惠.B家的规定如下表:(1)如果他批发800千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(x在1500以上~2100的范围内),请你分别用含x的代数式表示他在A、B两家批发所需的费用;(3)现在他要批发2000千克苹果,你能帮助他选择在哪家批发更优惠吗?请通过计算说明理由.39.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积(结果保留π);(2)若休闲广场的长为300米,宽为100米,圆形花坛的半径为20米,求广场空地的面积(π取3.14).40.已知a是最小的正整数,b比﹣1大3,c的相反数还是它本身.(1)求出a、b、c的值;(2)计算(2a+3c)×b的值.41.综合与探究.“十一”黄金周期间,齐齐哈尔市华丰家电商城销售一种空调和立式风扇,空调每台定价2800元,立式风扇每台定价1200元.商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台空调送一台立式风扇;方案二:空调和立式风扇都按定价的90%付款.现某客户要到该卖场购买空调5台,立式风扇x台(x>5).(1)若该客户按方案一购买,需付款元,(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=10,通过计算说明此时按哪种方案购买较为合算?(3)当x=10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?42.树的高度和生长年数有关,测得某棵树的有关数据如下表:(树原来高90cm)(1)若这棵树按照上表中的规律继续生长,请填出第4年这棵树达到的高度;(2)请用含a的代数式表示树的高度h;(3)用你得到的代数式求出这棵树生长了11年后达到的高度.43.开学发新书,两摞规格相同的数学新课本如图所示,整齐地叠放在课桌上,请根据图中所给的数据信息,解答下列问题:(1)每本数学新课本的厚度为厘米;(2)当数学新课本数为x(本)时,请直接写出同样叠放在桌面上的一摞数学新课本最上面高出地面的距离(用含x的代数式表示);(3)如果有一个班级的学生每人要领取1本数学新课本,全班的数学新课本放在桌面上,班级中23的学生领取后,桌上剩余的数学新课本整齐地摆放成一摞,课本最上面高出地面的距离为96.8厘米,你能从中知道该班学生的人数吗?请说出理由.44.小明房间窗户的窗帘如图所示,它是由两个四分之一圆组成(半径相同).(1)用代数式表示窗户能射进阳光的面积S是(结果保留π);(2)当31,22a b==时,求窗户能射进阳光的面积是多少(取3π≈)?45.某商店元旦期间举行促销优惠活动,当天到该商店购买商品有两种方案:方案一,用50元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品标价的八折优惠; 方案二,若不购买会员卡,则购买商店内任何商品,一律按商品标价的九折优惠; 已知小颖元旦前不是该商店的会员,若小颖购买商店里标价为x 元的商品, 回答下列问题:(1)若小颖不购买会员卡,所购商品的标价为120元时,实际应支付多少元?(2)若小颖购买商品的标价为x 元,分别写出两种方案下实际应支付多少元?(用含x 的代数式表示) (3)若购买标价为800元的商品,小颖选择哪种方案更加省钱,能省多少钱?46.公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若 1.5a =,2b =,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?47.有一个整数x ,它同时满足以下的条件: ①小于π; ①大于443-;①在数轴上,与表示1-的点的距离不大于3.(1)将满足的整数x 代入代数式()2217x -++,求出相应的值; (2)观察上题的计算结果,你有什么发现?将你的发现写出来.48.某校举办了主题为“畅想十四五共筑新征程”的2021年元旦晚会,七年级一班同学利用彩纸条自己制作彩带.将一些长30厘米,宽10厘米的长方形纸条,按图所示方法粘合起来,粘合部分的宽为3厘米.(1)求8张彩纸条粘合后的彩带总长度为多少厘米?(2)设x 张彩纸条粘合后的彩带总长度为y 厘米,请写出y 与x 之间的表达式? (3)求当30x =时,彩带一面的面积.49.已知x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,求(x +y )﹣abm 的值.50.如图所示是一个长为x 米,宽为y 米的长方形休闲广场,在它的四角各修建一块半径均为r 米的四分之一圆形的花坛(阴影部分),其余部分作为空地. (1)用代数式表示空地的面积;(2)若长方形休闲广场的长为100米,宽为40米,四分之一圆形花坛的半径为15米,求长方形广场空地的面积.(π取3)51.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则 (1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到42a 22a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654654(1)(1)(1)a x a x a x -+-+-323210(1)(1)(1)4a x a x a x a x +-+-+-+=. 求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值; (3)642a a a ++的值.52.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案(客户只能选择其中一种): 方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条()20x >.(1)若该客户按方案一购买,需付款________元;若该客户按方案二购买,需付款_________元.(用含x 的代数式表示)(2)若30x =,通过计算说明此时按哪种方案购买较为合算. 53.如图,长方形的长为a ,宽为2a,用整式表示图中阴影部分的面积,并计算当a =4时阴影部分的面积(π取3.14).54.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.(1)若每份套餐售价定为9元,则该店每天的利润为 元;若每份套餐售价定为12元,则该店每天的利润为 元;(2)设每份套餐售价定为x 元,试求出该店每天的利润(用含x 的代数式表示,只要求列式,不必化简); (3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.55.如图,某长方形广场的四个角都有一块半径为r 米的四分之一圆形的草地,中间有一个半径为r 米的圆形水池,长方形的长为a 米,宽为b 米.(1)整个长方形广场面积为 ;草地和水池的面积之和为 ;(2)若a =70,b =50,r =10,求广场空地的面积(π取3.142,计算结果精确到个位).56.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?57.某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:(1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x 单()500x >,求他这个月的工资总额(用含x ,m 的代数式表示).58.阳光中学准备在网上订购一批某品牌篮球和跳绳,在查阅天猫网店后发现篮球每个定价120元,跳绳每条定价25元.现有甲,乙两家网店均提供包邮服务,并提出了各自的优惠方案:甲网店:买一个篮球送一条跳绳;乙网店:篮球和跳绳都按定价的90%付款.已知要购买篮球40个,跳绳x 条()40x >.()1若在甲网店购买,需付款 元;若在乙网店购买,需付款 元;(用含x 的代数式表示)()2若80x =时,请你通过计算,说明此时在哪家网店购买较为合算?()3若80x =时,你能给出一种更为省钱的购买方案吗?写出你的购买方法,并计算需要付款的金额. 59.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm 的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm ,请用含a ,b 的代数式表示出无盖长方体的容积(可不化简); (3)若正方形纸片的边长为18a =cm ,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最大值时,剪去的小正方形的边长可能是多少?(保留整数位)60.小林同学元旦节期间参加社会实践活动,从电脑城以批发价每个40元的价格购进100个充电宝,然后每个加价m 元到市场出售.由于元旦节三天假期快结束了,小林同学在成功售出60个充电宝后,决定将剩余充电宝按售价的九折出售,并很快全部售完.(1)小林元旦节充电宝的总销售额是多少?(2)若m=10,小林同学实际销售完这批充电宝的利润率为多少?(利润率=利润÷进价×100%)。
2016国考试行测数学题技巧:特值法特值法就是通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法。
这个特殊值应该满足的条件:首先,无论这个量的值是多少,对最终结果所要求的量的值没有影响;其次,这个量应该要跟最终结果所要求的量有相对紧密的联系;最后,这个量在整个题干中给出的等量关系是一个不可或缺的量。
特值法在解决应用题时以其简单的思维和便捷的解题过程深受广大考生青睐,中公教育专家在本文中结合真题对“特值法”进行全面介绍,以便各位考生能快速准确地利用特值法解决比例相关问题。
一、特值法题目中没有涉及某个具体量的大小,并且这个量大小并不影响最终结果的时候,我们可以利用特值法,进而简化计算。
这里中公教育专家提醒考生一定要注意,特值法可以根据题目的实际需要,选取最有利于快速计算的任何数值。
二、适用题型• 从题型上看:特值法广泛应用于工程问题、行程问题、价格问题、浓度问题等。
• 从题目特点上看:符合下列特点之一的可用特值法:特点一、题目中出现比例关系,没有或者很少涉及到具体实值;特点二、题目中出现不变量或相同量,进行多次不同的分配。
三、真题讲解【例1】2010年某种货物的进口价格是15元/公斤,2011年该货物的进口量增加了一半,进口金额增加了20%。
问2011年该货物的进口价格是多少元/公斤?( )A. 10B. 12C. 18D. 24【答案】B【中公解析】该题涉及所有的数据中出现比例关系,属于特点一,因此用特值法解决。
设2010年该货物的进口量为2,则2010进口金额为15×2=30;进口量增加一半、进口金额增加了20%后,2011年该货物的进口量为2×(1+1/2)=3,2011进口金额为30×(1+20%)=36;所以最后单位进口价格=36÷3=12,因此答案选C。
【例2】矩形一边增加10%,与它相邻的一边减少10%,那么矩形面积()A.增加10%B.减少10%C.不变D.减少1%【答案】D【解析】该题涉及所有的数据都是百分数,属于特点一。
专题05整式化简求值的七种常用方法题型01直接代入法【典例分析】【例1-1】(2024·七年级上海南省·)1.当1m =-时, 代数式3m +的值为( )A .2B .2-C .4D .4-【例1-2】(23-24七年级上·四川成都·阶段练习)2.设a 为最小的正整数,b 和a 互为相反数,c 是绝对值最小的有理数,则a b c -+的值为 .【例1-3】(23-24七年级上·甘肃天水·阶段练习)3.当2a =,1b =-,3c =-时,求下列各代数式的值:(1)24b ac -;(2)222a ab b -+.【变式演练】【变式1-1】(22-23七年级上·浙江温州·期中)4.若43x =,则代数式43x -的值为( )A .1-B .0C .1D .2【变式1-2】(23-24七年级上·内蒙古乌兰察布·期中)5.已知1m =-,则21m --的值为 .【变式1-3】(22-23七年级上·海南海口·期中)6.当2,3a b ==-时,求下列代数式的值:(1) ()2a b -;(2)222a ab b -+.题型02化繁为简法【典例分析】【例2-1】(23-24七年级上·江苏无锡·期中)7.已知223m mn +=,2235n mn +=,则代数式222136m mn n ++的值是( )A .18B .19C .20D .21【例2-2】(23-24七年级上·四川遂宁·期末)8.当12024x =-,2024y =时,代数式()()225820324xy x x xy ---+的值为 .【例2-3】(23-24七年级上·浙江·期末)9.先化简,再求值:()2242333a ab a ab æö+--ç÷èø,其中3a =,16b =-.【变式演练】【变式2-1】(23-24七年级上·辽宁鞍山·期中)10.当1a =,1b =-时,代数式()2221a b a b ++++的值为( )A .3B .1C .0D .2-【变式2-2】(23-24七年级上·山东菏泽·期末)11.当 23a =-时,代数式()()32326522a a a a a -+--的值为 .【变式2-3】(23-24七年级上·宁夏银川·阶段练习)12.已知代数式2232A x xy y =++,2B x xy x =-+.(1)求2A B -;(2)当1x =-,2y =时,求2A B -的值;题型03定义法【典例分析】【例3-1】(22-23七年级上·云南·期中)13.若单项式23y m n 和单项式32x m n -是同类项,则x y +的值是( )A .5B .6C .7D .8【例3-2】(23-24七年级上·云南曲靖·阶段练习)14.已知多项式31231362m x y xy x +-+-+是六次四项式,单项式523n m x y -的次数与这个多项式的数相同,则m n +的值为 .【例3-3】(22-23七年级上·四川眉山·期中)15.已知单项式134a x y +与单项式225b x y --是同类项,c 等于多项式253mn m n ---的次数.(1)a =_____,b =______,c =______;(2)若关于x 的二次三项式2ax bx c ++的值是3,求代数式22x 6x 2020++的值.【变式演练】【变式3-1】(23-24七年级上·山西大同·阶段练习)16.若122n a b +与337m a b +-的和是单项式,则m n -的值是( )A .1-B .5C .3-D .1【变式3-2】(23-24七年级上·陕西榆林·期末)17.若关于x ,y 的多项式313222m x x y nx y +++的次数与关于a ,b 的单项式434a b -的次数相同,且单项式的系数与多项式中次数为4的项的系数相同,则mn 的值为 .【变式3-3】(23-24七年级上·陕西咸阳·阶段练习)18.已知多项式:2244A x xy y =-+,22313112A B x xy y -=--.(1)求多项式B ;(2)若x 是单项式26m n -的系数,y 是12-的倒数,求B 的值.题型04非负性法【典例分析】【例4】(23-24七年级上·四川泸州·阶段练习)19.已知()2350a b ++-=,求()20232a b +的值.【变式演练】【变式4-1】(23-24七年级上·湖南湘西·期中)20.若()2120x y ++-=,则x y +等于( )A .1B .1-C .3D .3-【变式4-2】(23-24七年级上·重庆长寿·期中)21.如果()2120a b -++=,则()2a b +的值是 .【变式4-3】(22-23七年级上·内蒙古巴彦淖尔·阶段练习)22.若 |2||3||5|0x y z -+++-=.计算:(1)x ,y ,z 的值;(2)x y z ++ 的值.题型05整体代入法1、直接整体代入法【典例分析】【例5】(23-24七年级上·江苏徐州·阶段练习)23.已知2023a c +=-,()2022b d +-=,则()a b c d +++-= .【变式演练】【变式5-1】(23-24七年级上·安徽合肥·期末)24.已知1m n -=,2p q -=-,则()()m p n q ---的值是 .【变式5-2】(23-24七年级上·贵州黔南·期末)25.已知2440a a -+=,则()21462a a -+= .2、变形后整体代入【典例分析】【例6】(23-24七年级上·浙江宁波·期末)26.已知2a b -=,则202433a b -+的值为 .【变式演练】【变式6】(23-24七年级上·重庆綦江·期末)27.已知210a a +-=,则代数式2442024a a ++的值是 .3、化简后整体代入【例7】(23-24七年级上·浙江金华·期末)28.求值:(1)()()226924 4.5a ab a ab --++++,其中2,63a b =-=.(2)已知214a bc +=,226b bc -=-,求22345a b bc +-的值.【变式演练】【变式7-1】(23-24七年级上·四川成都·期中)29.已知4a b +=,2ab =,求()()()21932124332a ab ab a ab b -++--+值.【变式7-2】(23-24七年级上·甘肃兰州·期中)30.已知34723,A x xy y B y xy x =-+=+-.(1)化简:A B -;(2)当12x y +=,2xy =-时,求A B -的值.4、特殊值法整体代入【例8-1】(22-23七年级上·四川成都·期末)31.赋值法是给代数式中的某些字母赋予一定的特殊值,从而解决问题的一种方法,已知()2223x ax bx c -=++.例如:给x 赋值使0x =﹐则可求得9c =;给x 赋值使1x =,则可求得1a b c ++=;给x 赋值使=1x -,则可以求得代数式a b -的值为 .【例8-2】(23-24七年级上·福建福州·期中)32.赋值法是给代数式中的某些字母赋予一定的特殊值,从而解决问题的一种方法.已知等式()4432012341x m x m x m x m x m -=++++对x 取任意有理数都成立,例如给x 赋值0x =时,可求得41m =.请再尝试给x 赋其它的值并结合学过的知识,求得024m m m ++的值为 .【例8-3】(24-25七年级上·全国·假期作业)33.赋值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则:(1)取0x =时,直接可以得到00a =;(2)取1x =时,可得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-.(4)把(2),(3)的结论相加,就可以得到4202220a a a ++=,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【变式演练】【变式8-1】(23-24七年级上·安徽滁州·期末)34.给等式中的某些字母赋予一定的特殊值,可以解决一些问题.比如对于等式()223x ax bx c +=++,当0x =时,可得23c =,计算得9c =;请你再给x 赋不同的值,可计算得42a b += .【变式8-2】(2023七年级上·全国·专题练习)35.赋值法是给代数式中的某些字母赋予一定的特殊值.从而解决问题的一种方法,已知()66543221x ax bx cx dx ex fx g -=++++++,给x 赋值使0x =.得到()61g -=,则1g =;尝试给x 赋不同的值,则可得b d f g ----= .题型06取值“无关”法【典例分析】【例9-1】(23-24七年级上·安徽宣城·期末)36.已知:2253A a ab b =-+,2468B a ab a =++,若代数式的2A B -的值与a 无关,则此时b 的值为( )A .12-B .0C .2-D .38-【例9-2】(23-24七年级上·江苏泰州·阶段练习)37.已知关于x 的方程2262kx m x nk +=-+的解与k 无关,则63m n +的值是 .【例9-3】(23-24七年级上·湖北省直辖县级单位·阶段练习)38.已知22221,A x xy y B x xy =++-=+.(1)当1,2x y =-=时,求2A B -的值;(2)若24A B -的值与y 无关,求x 的值.【变式演练】【变式9-1】(23-24七年级上·山东烟台·期末)39.若多项式233x bx y --与2231ax x y -+-的差与x 的取值无关,则a b -的值为( )A .3-B .1-C .3D .2【变式9-2】(22-23七年级上·浙江·期末)40.若多项式()()22262351x ax y bx x y +-+--+-的值与字母x 的取值无关,则a = ;b = .【变式9-3】(23-24七年级上·贵州黔东南·阶段练习)41.已知: 22221A a ab a =+--,21B a ab =-+-.(1)化简:A B -;(2)若2A B +的值与a 的取值无关,求b 的值.题型07数轴法【典例分析】【例10-1】(23-24七年级上·湖南长沙·期中)42.(1)已知有理数a ,b ,c 在数轴上对应的点如图所示,化简:||||||b a a c c b -+---;(2)已知325A x x =-,2116B x x =-+,求当1x =时,求A B -的值.【例10-2】(23-24七年级上·宁夏吴忠·阶段练习)43.如图,点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB a b =-,解答下列问题:(1)数轴上表示3和7的两点之间的距离是______,数轴上表示2和1-的两点之间的距离是______;(2)数轴上表示x 和1的两点之间的距离是______.(用含x 的式子表示)(3)若1x =,求13x x -+-的值.【例10-3】(23-24七年级上·安徽亳州·期末)44.已知有理数a ,b ,c ,d 在数轴上的位置如图所示.(1)化简:d b c c a +--+;(2)若a ,b 互为相反数,c ,d 互为倒数,有理数m 在数轴上对应的点M 到原点的距离等于1,求()202313a b mcd ++-的值.【变式演练】【变式10-1】(23-24七年级上·四川成都·期中)45.如图,A ,B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左边,14120a a b ab -=+=<,,.(1)求出a ,b 的值;(2)已知22222233A a ab b B a ab b +=--=+,,求()()432A A B A B +--+éùëû的值.【变式10-2】(22-23七年级上·贵州黔西·期中)46.已知有理数a ,b ,c 在数轴上对应的点的位置如图所示,且a c =,b 的倒数等于它本身.(1)求552c a c b a+-+的值.(2)求2a b a b c b -++--的值.【变式10-3】(22-23七年级上·辽宁抚顺·期中)47.(1)已知a ,b ,c 三个数在数轴上对应的点如图所示,化简:2b a a b a c c---+--(2)先化简,再求值:()()()22222345x y xy x xy x xy ----+++,其中=1x -,2y =.1.A【分析】本题主要考查了代数式求值,正确计算是解题的关键.【详解】解:把1m =-代入3m +中得3132m +=-+=,故选:A .2.2【分析】本题主要考查有理数,相反数,绝对值等知识点,由a 为最小的正整数,b 和a 互为相反数,c 是绝对值最小的有理数,可分别得出a 、b 、c 的值,代入计算可得结果,能正确判断有关概念是解题的关键.【详解】∵a 为最小的正整数,∴1a =,∵b 和a 互为相反数,∴1b =-,∵c 是绝对值最小的有理数,∴0c =,∴()1101102a b c -+=--+=++=,故答案为:2.3.(1)25;(2)9.【分析】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.(1)把2a =,1b =-,3c =-代入24b ac -计算即可;(2)把2a =,1b =-代入222a ab b -+计算即可.【详解】(1)当2a =,1b =-,3c =-时,原式()()2142312425=--´´-=+=;(2)当2a =,1b =-时,原式()()22144221219=-´´-+=++=-.4.B【分析】本题考查了代数式求值,掌握有理数的运算是解题的关键.把x 的值代入代数式求解.【详解】解:当43x =,43x -4433=-´44=-0=,故选:B5.1【分析】本题考查求代数式值,直接把m 值代入计算即可.【详解】解:当1m =-时,()()21211211m --=-´--=-=,故答案为:1.6.(1)25(2)25【分析】本题考查了代数式的值,根据已知,代入计算即可.(1)代入计算即可.(2)代入计算即可.【详解】(1)当2,3a b ==-时,()()22223525a b -=--==éùëû.(2)当2,3a b ==-时,()()2222222233412925a ab b -+=-´´-+-=++=.7.D【分析】本题考查了整式的加减和用代数式求值,关键将整式变形为含有所给数值的代数式.用提取公因式的方法将代数式进行变形,再将数值代入求值.【详解】解:222136m mn n ++222496m mn mn n =+++()()2222323m mn n mn =+++,把223m mn +=,2235n mn +=代入,则:()()2222323m mn n mn +++2335=´+´21=,故选:D .8.20232024-【分析】此题考查了整式加减的化简求值,先去括号并合并同类项后,把字母的值代入化简结果计算即可.【详解】解:()()225820324xy x x xy ---+225820324xy x x xy-=-+22024xy x =+当12024x =-,2024y =时,原式2112024202420242024æö=-´+´-ç÷èø112024=-+20232024=-故答案为:20232024-9.210ab a -;14-【分析】先去括号,合并同类项化简,后代入求值即可,本题考查了整式的化简求值,熟练掌握整式加减运算法则是解题的关键.【详解】()2242333a ab a ab æö+--ç÷èø222634a ab a ab=+-+210ab a =-,当3a =,16b =-,原式2110336æö=´´--ç÷èø59=--14=-.10.D【分析】本题考查了整式加减的化简求值,先将式子去括号,再合并同类项,最后将a ,b 的值代入求解即可.【详解】解:()2221a b a b ++++2241a b a b =++++361a b =++,当1a =,1b =-时,原式()316112=´+´-+=-,故选:D .11.89-【分析】本题考查了整式化简求值:先把()()32326522a a a a a -+--去括号,合并同类项,得225a a --,把23a =-代入,化简计算,即可作答.【详解】解:依题意,()()3233232265222652425a a a a a a a a a a a a -+--=---+=--把23a =-代入上式225a a --,得22224208252533399a a æöæö--=-´--´-=-=-ç÷ç÷èøèø故答案为:89-12.(1)522xy x y-+(2)4-【分析】本题考查整式的加减运算,代数式求值.正确的计算,是解题的关键.(1)去括号,合并同类项,进行计算即可;(2)将字母的值代入代数式的值,进行计算即可.【详解】(1)解:∵2232A x xy y =++,2B x xy x =-+,∴()()2222322A B x xy y x xy x -=++--+,22232222x xy y x xy x =++-+-,522xy x y =-+;(2)当1x =-,2y =时,原式 522xy x y =-+,()()5122122=´-´-´-+´,1024=-++,4=-.13.A【分析】本题考查了同类项的定义,代数式求值,根据同类项的定义求出x 和y 的值,再代入到x y +中计算即可求解,根据同类项的定义求出x 和y 的值是解题的关键.【详解】解:∵单项式23y m n 和单项式32x m n -是同类项,∴2x =,3y =,∴235x y +=+=.故选:A .14.5【分析】本题考查多项式与单项式,根据题意求出m 与n 的值,然后代入所求式子即可求出答案.解题的关键是熟练运用多项式的次数与单项式的次数的概念.单项式中所有字母的指数的和叫做单项式的次数,多项式中次数最高项的次数叫做多项式的次数.【详解】解:由题意可知:136m ++=,56n m +-=,∴2m =,3n =,∴235m n +=+=.故答案为:515.(1)1,3,2(2)2022【分析】本题考查了同类项的知识及多项式的有关概念,求代数式的值;(1)根据同类项的概念及多项式的有关概念求解;(2)把(1)中a 、b 、c 的值代入2ax bx c ++求出231x x +=,整体代入,即可求代数式22x 6x 2020++的值.【详解】(1)解:∵单项式134a x y +与单项式225b x y --是同类项,∴21,12b a -=+=解得:1,3a b ==,∵c 等于多项式253mn m n ---的次数∴2c =,故答案为:1,3,2.(2)解:依题意,2323x x ++=,∴231x x +=∴()22262020232020220202022x x x x ++=++=+=16.C【分析】本题主要考查单项式以及同类项的定义,熟练掌握同类项的定义是解题的关键.根据题意得到122n a b +与337m a b +-是同类项,求出m n 、的值,得到答案.【详解】解:由于122n a b +与337m a b +-的和是单项式,\122n a b +与337m a b +-是同类项,13,23n m \+==+,1,2m n \=-=,123m n \-=--=-.故选:C .17.12-【分析】本题考查单项式的系数和次数,多项式的项和次数,掌握定义即可解题,直接利用多项式的项和次数以及单项式的系数与次数确定方法分别得出m ,n 的值进而得出答案.【详解】解:Q 单项式434a b -的系数为4-,次数为7次,又Q 多项式313222m x x y nx y +++的项为:3x 、132m x y +、22nx y ,其次数分别为3次、()4m +次、4次.Q 关于x ,y 的多项式313222m x x y nx y +++的次数与关于a ,b 的单项式434a b -的次数相同,47m \+=,解得3m =,Q 单项式的系数与多项式中次数为4的项的系数相同,4n \=-,()3412mn \=´-=-,故答案为:12-.18.(1)225x xy y --+(2)28-【分析】本题考查了整式的加减,单项式的系数,倒数,求代数式的值,熟练掌握整式的加减运算是解题的关键,(1)根据题意,运用整式的加减运算法则计算求解即可.(2)根据题意,确定x 的值,y 得值,代入计算求解即可.【详解】(1)∵2244A x xy y =-+,22313112A B x xy y -=--∴()22313112B A x xy y =---()()222234413112x xy y x xy y =-+---22221212313112x xy y x xy y =-+-++225x xy y =--+.(2)∵x 是单项式26m n -的系数,y 是12-的倒数,∴6x =-,2y =-,∴()()()()2222662525B x xy y =------+´--=+36122028=--+=-.19.1-【分析】本题考查了非负数的性质,代数式求值,有理数的乘方.根据绝对值和偶次方的非负性,求出a 、b 的值,再代入计算即可.【详解】解:()2350a b ++-=Q ,30a \+=,50b -=,3a \=-,5b =,()()()220223023023235121a b \=´-+=-=-éùë+û.20.A 【分析】本题考查了代数式求值、偶次方的非负性、绝对值的非负性、解一元一次方程,熟练掌握偶次方的非负性和绝对值的非负性是解题关键.先根据偶次方的非负性、绝对值的非负性求出x ,y 的值,再代入计算即可得.【详解】解:∵()2120x y ++-=,∴10x +=,20y -=,∴1x =-,2y =,∴121x y +=-+=,故选:A .21.1【分析】本题主要考查了非负数的性质,代数式求值,根据几个非负数的和为0,那么这几个非负数的值都为0得到1020,a b -=+=,则12a b ==-,,据此代值计算即可得到答案.【详解】解:∵()2120a b -++=,()22010a b -+³³,,∴()2120a b -+==,∴1020,a b -=+=,∴12a b ==-,,∴()()()2221211a b +=-=-=,故答案为:1.22.(1)2x =,=3y -,5z =;(2)4【分析】本题主要考查了非负数的性质.(1)根据非负数的性质“三个非负数相加,和为0,这三个非负数的值都为0”列出三元一次方程组,即可解出x 、y 、z 的值;(2)将(1)中求出的x 、y 、z 的值分别代入,先根据绝对值的性质去掉绝对值的符号,再运用有理数加法法则计算即可.【详解】(1)解:由题意,得203050x y z -=ìï+=íï-=î,解得235x y z =ìï=-íï=î.即2x =,=3y -,5z =;(2)解:当2x =,=3y -,5z =时,2354x y z ++=-+=.23.1-【分析】本题主要考查了代数式求值,直接利用代数式的计算法则进行计算.【详解】解:2023a c +=-Q ,()2022b d +-=,()a b c d \+++-()[()]a c c d =+++-20232022=-+1=-.故答案为:1-.24.3【分析】本题考查了代数式求值,将代数式化简为()()m n p q ---,将已知等式代入,即可求解.【详解】解:∵1m n -=,2p q -=-,∴()()m p n q ---=()()m n p q ---()12123=--=+=,故答案为:3.25.4【分析】本题考查了代数式求值,解题的关键是将2440a a -+=变形为244a a -=-.将2440a a -+=变形为244a a -=-,再代入到()21462a a -+进行计算即可得.【详解】解:2440a a -+=∴244a a -=-∴()()211464626422a a -+=´-+=-+=,故答案为:4.26.2018【分析】本题主要考查了代数式求值,利用整体代入的思想是解题的关键.直接把2a b -=整体代入所求式子中进行求解即可.【详解】∵2a b -=,∴()20243320243202462018a b a b -+=-+=-=.故答案为:2018.27.2028【分析】本题考查代数式求值,涉及整体代入求代数式值,根据所求代数式与条件之间的关系,代入求值即可得到答案,掌握整体代入求值是解决问题的关键.【详解】解:Q 210a a +-=,()224444a a a a \+=+=,\2442024a a ++420242028=+=,故答案为:2028.28.(1)214a ab +,5559-(2)18【分析】此题考查了整式的加减运算以及化简求值,解题的关键是熟练掌握整式的加减运算法则.(1)首先根据整式的加减运算法则化简,然后代入求解即可;(2)首先根据整式的加减运算法则进行变形,然后整体代入求解即可.【详解】(1)解:()()226924 4.5a ab a ab --++++2269289a ab a ab =-+-+++214a ab=+∵2,63a b =-=, ∴原式2224514656553399æöæö=-+´-´=-=-ç÷ç÷èøèø(2)解:22345a b bc+-()()22342a bc b bc =++-()31446=´+´-29.()12a b ab -+-,50-【分析】本题主要考查整式的混合运算,化简求值,根据整式的乘法展开,再合并同类项,代入求值即可求解,掌握整式的混合运算法则是解题的关键.【详解】解:()()()21932124332a ab ab a ab b -++--+626412a ab ab a ab b=-++---1212a ab b=---()12a b ab =-+-,∵4,2a b ab +==,∴原式124250=-´-=-.30.(1)666x y xy+-(2)15【分析】本题考查整式加减混合运算和代数式求值,涉及去括号法则、合并同类项,掌握整式混合运算法则以及代数式求值的题型方法是解决问题的关键(1)根据题意,先去括号,再合并同类项,运用整式加减运算法则求解即可;(2)由(1)中所求结果,根据已知条件恒等变形后代值求解即可得到答案.【详解】(1)解:Q 34723,A x xy y B y xy x =-+=+-,A B\-()34723x xy y y xy x =-+-+-34723x xy y y xy x=-+--+666x y xy =+-;(2)解:由(1)知A B -666x y xy =+-,当12x y +=,2xy =-时,666x y xy +-()66x y xy=+-()16622=´-´-15=.31.16【分析】给x 赋值使0x =﹐则可求得9c =;给x 赋值使=1x -,则可求得()223a b c -+=--,然后把9c =代入即可计算.【详解】解:给x 赋值使0x =﹐则()23c -=,解得9c =,给x 赋值使=1x -,则()223a b c -+=--,∴925a b -+=,∴=16a b -.故答案为:16.【点睛】本题考查了代数式求值,理解赋值法的意义和所给算式的特点是解题的关键.32.8【分析】给x 赋值,得出当1x =时和当1x =-时的等式,将两式相加,即可求解.【详解】解:当1x =时,012340m m m m m ++++=①,当1x =-时,0123416m m m m m +-=+-②,+①②得:02462221m m m =++,∴0248m m m +=+,故答案为:8.【点睛】本题主要考查了求代数式的值,整式的加减,解题的关键是理解题意,得出当1x =时和当1x =-时的等式,掌握整式的加减混合运算的运算法则.33.(1)4(2)8(3)0【分析】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.(1)观察等式可发现只要令1x =,即可求出0a 的值;(2)观察等式可发现只要令2x =即可求出6543210++++++a a a a a a a 的值.(3)令0x =即可求出等式①,令2x =即可求出等式②,两个式子相加即可求出来.【详解】(1)解:当1x =时,0414a =´=;(2)解:当2x =时,可得6543210428a a a a a a a =++++´+=+;(3)解:当0x =时,可得65432100+-++=--a a a a a a a ①,由(2)得6543210428a a a a a a a =++++´+=+②;+①②得:406282222++=+a a a a ,()64228240a a a \++=-´=,6420=\++a a a .34.16【分析】本题考查代数式求值,解题的关键是掌握赋值法的意义,根据题意,当x =0时,9c =,给x 赋值,使x =2,则2542a b c =++,再把c 代入,即可.【详解】由题意得:当x =0时,9c =,给x 赋值,使得x =2,则()22342a b c +=++,∴2542a b c =++,∴25429a b =++,∴4216a b +=,故答案为:16.35.363【分析】本题主要考查赋值法来求得代数式的值,解题过程中要注意通过观察所求式子来确定需要赋的值.利用赋值法来求得正确答案.【详解】解:依题意可知1g =,令1x =,得1a b c d e f g =++++++①,令=1x -,得63a b c d e f g =-+-+-+②,由-②①得364b d f ---=,所以3641363b d f g ----=-=.故答案为:363.36.A【分析】本题主要考查了整式的化简,先将含a 的项合并,并将其余字母看成常数并整理,再根据题意求出b 的值.【详解】解:∵2253A a ab b =-+,2468B a ab a =++,∴()()2222253468A B a ab b a ab a -=-+-++224106468a ab b a ab a=-+---1668ab b a=-+-()1686b a b =--+;∵代数式的2A B -的值与a 无关,∴1680b --=解得:12b =-,故选:A .37.18【分析】本题考查了一元一次方程的解,将原方程变形为()2622x nk x m -=--,再根据关于x 的方程2262kx m x nk +=-+的解与k 无关,则20x n -=,6220x m --=,分别表示m ,n 关于x 的等式,代入63m n +求值即可.【详解】解:∵2262kx m x nk +=-+,∴()2622x nk x m -=--,∵关于x 的方程2262kx m x nk +=-+的解与k 无关,∴20x n -=,6220x m --=,∴2n x =,3m x =-,∴63186618m n x x +=-+=,故答案为:18.38.(1)5(2)2【分析】本题考查了整式的加减—化简求值,掌握去括号法则,合并同类项法则把整式正确化简是解决问题的关键.(1)根据题意,列出算式,先去括号,再合并同类项,最后将1,2x y =-=代入计算即可;(2)由(1)知212x A y B y +---=,根据()()2422221A B A B y x -=-=---,再根据24A B -的值与y 无关,令20x -=,即可求解.【详解】(1)解:Q 22221,A x xy y B x xy =++-=+,\()()2222212A B x xy y x xy -=++--+2222212x xy y x xy++---=21xy y +--=;当1,2x y =-=时,原式()122215=--´+´-=;(2)解:Q 22221,A x xy y B x xy =++-=+,由(1)知212x A y B y +---=,\()2422A B A B -=-242xy y =-+-()222y x =---,Q 24A B -的值与y 无关,20x \-=,2x \=.39.D【分析】本题考查整式加减中的无关型问题,合并同类项后,根据多项式233x bx y --与2231ax x y -+-的差与x 的取值无关,得到含x 的项的系数为0,进行求解即可.【详解】解:()2322331x bx y ax x y ----+-2322331x bx y ax x y =+----+()()2323311a x b x y y =-+---+,∵差与x 的取值无关,∴30,10a b -=-=,∴3,1a b ==,∴2a b -=;故选D .40. 3- 1【分析】本题主要考查了代数式的值与某字母的取值无关.解题的关键是熟练掌握去括号法则,整式加减运算法则.先根据整式加减运算法则将()()22262351x ax y bx x y +-+--+-变形为22(1)+(3)67b x a x y -+-+,再根据多项式的值与字母x 的取值无关得出10b -=,30a +=,求出a 、b 的值即可.【详解】∵()()22262351x ax y bx x y +-+--+-22262351x ax y bx x y =+-+-+-+22(1)+(3)67b x a x y =-+-+的值与x 的取值无关,∴10b -=,30a +=,∴3a =-,1b =,故答案为:3-,1.41.(1)232a ab a+-(2)12【分析】本题考查了整式加减,整式加减的无关型问题,这里与a 的取值无关即含a 的项的系数为0,据此来求解;(1)根据整式的加减计算法则求解即可;(2)先求出2A B +,根据+2A B 的值与a 的取值无关,求出的式子中含a 的项的系数为0,据此求解即可.【详解】(1)解:A B-()2222211a ab a a ab =+----+-22222a a ab ab a=++--232a ab a=+-(2)解:2A B+()22222121a ab a a ab =+--+-+-222222212a a ab ab a =-++---423ab a =--2(21)3a b =--根据题意可得:210b -=12b =42.(1)22a b -+;(2)0【分析】本题考查整式的加减-化简求值、数轴、绝对值,解题的关键是:(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的意义化简,去括号合并即可得到结果;(2)先化简A B -,然后把1x =代入求值.【详解】解:(1)由数轴可得:0a b c <<<,且a c b >>,∴0b a ->,0a c -<,0c b ->,||||||b a ac c b -+---()()()b a ac c b =-----b a a c c b=--+-+22a b =-+;(2)A B-()()3225116x x x x =---+3225116x x x x =--+-326116x x x =-+-,当1x =时,原式3216111160=-´+´-=.43.(1)4,3(2)1x -(3)2【分析】本题考查了数轴,绝对值的性质,代数式求值,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.(1)根据两点间距离的分别列式计算即可得解;(2)根据两点间距离的分别列式计算即可得解;(3)将1x =代入13x x -+-求解即可.【详解】(1)734-=,∴数轴上表示3和7的两点之间的距离是4,()21213--=+=∴数轴上表示2和1-的两点之间的距离是3;(2)数轴上表示x 和1的两点之间的距离是1x -;(3)当1x =时,131113022x x -+-=-+-=+=.44.(1)d b a-++(2)2-或4-【分析】本题考查绝对值化简,相反数定义,倒数定义,代数式运算,数轴等.(1)根据题意利用数轴化简绝对值;(2)根据相反数及倒数定义计算出代数式的值即可.【详解】(1)解:∵根据数轴得知:0c b d a <<<<,c a >,∴0b c ->,0c a +<,∴d b c c a +--+,()d b c c a =-+----,d b c c a =-+-++,d b a =-++;(2)解:∵a ,b 互为相反数,c ,d 互为倒数,有理数m 在数轴上对应的点M 到原点的距离等于1,∴0,1,1a b cd m +===±,∴当1m =-时:()20232023131·(1)31134a b m cd ++-=--´=--=-,当1m =时:()20232023131·131132a b m cd ++-=-´=-=-,综上所述,()202313a b m cd ++-的值为:2-或4-.45.(1)3a =-,15b =(2)324【分析】(1)根据有理数的乘法和加法计算法则推出00a b <>,,据此得到14a -=,解方程求出a 的值即可求出b 的值;(2)先求出()()43253A A B A B A B +--+=-éùëû,再代入22222233A a ab b B a ab b +=--=+,进行进一步化简,最后代入a 、b 的值求解即可.【详解】(1)解:∵120a b ab +=<,,且点A 在点B 的左边,∴00a b <>,,∴10a -<,∵14a -=,∴14a -=,∴3a =-,∴312b -+=,∴15b =;(2)解:∵22222233A a ab b B a ab b +=--=+,,∴()()432A A B A B +--+éùëû()4322A A B A B =+---4322A A B A B=+---53A B=-()()2222522333a ab b a ab b =+-+--222210510939a ab b a ab b =-+-+-222a ab b =-+,当3a =-,15b =时,原式()()223231515324=--´-´+=.【点睛】本题主要考查了整式的化简求值,解绝对值方程,有理数的乘法计算,有理数的加法计算等等,熟知整式的加减计算法则是解题的关键.46.(1)3(2)2【分析】(1)根据数轴说明a ,c 互为相反数,1b =,可得0a c +=,1c a=-,再整体代入求值即可;(2)先化简绝对值,再把0a c +=,1b =代入进行计算即可.【详解】(1)解:由数轴可得:0a b c <<<,>a c b =,∴a ,c 互为相反数,∴0a c +=,1c a =-,∵b 的倒数等于它本身.∴1b =,∴()()552520123c c a c b a c b a a +-+=+-+=--+=.(2)由数轴可得:0a b c <<<,>a c b =,∴0a b -<,0a b +<,>0c b -,∴2a b a b c b-++--()2a b a b c b =-+----222a c b =--+,∵0a c +=,1b =,∴原式()2220212a c b =-++=-´+´=.【点睛】本题考查的是利用数轴比较有理数的大小,相反数的含义,整式的加减运算,求解代数式的值,熟练是化简绝对值是解本题的关键.47.(1)2c -;(2)225x xy y --,3【分析】(1)根据数轴上点的位置确定绝对值的大小,再去括号合并即可;(2)根据去括号法则先去括号,再根据整式的加减合并,然后将值代入计算即可.【详解】解:(1)由数轴可知0b a -<,20a b ->,0a c ->,0c <,∴原式()2=---+--a b a b a c c答案第21页,共21页2=--++--a b a b a c c2c =-;(2)原式22222345x y xy x xy x xy=--+-++225x xy y =--当=1x -,2y =时,原式225(1)(1)22=´---´-524=+-3=.【点睛】本题考查了数轴与绝对值,整式的加减,去括号等相关知识点,理解绝对值意义和去括号法则是解题的关键.。
一、选择题1.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的整数为( )1- a b c 2 5 …A .1-B .0C .2D .52.任意大于1的正整数m 的三次幂均可“分裂”成m 个连接奇数的和,如:3235=+,337911=++,3413151719=+++,…按此规律,若3m 分裂后,其中一个奇数是2021,则m 的值是( )A .46B .45C .44D .433.一串数字的排列规律是:第一个数是2,从第二个数起每一个数与前一个数的倒数之和为1,则第2020个数是( )A .12-B .1-C .2-D .24.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为( )A .2n ﹣3B .4n ﹣1C .4n ﹣3D .4n ﹣2 5.下列所给代数式中,属于单项式的是( )A .a πB aC .12a +D .2a6.如果12a x +与21b x y -是同类项,那么a b +=( )A .2B .3C .4D .57.长度相同的木棒按一定规律拼搭图案,第1个需7根木棒,第2个需13根木棒,…,第11个需要木棒的个数为( )A .156B .157C .158D .1598.一个三位数,百位上的数字为x ,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含有x 的代数式表示为( )A .11230x -B .10030x -C .11230x +D .10230x + 9.下列说法正确的是( )A .绝对值是本身的数都是正数B .单项式23x y 的次数是2C .除以一个不为0的数,等于乘以这个数的相反数D .3π是一个单项式 10.如图,数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么原点的位置可能是( )A .线段AM 上,且靠近点AB .线段AM 上,且靠近点MC .线段BM 上,且靠近点BD .线段BM 上,且靠近点M 11.下列计算正确的是( )A .325a b ab +=B .22550ab a b -=C .277a a a +=D .32ab ba ab -+= 12.图①②③④……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第100个“广”字中的棋子个数是( )A .105B .205C .305D .405二、填空题13.观察下列等式: 第1个等式:1111(1)1323a ==-⨯;第2个等式:21111()35235a ==-⨯; 第3个等式:31111()57257a ==-⨯;第4个等式:41111()79279a ==-⨯;…… ……用含n 的式子表示第n 个等式:n a =_____.14.已知m 、n 互为相反数,p 、q 互为倒数,x 的绝对值为2,则代数式220192020m n pq x +++的值是____. 15.观察下列图案,它们都是由边长相同的小正方形拼接而成的,依此规律,则第n 个图案中的小正方形的个数是________.16.现有一列数1a ,2a ,…,100a ,其中39a =,77a =-,981a =-,且满足任意相邻三个数的和为同一常数,则12100a a a +++的值为__________. 17.当1x =时,代数式32315px qx -+的值为2020,则当1x =-时,则代数式32315px qx -+的值______.18.数轴上三个点表示的数分别为 p 、r 、s .若 p-r =5,s-p =2,则 s-r 等于____. 19.已知2a -b +2=0,则1-4a +2b 的值为______.20.如果2x =-,12y =,那么代数式()2214333x xy x xy ⎛⎫--- ⎪⎝⎭的值是__________. 三、解答题21.先化简,再求值:(1)()()2345n n n -+--+,其中54n =-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭,其中7a =,17b =-. 22.如图在某居民区规划修建一个小广场(图中阴影部分).(1)用含m ,n 的代数式分别表示该广场的周长C 与面积S ;(2)当6m =米,5n =米时,分别求该广场的周长和面积.23.先化简,再求值:(1)当52,25x y =-=时,求2222(22))3(xy y x xy y x xy ++----的值; (2)222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭,其中31,23x y ==-. 24.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到42a 22a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654654(1)(1)(1)a x a x a x -+-+-323210(1)(1)(1)4a x a x a x a x +-+-+-+=. 求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.25.某商店元旦期间举行促销优惠活动,当天到该商店购买商品有两种方案:方案一,用50元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品标价的八折优惠;方案二,若不购买会员卡,则购买商店内任何商品,一律按商品标价的九折优惠; 已知小颖元旦前不是该商店的会员,若小颖购买商店里标价为x 元的商品,回答下列问题:(1)若小颖不购买会员卡,所购商品的标价为120元时,实际应支付多少元?(2)若小颖购买商品的标价为x 元,分别写出两种方案下实际应支付多少元?(用含x 的代数式表示)(3)若购买标价为800元的商品,小颖选择哪种方案更加省钱,能省多少钱? 26.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数. (1)填空:a =________,b =________,c =________.(2)先化简,再求值:()22253234a b a b abc a b abc ⎡⎤---+⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据有一个不同数是5可得b=5,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴-1+a+b=a+b+c,解得c=-1,a+b+c=b+c+2,解得a=2,所以数据从左到右依次为-1、2、b、-1、2、b,有一个不同数是5,即b=5,所以每3个数“-1、2、5”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为2.故选:C.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.2.B解析:B【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1010个数,然后确定出1007所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(2)(1)2m m+-,∵2n+1=2021,n=1010,∴奇数2021是从3开始的第1010个奇数, ∵(442)(441)(452)(451)989,103422+⨯-+⨯-==, ∴第1010个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:B .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.D解析:D【分析】根据要求写出符合要求的数并找到数字变化的规律,利用规律求解即可.【详解】解:∵第一个数是2, 第二个数是12, 第三个数是-1,第四个数是2,…∴每三个数按照2,12,-1循环, ∵2020÷3=673 (1)∴第2020个数和第1个数一致,即:2.故选:D .【点睛】本题主要考查数字的变化规律,解决此类问题时通常需要确定数列与序数的关系或者数列的循环周期等,此题得出这列数每3个数为一周期循环是解题的关键. 4.C解析:C【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数.【详解】解:由题意得:第一个图形三角形的个数为4×1-3=1个,第二个图形三角形的个数为4×2-3=5个,第三个图形三角形的个数为4×3-3=9个,第四个图形三角形的个数为4×4-3=13个,…..∴第n 个图形三角形的个数为()43n -个;故选C .【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可.5.A解析:A【分析】根据单项式的定义逐一验证即可.【详解】 ∵a π是单项式,是二次根式,12a +是多项式, 2a是分式, 故选A .【点睛】本题考查了单项式的定义,熟练把握数与字母的积这一特征是解题的关键.6.A解析:A【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a ,b 的值,再进行计算即可.【详解】解:根据题意得:1210a b +⎧⎨-⎩==, 则a=1,b=1,所以,a+b=1+1=2.故选:A .【点睛】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.B解析:B分别求出每一个图形的木棒数,然后再找出一般规律求解即可.【详解】解:第1个图形共有7=1×(1+3)+3根木棒,第2个图形共有13=2×(2+3)+3根木棒,第3个图形共有21=3×(3+3)+3根木棒,第4个图形共有31=4×(4+3)+3根木棒,…第n 个图形共有n×(n+3)+3根木棒,第11个图形共有11×(11+3)+3=157根木棒,故选:B【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.8.A解析:A【分析】先分别用x 表示十位上和个位上的数字,再利用十位制列出代数式、计算整式的加减即可得.【详解】由题意得:十位上的数字为3x -,个位上的数字为2x ,则这个三位数用含有x 的代数式表示为10010(3)211230x x x x +-+=-,故选:A .【点睛】本题考查了列代数式、整式的加减,依据题意,正确得出十位上和个位上的数字是解题关键.9.D解析:D【分析】根据绝对值的意义、有理数的除法法则、单项式的定义进行判断即可.【详解】解:A 选项,绝对值是本身的数是正数或0,故原说法错误;B 选项,单项式23x y 的次数是3,故原说法错误;C 选项,除以一个不为0的数,等于乘这个数的倒数,故原说法错误;D 选项,3π表示一个数,是一个单项式,故正确; 故选:D .【点睛】本题主要考查了绝对值、单项式的定义以及有理数的除法,熟记相关定义和法则是解答本10.A解析:A【分析】根据数轴上点的位置可以判断出0a <,0b >,由AM 和BM 的长度关系可以判断出b a >,即可得出结论.【详解】解:根据数轴上点的位置得a a b b <+<,∴0a <,0b >,()BM b a b a =-+=-,AM a b a b =+-=,∵AM BM >, ∴b a >,∴点B 离原点的距离大于点A 离原点的距离,∴原点的位置在线段AM 上,且靠近点A .故选:A .【点睛】本题考查数轴,解题的关键是掌握数轴上点的性质,数轴上两点之间的距离.11.D解析:D【分析】根据合并同类项法则计算并判断.【详解】A 、3a 与2b 不是同类项,不能合并,故该项不符合题意;B 、5ab 2与5a 2b 不是同类项,不能合并,故该项不符合题意;C 、7a+a=8a ,故该项不符合题意;D 、32ab ba ab -+=,故该项符合题意;故选:D .【点睛】此题考查合并同类项,掌握同类项的判断方法是解题的关键.12.B解析:B【分析】首先观察每个广字横有几个原点,然后观察撇有几个原点,找到规律后即可解答.【详解】解:由题目得,第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是9;第3个“广”字中的棋子个数是11;4个“广”字中的棋子个数是13;发现第5个“广”字中的棋子个数是15…进一步发现规律:第n 个“广”字中的棋子个数是(2n+5).所以第100个“广”字中的棋子个数为2×100+5=205,故选:B .【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】观察可知找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:故答案为:【点睛】此 解析:111()22121n n --+ 【分析】观察可知,找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭ , 故答案为:11122121n n ⎛⎫- ⎪-+⎝⎭. 【点睛】 此题考查寻找数字的规律及运用规律计算,寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系;14.2023【分析】根据相反数倒数以及绝对值的代数意义求出各自的值代入原式计算即可求出值【详解】解:根据题意得:m+n=0pq=1x=2或-2则原式=0+2019+4=2023故答案为:2023【点睛】解析:2023【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【详解】解:根据题意得:m+n=0,pq=1,x=2或-2,则原式=0+2019+4=2023,故答案为:2023.【点睛】本题考查代数式求值,相反数、倒数和绝对值.熟练掌握运算法则是解本题的关键. 15.【分析】根据图形可以得到第n 个图案有n 层从上到下分别有123…n 个正方形据此可求解;【详解】根据图形可以得到第n 个图案有n 层从上到下分别有123…n 个正方形第n 个图案的正方形的个数是:;故答案是:【 解析:(1)2n n + 【分析】根据图形可以得到第n 个图案有n 层,从上到下分别有1,2,3,…,n 个正方形,据此可求解;【详解】根据图形可以得到第n 个图案有n 层,从上到下分别有1,2,3,…,n 个正方形, 第n 个图案的正方形的个数是:()11232n n n ++++⋯+=; 故答案是:(1)2n n +. 【点睛】 本题主要考查了规律型图形变化类,准确分析计算是解题的关键.16.26【分析】由题意易得则有同理可得进而可得这列数是每三个一循环则由可得然后依次规律可求解【详解】解:由题意得:∴同理可得:∴这列数是每三个一循环∵∴∴∵∴;故答案为26【点睛】本题主要考查有理数的运 解析:26【分析】由题意易得123234a a a a a a ++=++,则有14a a =,同理可得25a a =,36a a =,进而可得这列数是每三个一循环,则由39a =,77a =-,981a =-可得17a =-,21a =-,39a =,然后依次规律可求解.【详解】解:由题意得:123234a a a a a a ++=++,∴14a a =,同理可得:25a a =,36a a =,∴这列数是每三个一循环,∵39a =,77a =-,981a =-,∴177a a ==-,2981a a ==-,39a =,∴1231a a a ++=,∵1003331÷=⋅⋅⋅⋅⋅∴()12100331726a a a +++=⨯+-=; 故答案为26.【点睛】本题主要考查有理数的运算,关键是由题意得到数字的规律,然后进行有理数的运算即可. 17.-1990【分析】根据时=2020求出2p-3q=2005将其代入x=-1时添加括号后的中计算即可得到答案【详解】当时=2020∴2p-3q+15=2020∴2p-3q=2005∴当x=-1时=-2解析:-1990【分析】根据1x =时,32315px qx -+=2020,求出2p-3q=2005,将其代入x=-1时添加括号后的32315px qx -+中,计算即可得到答案.【详解】当1x =时,32315pxqx -+=2020, ∴2p-3q+15=2020, ∴2p-3q=2005,∴当x=-1时,32315pxqx -+=-2p+3q+15=-(2p-3q )+15=-2005+15=-1990, 故答案为:-1990. 【点睛】此题考查已知式子的值求代数式的值,正确掌握整式的添括号法则是解题的关键. 18.7【分析】利用已知将两式相加进而求出答案【详解】∵p−r =5s−p =2∴p−r +s−p =5+2则s−r =7故答案为:7【点睛】此题主要考查了代数式求值正确利用已知条件相加求出是解题关键解析:7【分析】利用已知将两式相加进而求出答案.【详解】∵p−r =5,s−p =2,∴p−r +s−p =5+2,则s−r =7.故答案为:7【点睛】此题主要考查了代数式求值,正确利用已知条件相加求出是解题关键.19.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值.【详解】解:∵220a b -+=,∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=.故答案是:5.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.20.【分析】原式去括号合并得到最简结果把x 与y 的值代入计算即可求出值;【详解】解:原式=4x2-3xy-3x2+xy=x2-2xy 当x=-2时原式=(-2)²-2×(-2)×=4+2=6故答案为6【点睛解析:【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】解:原式=4x 2-3xy-3x 2+xy=x 2-2xy ,当x=-2,12y =时, 原式=(-2)²-2×(-2)×12=4+2=6, 故答案为6.【点睛】本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键.三、解答题21.(1)413n -,18-;(2)22a ab -,99【分析】(1)先去括号合并同类项化简,再将n 的值代入计算即可;(2)先去括号合并同类项化简,再将a 和b 的值代入计算即可.【详解】解:(1)()()2345n n n -+--+=685n n n -+---=413n -, 当54n =-时, 原式=54134⎛⎫⨯-- ⎪⎝⎭=51318--=-;(2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭ =222236252a ab b a ab b ---++=22a ab -,当7a =,17b =-时, 原式=212777⎛⎫⨯-⨯- ⎪⎝⎭=()2491⨯--=98199+=. 【点睛】本题主要考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握法则是解决本题的关键.22.(1)46C m n =+, 3.6S mn =;(2)54C =米;108S =平方米.【分析】(1)观察图形,根据周长的定义即可计算周长,广场的面积等于大长方形的面积减去小长方形的面积;(2)分别将m 和n 的值分别代入计算即可.【详解】解:(1)2(22)46C m n n n m n =+++=+,22(20.4) 3.6S m n n m m m mn =⋅-⋅--=;(2)当6m =米,5n =米时46466554C m n =+=⨯+⨯=米;3.6 3.665108S mn ==⨯⨯=平方米.【点睛】本题考查了列代数式及整式的化简求值,能数形结合并熟练掌握相关运算法则是解题的关键.23.(1)xy -;1;(2)223y x y -+;1312-【分析】(1)根据整式的加减运算法则化简原式,再代入数值计算即可解答;(2)同样根据整式的加减运算法则化简原式,再代入数值计算即可解答;【详解】解:(1)2222(22))3(xy y x xy y x xy ++---- =2222232xy y x xy y x xy ++---+=xy -, 当52,25x y =-=时,原式5225⎛⎫=-⨯ ⎪⎝⎭-=1; (2)222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭222222244433xy y xy y x y y =---+- 223y x y =-+, 当31,23x y ==-时, 原式221313323⎛⎫⎛⎫⎛⎫=-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1334=-- 1312=-. 【点睛】 本题考查整式的加减-化简求值、有理数的混合运算,熟练掌握整式加减运算法则是解答的关键.24.(1)4;(2)8;(3)0.【分析】(1)观察等式可发现只要令x=1即可求出0a .(2)观察等式可发现只要令x=2即可求出6543210++++++a a a a a a a .(3)令x=0即可求出等式一,令x=2即可求出等式二,两个式子相加即可求出来.【详解】解:(1)当1x =时,041=4=⨯a(2)当2x =时,可得654321042=8++++++=⨯a a a a a a a(3)当0x =时,可得65432100+-++=--a a a a a a a ①由(2)得654321042=8++++++=⨯a a a a a a a ②②+①得:406282222++=+a a a a ,()64202=828240∴++-=-⨯=a a a a ,6420=∴++a a a .【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键. 25.(1)实际应支付108元;(2)方案一:50+0.8x ,方案二:0.9x ;(3)选择方案一更省钱,能省30元.【分析】(1)根据实际支付费用=商品价格×折扣率即可算出结果;(2)根据题意,直接列出代数式,即可;(3)分别求出两种方案的价钱,再比较大小,即可得到答案.【详解】(1)120×0.9=108(元),答:实际应支付108元;(2)方案一:50+0.8x ,方案二:0.9x ;(3)方案一:50+0.8×800=690(元),方案二:0.9×800=720(元),∵690<720,720-690=30(元),∴选择方案一更省钱,能省30元.【点睛】本题考查了列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据两种方案列代数式;(3)列算式,比较大小,作差.26.(1)1,-3,2;(2)2abc ,-12.【分析】(1)先根据长方体的平面展开图确定a 、b 、c 所对的面的数字,再根据相对的两个面上的数互为相反数,确定a 、b 、c 的值;(2)化简代数式后代入求值.【详解】解:(1)由长方体纸盒的平面展开图知,a 与-1、b 与3、c 与-2是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以1a =,3b =-,2c =.故答案为:1;-3;2;(2)原式222536242a b a b abc a b abc abc =-+--=,∴原式()213212=⨯⨯-⨯=-.【点睛】本题考查了长方体的平面展开图、相反数及代数式的化简求值.解决本题的关键是根据平面展开图确定a 、b 、c 的值.。
专题04代数式化简求值的三种考法类型一、整体代入求值【变式训练3】已知a+b=2ab,那么=()a ab b-+A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b++-+=2()3a b ab a b ab +++-=2232ab ab ab ab ⨯+-=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3) 6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+27=,3e ∴=;(3)解:当=1x -时,4323ax bx cx dx e ++++()()()()43231111a b c d e=⨯-+⨯-+⨯-+⨯-+3a b c d e =-+-+14=,【变式训练2】若6543210,则5310a a a a ++-=______.【答案】365-【详解】解:令x =0,代入等式中得到:()601-=a ,∴0=1a ,令x =1,代入等式中得到:65432101①=++++++ a a a a a a a ,令x =-1,代入等式中得到:66543210(3)②----=+++ a a a a a a a ,将①式减去②式,得到:65311(3)2()--+=+a a a ,∴536113)3642(-+=+=-a a a ,∴53103641365++-=--=-a a a a ,故答案为:365-.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4;(2)8;(3)0【解析】(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =⨯=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.类型三、降幂思想求值例.若2230x x -+=,则3227122020x x x -++=_____;【答案】2029【详解】解:∵2230x x -+=,∴223x x -=-,∴3227122020x x x -++=x (2x 2-4x -3x +12)+2020=x [2(x 2-2x )-3x +12]+2020=x [2×(-3)-3x +12]+2020=x (-3x +6)+2020=-3(x 2-2x )+2020=-3×(-3)+2020=9+2020=2029故答案为:2029.【分析】根据已知得到2232022x x -=,再将所求式子变形为()()22232320222020x x x x x x =-+---,整体代入计算即可.【详解】解:∵22320220x x --=,∴2232022x x -=,∴32220252020x x x ---322232*********x x x x x =-+---()()22232320222020x x x x x x =-+---2022202220222020x x =+--2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.【变式训练2】如果2233x x -+的值为5,则2695x x --的值为______.【答案】1【详解】∵22335x x -+=,∴2232x x -=∴2695x x --()23235x x =--325=⨯-1=,故答案为:1.【变式训练3】已知21x x +=,求43222023x x x x +--+的值.【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=,∴43222023x x x x +--+()22222023x x x x x =+--+2222023x x x =--+22023x x =--+()22023x x =-++12023=-+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键.【变式训练4】已知210x x --=,则3222021x x -++的值是______.【答案】2022【详解】解:∵210x x --=,∴230x x x --=,∴32210x x -+-=,∴3221x x -+=,∴3222021120212022x x -++=+=,故答案为:2022.1.已知2|1|(2)0x y -++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +--++的值.【答案】-2【详解】解:()2120x y -++= ,()21020x y -≥+≥,.10x ∴-=,20y +=1x ∴=,2y =-因为a 与b 互为倒数,所以1ab =因为c 与d 互为相反数,所以0c d +=∴原式()()()321213c d =---++()311=--=-2.2.已知23a bc +=,222b bc -=-.则22543a b bc +-的值是()A .23-B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++-,再整体代入计算.【详解】解:∵23a bc +=,222b bc -=-,∴22543a b bc+-225548a bc b bc =+-+()()22254a bc b bc =+-+()5342=⨯+⨯-158=-7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用.3.已知21a a +=,那么3222023a a ++的值是()A .2021B .2022C .2023D .2024【答案】D【分析】先将3a 降次为2a a -+,然后代入代数式,再根据已知条件即可求解.【详解】解:∵21a a +=,∴21a a =-+,则32a a a =-+,∴3222023a a ++2222023a a a =-+++22023a a =++12023=+已知2,【答案】1或-3【详解】∵24a +=,()214b -=,∴a +2=±4,b −1=±2,∴a =2或a =−6,b =3或b =−1;∵0ab <,∴a =2,b =−1或a =−6,b =3,当a =2,b =−1时,则2(1)1a b +=+-=;当a =−6,b =3时,则633a b +=-+=-;故答案为:1或-3.。
专题01 数轴(压轴题专项讲练)严老师选编1.如图,数轴上点B表示的数是﹣2.5.解答下面的问题:(1)点A表示的数为:;(2)与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得点A与﹣3表示的点重合,则点B与数表示的点重合;(4)若数轴上M、N两点之间的距离为2018(M在N的左侧),且它们经过(3)中折叠后互相重合,则M、N两点表示的数分别是:.2.(2020秋•万州区校级月考)一条直线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点A1,A2,A3,A4,A5表示,如图A1:﹣4,A2:﹣3,A3:﹣1,A4:1,A5:3.(1)怎样将点A3移动,使它先到达A2,再到达A5;(2)将零件的供应点设在这五个点中的哪点,才能使5个机器人分别到达供应点取货的总路程最短?最短路程是多少?3.(2020秋•清涧县期末)如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?4.(2021春•朝阳区校级月考)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.,0,1,4是点A、B的“倍分点”的是;(1)当点A表示数﹣2,点B表示数2时,下列各数−52(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;①若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.专题02 绝对值(压轴题专项讲练)严老师选编1.(2020秋•江岸区校级月考)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运 用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题. 【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a+|b|b+|c|c的值.【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数. ①a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a+|b|b+|c|c=a a+b b+c c=1+1+1=3;①当a ,b ,c 中有一个为正数,另两个为负数时,不妨设a >0,b <0,c <0,则|a|a+|b|b+|c|c=a a+−b b+−c c=1+(﹣1)+(﹣1)=﹣1.综上所述,|a|a+|b|b+|c|c值为3或﹣1.【探究拓展】请根据上面的解题思路解答下面的问题: (1)已知a ,b 是不为0的有理数,当|ab |=﹣ab 时,则a |a|+b |b|的值是 ;(2)已知a ,b ,c 是有理数,当abc <0时,求a|a|+b |b|+c |c|的值;(3)已知a ,b ,c 是有理数,a +b +c =0,abc <0,求b+c |a|+c+a |b|+a+b |c|的值.2.(2020秋•海安市月考)同学们都知道,|5﹣3|表示5与3的差的绝对值,也可理解为在数轴上表示数5的点与数3的点的距离.试探索:(1)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);(2)满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.3.(2020秋•抚顺县期中)已知a,b为实数,m=|2a+b|,n=|2a﹣b|,r=|1﹣b|.(1)若a+b<0,ab<0,|a|>|b|>1,且2m+n+r=11,能否确定a,b的值?能确定的,求出它的值;若不能确定,请说明理由.(2)对于任意实数a,b,求m,n,r三个数中最大的数的最小值专题03 有理数的运算(压轴题专项讲练)严老师选编1.(2021•九龙坡区校级模拟)定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n(2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.2.(2020秋•诸暨市期中)已知□,①,①分别代表1①9中的三个自然数.(1)若□+□+□=15,①+①+①=12,①+①+①=18,那么□+①+①=;(2)如果用①①表示一个两位数,将它的个位和十位上的数字交换后得到一个新的两位数①①,若①①与①①的和恰好为某自然数的平方,则该自然数是多少?这两个两位数和是多少?3.(2020秋•立山区期中)计算:25×11=275,13×11=143,48×11=528,74×11=814,观察上面的算式,我们发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.仿照上面的速算方法,(1)填空:①54×11=;①87×11=;①95×(﹣11)=.(2)已知一个两位数,十位上的数字是a,个位上的数字是b,这个两位数乘11.①若a+b<10,计算结果的百位、十位、个位上的数字分别是、、,请通过计算加以验证.①若a+b≥10,请直接写出计算结果中百位上的数字.4.(2021春•綦江区期末)对于一个三位数n,如果n满足:它的百位数字、十位数字之和与个位数字的差等于8,那么称这个数n为“快乐数”.例如:n1=934,①9+3﹣4=8,①934是“快乐数”;n2=701,①7+0﹣1=6,①701不是“快乐数”.(1)判断844,735是否为“快乐数”?并说明理由;(2)若将一个“快乐数”m的个位数的3倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数t(例如:若m=642,则t=664),若t也是一个“快乐数”,求满足条件的所有m的值.专题04 整式加减(压轴题专项讲练)1.A=2x2+3kx﹣200x﹣1,B=﹣x2+kx﹣1,且3A+6B的值与x的取值无关,求11×2+12×3+13×4+14×5+15×6+1 6×7+⋯+1(k−1)k的值.2.(2020秋•海珠区校级期中)已知A=3x2+y2﹣2xy,B=xy﹣y2+2x2,求:(1)2A﹣3B;(2)若|2x﹣3|=1,y2=16,|x﹣y|=y﹣x,求2A﹣3B的值.(3)若x=4,y=﹣8时,代数式ax3+12by+5=18,那么x=﹣128,y=﹣1时,求代数式3ax﹣24by3+10的值.3.(2021春•安丘市月考)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:a4x4+a3x3+a2x2+a1x+a0=6x,则:(1)取x=0时,直接可以得到a0=0;(2)取x=1时,可以得到a4+a3+a2+a1+a0=6;(3)取x=﹣1时,可以得到a4﹣a3+a2﹣a1+a0=﹣6.(4)把(2),(3)的结论相加,就可以得到2a4+2a2+2a0=0,结合(1)a0=0的结论,从而得出a4+a2=0.请类比上例,解决下面的问题:已知a6(x﹣1)6+a5(x﹣1)5+a4(x﹣1)4+a3(x﹣1)3+a2(x﹣1)2+a1(x﹣1)+a0=4x,求(1)a0的值;(2)a6+a5+a4+a3+a2+a1+a0的值;(3)a6+a4+a2的值.4.(2020秋•城厢区校级期中)若a,b互为相反数,b,c互为倒数,且m的立方等于它本身.(①)若a=2,求c a的值;(①)若m≠0,试讨论:当x为有理数时,|x+m|+|x﹣m|是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;|,求6(2a﹣s)+(s﹣2a)的值.(①)若a>1,且m<0,S=|2a﹣3b|﹣2|b﹣m|﹣|b+125.(2020秋•韩城市期中)一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)若M的其百位数字为a,十位数字为b、个位数字为c,试说明M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),求N的“团结数”.专题05 规律探究(压轴题专项讲练)严老师选编1.(2021•蚌埠二模)观察下列等式:第1个等式:12=13;第2个等式:(1+2)2=13+23;第3个等式:(1+2+3)2=13+23+33;第4个等式:(1+2+3+4)2=13+23+33+43;…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出第n(n为正整数)个等式:(用含n的等式表示);(3)利用你发现的规律求113+123+133+…+1003值.2.(2021春•庐阳区校级期末)观察下列等式:①1 1×3=12×(1−13);①13×5=12×(13−15);①15×7=12×(15−17)…根据上述等式的规律,解答下列问题:(1)请写出第①个等式:;(2)写出你猜想的第n个等式(用含有n的等式表示),并证明这个等式.(3)应用你发现的规律,计算:2 1×3+23×5+25×7+27×9⋯+22019×2021.3.(2020秋•福田区期末)如果我们要计算1+2+22+23+…+299+2100的值,我们可以用如下的方法:解:设S=1+2+22+23+…+299+2100式在等式两边同乘以2,则有2S=2+22+23+…+299+2100+2101式式减去式,得2S﹣S=2101﹣1即S=2101﹣1即1+2+22+23+…+299+2100=2101﹣1【理解运用】计算(1)1+3+32+33+…+399+3100(2)1﹣3+32﹣33+…﹣399+3100.4.(2021春•邗江区校级期末)(1)填空:21﹣20=2()、22﹣21=2()、23﹣22=2()、…(2)探索(1)中式子的规律,请写出第n个等式:;(3)直接计算:2200﹣2199﹣2198﹣…﹣22﹣21=;(4)利用(2)中发现的规律计算:21000+21001+21002+…+22020+22021.5.(2021•西城区校级开学)计算:13(1+12)(1+13)+14(1+12)(1+13)(1+14)+⋯+12021(1+12)(1+13)(1+14)⋯(1+12021).6.(2021•西城区校级开学)(12+13+⋯+12021)+(23+24+⋯+22021)+(34+35+⋯+32021)+…+(20192020+20192021)+20202021.7.(2021•砀山县一模)如图,下列各正方形中的四个数之间具有相同的规律.根据此规律,回答下列问题:(1)第5个图中4个数的和为.(2)a=;c=.(3)根据此规律,第n个正方形中,d=2564,则n的值为.专题06 一元一次方程(压轴题专项讲练)严老师选编1.解下列方程:(1)(5x ﹣2)×30%=(7x +8)×20%; (2)34[43(14x −1)+8]=73+23x ;(3)4x−1.50.5−5x−0.80.2=1.2−x 0.1.2.(2021•碑林区校级开学)解方程:|x ﹣|3x +1||=4.3.(2021春•岳麓区月考)若a 、b 、c 、d 是正数,解方程x−a−b−cd+x−a−b−dc+x−a−c−db+x−b−c−da=4.4.(2020秋•万全区校级月考)若关于x 一元一次方程253x ﹣m =512x +18有一个正整数解,则m 取最小正数是多少?并求出相应的解.16.(2020秋•雨花区校级月考)已知多项式A =2x 2+mx −12y +3,B =3x ﹣4y +7﹣2nx 2.(1)若代数式A ﹣B 的值与x 无关,求m ,n 的值.(2)在(1)的条件下,若关于x 的方程ax−bm+n−1−2x+abm−n−3=6有无数个解,求a ,b 的值. (3)在(2)的条件下,关于x 的方程|x +a |﹣|x +b |=c 有无数个解,求c 的值.5.(2020秋•广陵区校级月考)阅读下列解方程的过程,并完成(1)、(2)、(3)小题的解答. 解方程:|x ﹣1|=2当x ﹣1<0,即x <1时,原方程可化为:﹣(x ﹣1)=2,解得x =﹣1;当x ﹣1≥0,即x ≥1时,原方程可化为:x ﹣1=2,解得x =3;综上所述,方程|x ﹣1|=2的解为x =﹣1或x =3. (1)解方程:|2x +3|=8. (2)解方程:|2x +3|﹣|x ﹣1|=1. (3)解方程:|x ﹣3|﹣3|x +2|=x ﹣9.专题08 几何初步(压轴题专项讲练)严老师选编15.(2020秋•兴庆区校级月考)把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:颜色红黄蓝白紫绿花的朵数123456如图所示,现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体,问长方体的下底面共有多少朵花?16.(2020秋•中牟县期中)用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:(1)c表示几?b的最大值是多少?(2)这个几何体最少是用多少个小立方体搭成的?最多呢?17.(2020秋•九江期末)图(1)是一个棱长为2的正方体空盒子ABCD﹣EFGH.图(2)是取AB,BC,BF边上的中点M,N,P,截去一个角后剩下的几何体.图(3)的8×8的网格中每一小格的边长都是1,请在这个网格中画出它的一种展开图.(要求所有的顶点都在格点上,且AM,CN,PF这三条棱中最多只能剪开一条棱)18.(2021春•南岗区校级月考)如图,两个体积相同的图柱形铁块A和B,圆柱A的底面半径为2厘米,.(π取3)高为20厘米且比圆柱B高14(1)求圆柱B的底面积是多少平方厘米?(2)如图,一个底面长8匣米,宽6厘米的长方体水箱里有一些水,将圆柱A和B立放于水箱里,水面恰好与圆柱A高度相同,求将圆柱A、B放入之前水面的高度是多少厘米?(3)若要使水面下降至与圆柱B高度相同,需将圆柱A提起多少厘米?专题09 线段的计算(压轴题专项讲练)严老师选编1.(2020秋•宝鸡期末)如图,P是线段AB上一点,AB=12cm,M、N两点分别从P、B 出发以1cm/s、3cm/s的速度同时向左运动(M在线段AP上,N在线段BP上),运动时间为ts.(1)若M、N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.2.(2020秋•甘井子区期末)已知,点D是射线AB上的点,线段AB=4a,BD=nAB(0<n<1),点C是线段AD的中点.(1)如图1,若点D在线段AB上,当a=1,n=1时,求线段CD的长;2时,求线段CD的长;(用含a的式子(2)如图2,若点D在线段AB的延长线上,当n=12表示)(3)若点D在射线AB上,请直接写出线段CD的长.(用含a和n的式子表示)3.(2021•建邺区校级开学)如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”(填“是”或“不是”).(2)【深入研究】如图2,点A表示数﹣10,点B表示数20.若点M从点B的位置开始.以每秒3cm的速度向点A运动,当点M到达点A时停止运动.设运动的时间为t秒.①点M在运动的过程中表示的数为(用含t的代数式表示).①求t为何值时,点M是线段AB的“二倍点”.①同时点N从点A的位置开始.以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.4.(2020秋•望城区期末)【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”(填“是”或“不是”);(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图①,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由5.(2020秋•奉化区校级期末)已知线段AB上有若干个不重合的点,求出该线段上任意两点所决定的线段长度(包括线段AB),并记所有这些线段的长度总和为αAB.例如:图1中,AB=12,C为AB的中点,则αAB=AB+AC+CB=12+6+6=24.(1)如图2,线段AB上有C、D两点,其中AB=12,AC:CD:DB=1:2:3,求αAB;(2)如图3,线段AB上有C、D、E三点,其中C为AB的中点,E为DB的中点,且CE =4,αAB=64,求AB的长度;(3)线段AB上有C、D两点,线段上任意两点所决定的线段长度是整数,若αAB=38,且CD的长度为奇数,直接写出AB的长度.6.(2021•温江区校级开学)已知线段AB=m(m为常数),点C为直线AB上一点,点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,若m=6,当点C恰好在线段AB中点时,则PQ=;(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ 与1的大小关系,并说明理由.专题10 角度的计算(压轴题专项讲练)严老师选编1.(2020秋•江北区期末)将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若①AOD=35°,求①BOC的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,①AOC与①BOD有何数量关系?请说明理由.2.(2021春•乳山市期末)【问题回顾】我们曾解决过这样的问题:如图1,点O在直线AB上,OC,OD分别平分①AOE,①BOE,可求得①COD=90°.(不用求解)【问题改编】点O在直线AB上,①COD=90°,OE平分①BOC.(1)如图2,若①AOC=50°,求①DOE的度数;(2)将图2中的①COD按图3所示的位置进行放置,写出①AOC与①DOE度数间的等量关系,并写明理由.3.(2020秋•温江区校级期末)已知①AOB =60°,求:(1)如图1,OC 为①AOB 内部任意一条射线,OM 平分①AOC ,ON 平分①BOC ,求①MON = ;(2)如图2,当OC 旋转到①AOB 的外部时,①MON 的度数会发生变化吗?请说明原因; (3)如图3,当OC 旋转到①AOB (①BOC <120°)的外部且射线OC 在OB 的下方时,OM 平分①AOC ,射线ON 在①BOC 内部,①NOC =14①BOC ,求①COM −23①BON 的值?4.(2020秋•城厢区期末)已知①AOB 和①COD 是直角.(1)如图1,当射线OB 在①COD 的内部时,请探究①AOD 和①BOC 之间的关系,并说明理由.(2)如图2,当射线OA ,OB 都在①COD 的外部时,过点O 作射线OE ,OF ,满足①BOE =14①BOC ,①DOF =34①AOD ,求①EOF 的度数. (3)在(2)的条件下,在平面内是否存在射线OG ,使得①GOF :①GOE =3:7?若存在,求出①GOF 的度数;若不存在,请说明理由.5.(2020秋•镇海区期末)新定义问题如图①,已知①AOB,在①AOB内部画射线OC,得到三个角,分别为①AOC、①BOC、①AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为①AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,①AOB=45°,射线OC为①AOB的“幸运线”,则①AOC的度数为;【解决问题】(3)如图①,已知①AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t 秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.。
第3章代数式章末测试卷(拔尖卷)考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020秋•怀安县期末)已知m、n为常数,代数式2x4y+mx|5﹣n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.(3分)(2020秋•虎林市期末)如果2x3y n+(m﹣2)x是关于x,y的五次二项式,则关于m,n的值描述正确的是()A.m≠2,n=2B.m=3,n=2C.m为任意数,n=2D.m≠2,n=33.(3分)(2020秋•蜀山区期末)若3m4n|a|与−12m|b﹣1|n2是同类项,且a<b,则a、b的值为()A.a=2,b=5B.a=﹣2,b=﹣3C.a=±2,b=5D.a=±2,b=﹣3 4.(3分)(2019秋•金台区期末)已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1B.5C.﹣5D.﹣15.(3分)(2021•长沙模拟)疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同6.(3分)(2021•渝中区校级开学)如图所示,是一个运算程序的示意图,若开始输入x 的值为125,则第2021次输出的结果为()A.125B.25C.1D.57.(3分)(2021春•渝北区期末)已知,a ﹣b =3,a ﹣c =1,则(b ﹣c )2﹣2 (b ﹣c )+94的值为( ) A .274B .412C .272D .4148.(3分)(2021春•洪泽区期末)已知1=12,1+3=22,1+3+5=32,…则1+3+5+7+…+2021=( ) A .10102B .10112C .20202D .202129.(3分)(2020秋•鄞州区期末)三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m ,图2阴影部分周长为n ,要求m 与n 的差,只需知道一个图形的周长,这个图形是( )A .整个长方形B .图①正方形C .图②正方形D .图③正方形10.(3分)(2021•北碚区校级模拟)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点…依此规律则,图⑧中共有圆点的个数是( )A .63B .75C .88D .102二.填空题(共6小题,满分18分,每小题3分) 11.(3分)(2020秋•海陵区校级月考)若关于a 、b 的单项式−na n+2b 12n−1的次数是13,则n = .12.(3分)(2021春•新邵县期末)当x =2时,代数式ax 3﹣bx +1的值等于﹣17,那么当x =﹣1时,代数式﹣3bx 3+12ax ﹣5的值 .13.(3分)(2020秋•涪城区校级期末)已知A =x 2﹣ax ﹣1,B =2x 2﹣ax ﹣1,且多项式A −12B 的值与字母x 取值无关,则a 的值为 .14.(3分)(2020秋•鹿邑县期末)已知A,B均是关于x的整式,其中A=mx2﹣2x+1,B=x2﹣nx+5,当x=﹣2时,A﹣B=5,则n﹣2(m﹣1)=.15.(3分)(2021•泰山区模拟)观察下列等式:12+22+32=3×4×76,12+22+32+42=4×5×96,12+22+32+42+52=5×6×116,….按照此规律,则第n个式子是.16.(3分)(2021春•亭湖区校级期中)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为2m,丙没有与乙重叠的部分的长度为3m.若乙的长度最长且甲、乙的长度相差xm,乙、丙的长度相差ym,则乙的长度为m(用含有出y的代数式表示).三.解答题(共7小题,满分52分)17.(6分)(2020秋•九台区期中)已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+13xy2−14x3+6是六次四项式,单项式72x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.18.(6分)(2020秋•郫都区校级期中)已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5.求:(1)B+C;(2)当x=﹣1时,求B+C的值?19.(8分)(2021•桥东区二模)甲、乙两人各持一张分别写有整式A、B的卡片.已知整式C=a2﹣2a﹣5.下面是甲、乙二人的对话:甲:我的卡片上写着整式A=a2﹣4a+10,加上整式C后得到最简整式D;乙:我用最简整式B加上整式C后得到整式E=6a2﹣2a+8.根据以上信息,解决下列问题:(1)求整式D和B;(2)请判断整式D和整式E的大小,并说明理由.20.(8分)(2021春•安丘市月考)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:a4x4+a3x3+a2x2+a1x+a0=6x,则:(1)取x=0时,直接可以得到a0=0;(2)取x=1时,可以得到a4+a3+a2+a1+a0=6;(3)取x=﹣1时,可以得到a4﹣a3+a2﹣a1+a0=﹣6.(4)把(2),(3)的结论相加,就可以得到2a4+2a2+2a0=0,结合(1)a0=0的结论,从而得出a4+a2=0.请类比上例,解决下面的问题:已知a6(x﹣1)6+a5(x﹣1)5+a4(x﹣1)4+a3(x﹣1)3+a2(x﹣1)2+a1(x﹣1)+a0=4x,求(1)a0的值;(2)a6+a5+a4+a3+a2+a1+a0的值;(3)a6+a4+a2的值.21.(8分)(2020秋•漳州期中)A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨.已知从A地、B地到C地、D地的运价如下表:到C地到D地从A地果园运出每吨15元每吨9元从B地果园运出每吨10元每吨12元(1)若从A地果园运到C地的苹果为10吨,则从A地果园运到D地的苹果为吨,从B地果园运到C地的苹果为吨,从B地果园运到D地的苹果为吨,总运输费用为元.(2)若从A地果园运到C地的苹果为x吨,求从A地果园运到D地的苹果的吨数以及从A地果园将苹果运到D地的运输费用.(3)在(2)的条件下,用含x的式子表示出总运输费用.22.(8分)(2020秋•太原期中)阅读下列材料,完成相应的任务:任务:(1)下列四个代数式中,是对称式的是 (填序号即可); ①a +b +c ; ②a 2+b 2; ③a 2b ; ④ab .(2)写出一个只含有字母x ,y 的单项式,使该单项式是对称式,且次数为6次; (3)请从下面A ,B 两题中任选一题作答.我选择 题.A .已知A =2a 2+4b 2,B =a 2﹣2ab ,求A +2B ,并直接判断所得结果是否为对称式; B .已知A =a 2b ﹣3b 2c +13c 2a ,B =a 2b ﹣5b 2c ,求3A ﹣2B ,并直接判断所得结果是否为对称式.23.(8分)(2021•蜀山区模拟)如图,每个图形都由同样大小的小正方形按照一定的规律组成,每个小正方形的面积是1.根据图形与等式的关系解答下列问题:(1)直接写出图⑤所反映的等式:;(2)猜想图n所反映的等式,并证明;(3)根据(2)的结论计算:101+102+103+…+2020+2021.。
全书方法及技巧介绍一、方法①举例法:也称举例子,意思是举出实际事例来说明问题,使所要说明的问题具体化,以便大家更好地理解。
②筛选法:最初是一种数学方法,后来演变为解答选择题常用的一种方法。
意思是根据题中给出的条件,对选项逐个进行分析, 筛出符合条件的选项或筛去不符合条件的选项的方法。
③控制变量法:是指对于多因素(或多变量)的问题,采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题,分别加以研究,每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,最后再综合解决,这种方法叫控制变量法。
④对比法:通常是把两个相互联系的客观事物从多角度加以比较,以达到认识事物本质和规律的目的,并能对事物做出正确的认识和评价。
⑤性质决定用途的思想:物质的性质在很大程度上决定了物质的用途,有时物质的用途还需考虑是否易得、使用是否对环境产生污染、价格是否低廉等因素;反过来,物质的用途体现物质的性质。
⑥信息给予题的解法:在此特指文字信息题,对于图表、图像信息下文有介绍。
解答时一般先要认真阅读题干,明确信息大意,而后根据问题到题干中选取有用的信息,再结合已学知识综合分析进行解答。
⑦鉴别题的解法:是指利用物质之间的不同性质或利用某试剂与物质反应产生的不同现象将物质加以区分的方法。
一般包括物质的颜色、状态、气味以及和试剂的反应情况等,鉴别时遵循先简单后复杂,先考虑物理方法,后考虑化学方法的原则。
要先取样,不能直接对样品进行鉴别。
⑧排除法:是解答选择题常用的方法之一,意思是先把多个选项中一定不正确的答案排除,逐个排除后,最后剩下的一个答案就是正确选项。
⑨图示分析法:在讲解某个问题时,用较多语言不能很好地达到目的或为了更形象、直观地表达观点,可画出图示进行分析,这样的方法称为图示分析法。
⑩总结归纳法:是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。
○11记忆顺口溜:为了更好地记忆,将一些知识、概念等总结编排成顺口溜的方法。
第3章 代数式 单元综合练习题 2021-2022学年苏科版七年级数学上册一、选择题1、下列各式:①113x ;②2•3;③20%x ;④a -b ÷c ;⑤323m n ;⑥x -5;其中,不符合代数式书写要求的有( )A .5个B .4个C .3个D .2个2、下列说法:①23xy -的系数是2-;②1π不是单项式;③1132x y -是多项式;④225mn 次数是3次;⑤3221x x --的次数是5次;⑥23ab 与29b a 是同类项.正确的有( )A .2个B .3个C .4个D .5个3、下列判断中错误的是( )A .1-ab-a 是二次三项式B .-a 2b 2c 是单项式C .3a b 是多项式 D .235x π中,系数是354、已知2x n +1y 3与x 4y 3是同类项,则n 的值是( )A .2B .3C .4D .55、下列合并同类项正确的是( )①325a b ab += ;②33a b ab += ;③33a a -= ;④235325a a a +=;⑤330ab ab -=; ⑥23232332a b a b a b -= ;⑦235--=- A .①②③④ B .④⑤⑥ C .⑥⑦ D .⑤⑥⑦ 6、下列计算正确的是( )A .()x y z x y z --=+-B .()x y z x y z --+=--+C .()333x y z x z y +-=-+D .()()a b c d a c d b -----=-+++7、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:2222153324222x xy y x xy y ⎛⎫⎛⎫-+---+-= ⎪⎪⎝⎭⎝⎭2552xy y -+,阴影部分即为被墨迹弄污 的部分.那么被墨汁遮住的一项应是( )A .245x y -B .2y x -C .5xD .24x8、已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2-c aB .22a b -C .a -D .a9、已知m 2+2mn =384,2n 2+3mn =560,则代数式2m 2+13mn +6n 2﹣430的值是( )A .2018B .2019C .2020D .202210、如图,长为y ,宽为x 的大长方形被分割为5小块,除D 、E 外,其余3块都是正方形,若阴影E 的周长为8,下列说法中正确的是( )①x 的值为4;②若阴影D 的周长为6,则正方形A 的面积为1; ③若大长方形的面积为24,则三个正方形周长的和为24.A .①②③B .①②C .①③D .②③二、填空题11、如图,三棱柱的每条棱上放置相同数目的小球,设每条棱上的小球数为m ,用含m 的代数式表示三棱柱的棱上小球总数为 .(11) (20)12、对于式子:23521,,,,22222,,0,x y a x ym x c xx b b a +-++,其中有______个多项式. 13、已知多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,单项式3x 2n y 6﹣m 与该多项式的次数相同,则m = ,n = .14、多项式||223(2)1m x y m x y ++-是关于x 、y 的四次三项式,则m 的值为 . 15、()[]{}()[]{}b a b a ----+--去掉括号得________________. 16、当k = 时,多项式22(32)378x k xy y xy ---+-中不含xy 项.17、若多项式322x 8x +x 1--与多项式323x +2mx 5x+3-相减后不含二次项,则m 的值为______ . 18、当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,其中a 、b 、c 为常数,当x =2021时,这个代数式的值是 .19、已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________.20、如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n ≥3)中的卡纸的周长为C n ,则C n ﹣C n ﹣1=_____. 三、解答题21、已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同.(1)求m 、n 的值;(2)求多项式各项的系数和.22、先化简,再求值:)31(623)21(222xy y x y x xy y x --++-,其中x =1,y =﹣2.23、设A =33-ax bx ,B =328--+ax bx ,(1)求A+B ;(2)当x =-1时,A+B=10,求代数式962b a -+的值24、根据等式和不等式的性质,可以得到:若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.这是利用“作差法”比较两个数或两个代数式值的大小. (1)试比较代数式2542m m -+与2447m m --的值之间的大小关系;解:()()222225424475424479m m m m m m m m m -+---=-+-++=+,因为20m ≥所以290m +>所以2542m m -+_______2447m m --.(用“>”或“<”填空)(2)已知2715442A m m ⎛⎫=-- ⎪⎝⎭,()273B m m =-+,请你运用前面介绍的方法比较代数式A 与B 的大小.(3)已知()22642,321A m m B m m =++=++,比较A ,B 的大小.25、(1)生活中我们常用的是十进制计数法,即满十进一,比如:3516可表示为3×1000+5×100+1×10+6.有一个三位数,个位上的数字是a ,十位上的数字是b ,百位上的数字是c ,这个三数位可用式子表示为 .(2)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满五进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是 .(3)如果按照《易经》中的“满五进一”计数,即五进制计数,有一个三位数,从右到左每个数位上的数分别为a ,b ,c ,这个三数位可用式子表示为 .26、对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=.(1)计算()124⎛⎫-⊕- ⎪⎝⎭; (2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值.27、先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式264y y +的值为2,求2237y y ++的值.解:由2642y y +=得2321y y +=,所以2237178y y ++=+=.问题:(1)已知代数式223a b +的值为6,求2352a b +-的值;(2)已知代数式214521x x +-的值为2-,求2645x x -+的值.28、某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套,如果每套比原销售价降低10元销售,则每天可多销售100套,该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论.(每套西服的利润=每套西服的销售价-每套西服的进价). (1)按原销售价销售,每天可获利润______ 元;(2)若每套降低10元销售,每天可获利润______ 元;(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套,按这种方式:若每套降低10x 元(04,x x ≤≤为正整数). ①则每套的销售价格为_______ 元(用代数式表示); ②则每天可销售_______ 套西服(用代数式表示); ③则每天共可以获利润________ 元(用代数式表示);④根据以上的测算,如果你是该商场的经理,你将如何确定商场的销售方案,使每天的获利最大?29、特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:4a x 4+3a x 3+2a x 2+1a x +0a =6x ,则:(1)取x =0时,直接可以得到0a =0;(2)取x =1时,可以得到4a +3a +2a +1a +0a =6; (3)取x =﹣1时,可以得到4a ﹣3a +2a ﹣1a +0a =﹣6.(4)把(2),(3)的结论相加,就可以得到24a +22a +20a =0,结合(1)0a =0的结论,从而得出4a +2a =0.请类比上例,解决下面的问题:已知6a (x ﹣1)6+5a (x ﹣1)5+4a (x ﹣1)4+3a (x ﹣1)3+2a (x ﹣1)2+1a (x ﹣1)+0a =4x , 求(1)0a 的值;(2)6a +5a +4a +3a +2a +1a +0a 的值; (3)6a +4a +2a 的值.30、如图,在数轴上有三个不同的点A ,B ,C ,点C 对应有理数10;原点O 为线段AB 的中点,且线段AB 的长度是BC 的3倍.(1)求点A ,B 所对应的有理数;(2)动点P 从A 出发,以每秒1个单位的速度向右移动,设运动时间为t 秒,求在点P 开始运动后第几秒时,点P 到点A 的距离是到点B 距离的2倍,并求出此时点P 所对应的有理数.第3章 代数式 单元综合练习题(解析) 2021-2022学年苏科版七年级数学上册一、选择题1、下列各式:①113x ;②2•3;③20%x ;④a -b ÷c ;⑤323m n ;⑥x -5;其中,不符合代数式书写要求的有( ) A .5个 B .4个C .3个D .2个【答案】C【分析】根据代数式的书写规则:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示,对各项代数式逐一判定即可.【详解】①113x 中分数不能为带分数;②2•3中数与数相乘不能用“.”;③20%x ,书写正确;④a -b ÷c 中不能出现除号;⑤323m n 书写正确;⑥x -5书写正确;不符合代数式书写要求的有①②④共3个.故选:C.2、下列说法:①23xy -的系数是2-;②1π不是单项式;③1132x y -是多项式;④225mn 次数是3次;⑤3221x x --的次数是5次;⑥23ab 与29b a 是同类项.正确的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】根据单项式的定义,单项式的系数、次数的定义,多项式的次数的定义,同类项的定义逐个判断即可. 【详解】解:23xy -的系数是23-,故①错误;1π是单项式,故②错误;1132x y -是多项式,故③正确;225mn 次数是3次,故④正确; 3221x x --的次数是2次,故⑤错误;23ab 与29b a 是同类项,故⑥错误;即正确的个数是3个.故选:B3、下列判断中错误的是( )A .1-ab-a 是二次三项式B .-a 2b 2c 是单项式C .3a b 是多项式D .235x π中,系数是35【答案】D【分析】直接利用单项式及多项式的有关定义分别分析得出答案.【详解】解:A 、1ab a --是二次三项式,正确;B 、22a b c -是单项式,正确;C 、3a b 是多项式,正确;D 、在235x π中,系数是35π,故D 错误;故选:D .4、已知2x n +1y 3与x 4y 3是同类项,则n 的值是( ) A .2B .3C .4D .5【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 解:∵2x n +1y 3与是同类项,∴n +1=4, 解得,n =3, 故选:B .5、下列合并同类项正确的是( )①325a b ab += ;②33a b ab += ;③33a a -= ;④235325a a a +=;⑤330ab ab -=;⑥23232332a b a b a b -= ;⑦235--=- A .①②③④ B .④⑤⑥C .⑥⑦D .⑤⑥⑦【答案】D【分析】先观察是不是同类项,如果是按照合并同类项的法则合并.【解析】解:①32a b +不是同类项,不能合并,故错误;②3a b +不是同类项,不能合并,故错误;③32a a a -=,故错误;④235325a a a +=不是同类项,不能合并,故错误;⑤330ab ab -=,故正确; ⑥23232332a b a b a b -=,故正确;⑦235--=-,故正确.⑤⑥⑦正确,故选:D .6、下列计算正确的是( )A .()x y z x y z --=+-B .()x y z x y z --+=--+C .()333x y z x z y +-=-+D .()()a b c d a c d b -----=-+++【答案】D【分析】按照去括号的基本法则,仔细去括号求解即可. 【详解】∵()x y z x y z --=-+,∴选项A 错误; ∵()x y z x y z --+=-+-,∴选项B 错误; ∵()333x y z x z y +-=--,∴选项C 错误;∵()()a b c d a c d b -----=-+++,∴选项D 正确.故选D.7、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:2222153324222x xy y x xy y ⎛⎫⎛⎫-+---+-= ⎪⎪⎝⎭⎝⎭2552xy y -+,阴影部分即为被墨迹弄污 的部分.那么被墨汁遮住的一项应是( ) A .245x y - B .2y x -C .5xD .24x【答案】D【分析】根据题意易得22222153532452222x xy y x xy y xy y ⎛⎫⎛⎫-+---+-+- ⎪ ⎪⎝⎭⎝⎭,然后进行求解即可. 【详解】解:由题意得:22222153532452222x xy y x xy y xy y ⎛⎫⎛⎫-+---+-+- ⎪ ⎪⎝⎭⎝⎭ =22222515335282x xy y x xy y xy y +--+-++-=24x ; 故选D .8、已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2-c aB .22a b -C .a -D .a【答案】C【分析】首先利用数轴得出a +b <0,c -a >0,b +c <0,进而利用绝对值的性质化简求出即可. 【详解】解:由数轴可得:b <a <0<c ,∴a +b <0,c -a >0,b +c <0, ∴a a b c a b c +-+-++=()()()-+++--+a a b c a b c =-+++---a a b c a b c=a故选C.9、已知m2+2mn=384,2n2+3mn=560,则代数式2m2+13mn+6n2﹣430的值是()A.2018 B.2019 C.2020 D.2022【分析】先将题干中第一个式子乘以2,再将第二个式子乘以3,然后将得到的两个式子相加,即可得到2m2+13mn+6n2的值,则2m2+13mn+6n2﹣430的值便易得出.【答案】解:∵m2+2mn=384,∴2(m2+2mn)=2×384,即2m2+4mn=768①又∵2n2+3mn=560,∴上式乘以3得:9mn+6n2=1680②①+②得:2m2+13mn+6n2=2448,∴2m2+13mn+6n2﹣430=2018.故选:A.10、如图,长为y,宽为x的大长方形被分割为5小块,除D、E外,其余3块都是正方形,若阴影E的周长为8,下列说法中正确的是()①x的值为4;②若阴影D的周长为6,则正方形A的面积为1;③若大长方形的面积为24,则三个正方形周长的和为24.A.①②③B.①②C.①③D.②③【答案】B【分析】设正方形A的边长为a,正方形B的边长为b,正方形C的边长为c,表示出阴影E的长和宽,阴影D的长和宽,然后结合图形逐项分析即可.【详解】设正方形A的边长为a,正方形B的边长为b,正方形C的边长为c,则x=a+b,y=b+c,阴影E的长为c,宽为a+b-c,阴影D的长为a,宽为b-a,①∵阴影E的周长为8,∴2(c+a+b-c)=8,∴a+b=4,即x=4,故①正确;②∵阴影D的周长为6,∴2(a+b-a)=6,∴b=3,∵a+b=4,∴a=1,∴正方形A的面积为1,故②正确;③∵大长方形的面积为24,∴x y=24,∵x=4,∴y=6,∴b+c=6,假设三个正方形周长的和为24,则4a+4b+4c=24,∴a+b+c=6,∴a=0,不合题意,故③错误;故选B.二、填空题11、如图,三棱柱的每条棱上放置相同数目的小球,设每条棱上的小球数为m,用含m的代数式表示三棱柱的棱上小球总数为.【分析】根据三棱柱的棱的条数,顶点的个数,进而得出答案.解:三棱柱有9条棱,6个顶点,因为每条棱上有m 个小球,9条棱上就有9m 个小球,这样每个顶点处的小球多计算了2次,因此多计算2×6=12个,所以小球的总个数为9m ﹣12,故答案为:9m ﹣12.12、对于式子:23521,,,,22222,,0,x yax ym x c x x b b a +-++,其中有______个多项式.【答案】2【分析】利用多项式的定义分析得出答案.【详解】解:在23521,,,,22222,,0,x yax ym x c x x b b a +-++中,多项式为:22,3522x yx x ++-,故答案为:2.13、已知多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,单项式3x 2n y 6﹣m 与该多项式的次数相同,则m = ,n = .【分析】直接利用多项式的次数与项数确定方法分析得出答案.解:∵多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,∴2+m +1=5,解得:m =2,∵单项式3x 2n y 6﹣m 与该多项式的次数相同,∴2n +6﹣m =2n +6﹣2=5,解得:n =.故答案为:2,.14、多项式||223(2)1m x y m x y ++-是关于x 、y 的四次三项式,则m 的值为 .【思路点拨】直接利用绝对值的性质以及多项式的次数与系数确定方法分析得出答案.【答案】解:∵关于x 、y 的多项式3x |m |y 2+(m +2)x 2y ﹣1是四次三项式,∴|m |+2=4,m +2≠0,解得:m =2,故答案为:2.15、()[]{}()[]{}b a b a ----+--去掉括号得________________.【答案】2b16、当k = 时,多项式22(32)378x k xy y xy ---+-中不含xy 项.【思路点拨】先将多项式合并同类项,不含xy 项即系数为0,列出方程求得k 的值.【答案】解:x 2﹣(3k ﹣2)xy ﹣3y 2+7xy ﹣8=x 2﹣3y 2+(9﹣3k )xy ﹣8,由于不含xy 项,故9﹣3k =0,解得k =3.17、若多项式322x 8x +x 1--与多项式323x +2mx 5x+3-相减后不含二次项,则m 的值为______ .【答案】-4【分析】由题意可以得到关于m 的方程,解方程即可得到问题答案.【详解】解:由题意可得:-8-2m=0,解之可得:m=-4,故答案为-4.18、当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,其中a 、b 、c 为常数,当x =2021时,这个代数式的值是 .【分析】由当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,可求出关于a 、b 、c 的多项式的值,将x =2021代入代数式,再整体代入.【解答】解:∵当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,∴ax 7+bx 5+cx 3+3=7,即:(﹣2021)7a +(﹣2021)5b +(﹣2021)3c =4,∴﹣20217a ﹣20215b ﹣20213c =4,∴20217a +20215b +20213c =﹣4,∴当x =2021时,ax 7+bx 5+cx 3+3=20217a +20215b +20213c +3=﹣4+3=﹣1.故答案为:﹣1.19、已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________.【答案】90【分析】先令x =1,即可求出a +b +c +d +e +f =243①;再令x =﹣1,得到﹣a +b ﹣c +d ﹣e +f =1②,①+②可得b +d +f =122,最后令x =0,可得f =32,由此即可求得b +d 的值.【详解】解:令x =1,得:a +b +c +d +e +f =243①;令x =﹣1,得﹣a +b ﹣c +d ﹣e +f =1②,①+②得:2b +2d +2f =244, 即b +d +f =122,令x =0,得f =32,则b +d =b +d +f ﹣f =122﹣32=90,故答案为:90.20、如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n ≥3)中的卡纸的周长为C n ,则C n ﹣C n ﹣1=_____.【答案】112n - 【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2= 12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣C n ﹣1=(12)n ﹣1=112n -. 故答案为:112n -.三、解答题21、已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同.(1)求m 、n 的值;(2)求多项式各项的系数和.【答案】(1)3m =,2n =;(2)-13【分析】(1)根据多项式2123536m x y xy x +-+--是六次四项式,可求m ,根据253n m x y -的次数也是6可求n ;(2)把各项系数相加即可.【详解】解:(1)∵多项式2123536m x y xy x +-+--是六次四项式,∴216m ++=,解得,3m =,5-m=5-3=2,253n m x y -的次数与多项式的次数相同,226n +=,解得,2n =.(2)各项的系数之和为:51(3)(6)13-++-+-=-.22、先化简,再求值:)31(623)21(222xy y x y x xy y x --++-,其中x =1,y =﹣2.【分析】直接去括号合并同类项,再把已知数据代入得出答案.解:原式=﹣x 2y +xy +x 2y ﹣6x 2y +2xy=﹣5x 2y +3xy ,当x =1,y =﹣2时,原式=﹣5×12×(﹣2)+3×1×(﹣2)=10﹣6=4.23、设A =33-ax bx ,B =328--+ax bx ,(1)求A+B ;(2)当x =-1时,A+B=10,求代数式962b a -+的值【答案】(1)32ax 3bx 8-+;(2)8【分析】(1)根据合并同类项的性质计算,即可得到答案;(2)根据含乘方的有理数混合运算、代数式的性质计算,即可得到答案.【详解】(1)∵A =33-ax bx ,B =328--+ax bx∴333328238ax bx ax bx ax A B bx +---+=-+=;(2)∵x =-1时,A+B=10 ∴()()32131823810a b a b ---+=-++=∴322b a -=∴()96233223228b a b a -+=-+=⨯+=.24、根据等式和不等式的性质,可以得到:若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式2542m m -+与2447m m --的值之间的大小关系;解:()()222225424475424479m m m m m m m m m -+---=-+-++=+, 因为20m ≥所以290m +>所以2542m m -+_______2447m m --.(用“>”或“<”填空)(2)已知2715442A m m ⎛⎫=-- ⎪⎝⎭,()273B m m =-+,请你运用前面介绍的方法比较代数式A 与B 的大小. (3)已知()22642,321A m m B m m =++=++,比较A ,B 的大小.【答案】(1)>;(2)A <B ;(3)当m >1时,A >B ;当m =1时,A =B ;当m <1时,A <B【分析】(1)根据之差大于0,即可做出判断;(2)利用作差法判断即可;(3)利用作差法计算,再根据m 值判断即可.【详解】解:(1)(5m 2-4m +2)-(4m 2-4m -7)=5m 2-4m +2-4m 2+4m +7=m 2+9,∵m 2≥0,∴m 2+9>0,∴5m 2-4m +2>4m 2-4m -7;故答案为:>;(2)∵2715442A m m ⎛⎫=-- ⎪⎝⎭,()273B m m =-+, ∴A -B =()2271547342m m m m ⎛⎫----- ⎪⎝⎭=5m 2-7m +2-7m 2+7m -3=-2m 2-1≤-1<0,则A <B ; (3)∵()22642,321A m m B m m =++=++, ∴A -B =()22642321m m m m ++-++=22642633m m m m ++---=1m -当m >1时,1m ->0,则A >B ;当m =1时,1m -=0,A =B ;当m <1时,1m -<0,A <B .25、(1)生活中我们常用的是十进制计数法,即满十进一,比如:3516可表示为3×1000+5×100+1×10+6.有一个三位数,个位上的数字是a ,十位上的数字是b ,百位上的数字是c ,这个三数位可用式子表示为 .(2)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满五进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是 .(3)如果按照《易经》中的“满五进一”计数,即五进制计数,有一个三位数,从右到左每个数位上的数分别为a ,b ,c ,这个三数位可用式子表示为 .【分析】(1)结合十进制计数法,从右往左每个数字依次表示1,10,100,1000,……,(2)五进制计数法,从右往左每个数字依次表示1,5,25,125,……;(3)按照五进制计数法要求列代数式即可.解:(1)a ×1+b ×10+c ×100=100c +10b +a ;(2)4×1+3×5+1×25+2×125=294(天);(3)a ×1+b ×5+c ×25=25c +5b +a .故答案为:(1)100c +10b +a ;(2)294天;(3)25c +5b +a .26、对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=. (1)计算()124⎛⎫-⊕- ⎪⎝⎭;(2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值.【答案】(1)234;(2)-5【分析】(1)结合题意,根据有理数混合运算的性质计算,即可得到答案;(2)结合题意,通过合并同类项计算,即可得到答案.【详解】(1)()124⎛⎫-⊕- ⎪⎝⎭()1324=--⨯-164=-+=234;(2)∵()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭ ∴153103a b b a ⎛⎫+--=- ⎪⎝⎭∴2210a b +=-∴5a b +=-.27、先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式264y y +的值为2,求2237y y ++的值.解:由2642y y +=得2321y y +=,所以2237178y y ++=+=.问题:(1)已知代数式223a b +的值为6,求2352a b +-的值; (2)已知代数式214521x x +-的值为2-,求2645x x -+的值.【思路点拨】(1)变形已知直接整体代入计算求值;(2)由已知得方程,把已知变形后代入计算即可求出值.【答案】解:(1)由2a 2+3b =6得a 2+b =3,所以a 2+b ﹣5=3﹣5=﹣2;(2)由14x +5﹣21x 2=﹣2得﹣7(3x 2﹣2x )=﹣7,即3x 2﹣2x =1,所以6x 2﹣4x +5=2(3x 2﹣2x )+5=2+5=7.28、某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套,如果每套比原销售价降低10元销售,则每天可多销售100套,该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论.(每套西服的利润=每套西服的销售价-每套西服的进价). (1)按原销售价销售,每天可获利润______ 元;(2)若每套降低10元销售,每天可获利润______ 元;(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套,按这种方式:若每套降低10x 元(04,x x ≤≤为正整数).①则每套的销售价格为_______ 元(用代数式表示);②则每天可销售_______ 套西服(用代数式表示);③则每天共可以获利润________ 元(用代数式表示);④根据以上的测算,如果你是该商场的经理,你将如何确定商场的销售方案,使每天的获利最大?【答案】(1)8000;(2)9000;(3)①(290-10x);②(200+100x);③(40-10x )(200+100x );④每套比原销售价降低10元销售,可使每天的获利最大.【分析】(1)根据题目中数据可以求得按原销售价销售,每天可获得的利润;(2)根据题目中数据可以求得每套降低10元销售,每天可获得的利润;(3)①根据题意可以用代数式表示出每套的销售价格;②根据题意可以用代数式表示出每天的销售量;③根据题意可以用代数式表示出每天获得的利润; ④将x 的取值代入计算,再比较,从而可得结论.【详解】解:(1)按原销售价销售,每天可获利润为:(290-250)×200=8000(元),故答案为:8000; (2)若每套降低10元销售,每天可获利润为:(290-10-250)(200+100)=9000(元),故答案为:9000; (3)①由题意可得,每套的销售价格为:(290-10x )元,故答案为:(290-10x );②每天可销售:(200+100x )套,故答案为:(200+100x );③每天共可以获利润为:(290-10x -250)(200+100x )=(40-10x )(200+100x )元,故答案为:(40-10x )(200+100x );④由题意可知0≤x ≤4,x 为正整数,当x =0时,获利=(40-10×0)(200+100×0)=8000(元),当x =1时,获利=(40-10×1)(200+100×1)=9000(元),当x =2时,获利=(40-10×2)(200+100×2)=8000(元),当x =3时,获利=(40-10×3)(200+100×3)=5000(元),当x =4时,获利=(40-10×4)(200+100×4)=0(元),所以每套降低10元销售时获利最多,作为商场的经理应以每套280元的价格销售.29、特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:4a x 4+3a x 3+2a x 2+1a x +0a =6x ,则:(1)取x =0时,直接可以得到0a =0;(2)取x =1时,可以得到4a +3a +2a +1a +0a =6;(3)取x =﹣1时,可以得到4a ﹣3a +2a ﹣1a +0a =﹣6.(4)把(2),(3)的结论相加,就可以得到24a +22a +20a =0,结合(1)0a =0的结论,从而得出4a +2a =0.请类比上例,解决下面的问题:已知6a (x ﹣1)6+5a (x ﹣1)5+4a (x ﹣1)4+3a (x ﹣1)3+2a (x ﹣1)2+1a (x ﹣1)+0a =4x , 求(1)0a 的值;(2)6a +5a +4a +3a +2a +1a +0a 的值;(3)6a +4a +2a 的值.【分析】(1)观察等式可发现只要令x =1即可求出a(2)观察等式可发现只要令x =2即可求出a 6+a 5+a 4+a 3+a 2+a 1+a 0的值.(3)令x =0即可求出等式①,令x =2即可求出等式②,两个式子相加即可求出来.【解答】解:(1)当x =1时,a 0=4×1=4;(2)当x =2时,可得a 6+a 5+a 4+a 3+a 2+a 1+a 0=4×2=8;(3)当x =0时,可得a 6﹣a 5+a 4﹣a 3+a 2﹣a 1+a 0=0①,由(2)得得a 6+a 5+a 4+a 3+a 2+a 1+a 0=4×2=8②;①+②得:2a 6+2a 4+2a 2+2a 0=8,∴2(a 6+a 4+a 2)=8﹣2×4=0,∴a 6+a 4+a 2=0.30、如图,在数轴上有三个不同的点A ,B ,C ,点C 对应有理数10;原点O 为线段AB 的中点,且线段AB 的长度是BC 的3倍.(1)求点A ,B 所对应的有理数;(2)动点P从A出发,以每秒1个单位的速度向右移动,设运动时间为t秒,求在点P开始运动后第几秒时,点P到点A的距离是到点B距离的2倍,并求出此时点P所对应的有理数.【分析】(1)设点B所对应的有理数为x,列出方程,即可得出A和B所对应的有理数.(2)分两种情况讨论:①点P在AB之间,②点P在AB的延长线上,即可得出答案.解:(1)设点B所对应的有理数为x,因为原点0为线段AB的中点,所以点A所对应的有理数为﹣x则AB=2x,BC=10﹣x,由题意得,2x=3(10﹣x),解得,x=6,则﹣x=﹣6,所以点A,B所对应的有理数分别为﹣6,6.(2)由题意可知,PA=2PB有两种情况:①点P在AB之间,∵AB=12,AP=t,∴t=2(12﹣t),解得:t=8,此时点P所对应的有理数为:﹣6+8=2,②点P在AB的延长线上,∵AB=12,AP=t,∴t=2(t﹣12),解得:t=24,此时点P所对应的有理数为:﹣6+24=18.∴此时点P所对应的有理数是2或18.23。
一、选择题1.如图①是1个小正方体木块水平摆放而成,图②是由6个小正方体木块叠放而成,图③是由15个小正方体木块叠放而成,……,按照这样的规律继续叠放下去,第⑥个叠放的图形中,小正方体木块总个数是( )A .61B .66C .91D .1202.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n - 3.将一根长为x cm 的铁丝围成一个正方形,将它按如图所示的方式向外等距离扩2cm ,得到新的正方形,则这根铁丝需要增加( )A .8cmB .16cmC .(x+8)cmD .(x+16)cm 4.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中①,②两张正方形纸片既不重叠也无空隙.已知①号正方形边长为a ,②号正方形边长为b ,则阴影部分的周长是( )A .22a b +B .42a b +C .24a b +D .33a b +5.如图,若要使得图中平面展开图折叠成长方体后,相对面上的两个数之和为9,求x y z ++的值( ) 2- 3x y2z 10 A .10 B .11 C .12 D .136.如图,用火柴棍摆出一列正方形图案,其中第一个图(图①)有4根火柴棍,第二个图(图②)有12根火柴棍,第三个图(图③)有24根火柴棍,,则第n 个图中火柴棍的根数是( )A .2n (n +1)B .n (n +2)C .4n (n +1)D .4n (n -1)7.有依次排列的3个数:3,9,6,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,3-,6,这称为第一次操作:做第二次同样的操作后也可产生一个新数串:3,3,6,3.9,12-,3-,9,6,继续依次操作下去,问:从数串3,9,6开始操作第200次以后所产生的那个新数串的所有数之和是( )A .600B .618C .680D .7188.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 9.下列说法正确的是( )A .单项式x 的系数是0B .单项式﹣32xy 2的系数是﹣3,次数是5C .多项式x 2+2x 的次数是2D .单项式﹣5的次数是110.多项式322341m m n +-的次数是( )A .2B .3C .4D .711.我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲要早三百多年,我们把这个三角形称为“杨辉三角”.根据图中的数字排列规律a 、b 、c 的值分别为( )A .1,6,15B .6,15,20C .20,15,6D .15,6,1 12.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( )A .10a b +B .10b a +C .100a bD .100b a +二、填空题13.一个三角形的每条边上都有相同数目的小球,设每条边上的小球个数为m ,则该三角形上小球总数为__________(结果用含m 的代数式表示).14.现规定a ba d cbcd =-+-,则22222356xy x xy x x xy+-=---______. 15.已知,1231111,,,,1212312341234(1)n a a a a n n ===⋯=++++++++++⋯+++,12,n n S a a a =++⋯⋯+则2020S =_____.16.观察下面的一列单项式:2x ,34x -,58x ,716x -,……,根据你发现的规律,第20个单项式为__________.17.为了求23201113333+++++的值,可令23201113333S =+++++,则23201233333S =++++,因此2012331S S -=-所以2012312S -=仿照以上推理计算出23202017777S =+++++的值是_______.18.当1x =时,代数式32315px qx -+的值为2020,则当1x =-时,则代数式32315px qx -+的值______.19.若多项式2225264x kxy y x xy +---+中不含xy 项,则k =______.20.已知2320x y -+=,则()2235x y -+的值为______.三、解答题21.先化简,再求值:2222211233358()35x x xy y x xy y ⎛⎫ --+-++⎝+⎪⎭,其中2x =-,1y =22.小明房间窗户的窗帘如图所示,它是由两个四分之一圆组成(半径相同). (1)用代数式表示窗户能射进阳光的面积S 是 (结果保留π); (2)当31,22a b ==时,求窗户能射进阳光的面积是多少(取3π≈)?23.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到42a 22a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654654(1)(1)(1)a x a x a x -+-+-323210(1)(1)(1)4a x a x a x a x +-+-+-+=. 求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.24.先化简,再求值;()()222232522x xy y x xy y -+--+,其中1x =,2y =-.25.先化简,再求值:()()22223325x x y x y --+-,其中3x =-,2y =.26.先化简,再求值:2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中3x =,13y =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】观察所给的前三个图形,把正方体木块的总个数按层数拆分找出规律,解决问题.【详解】观察前三个图形发现第①个图形是1个正方体木块水平摆放而成,图②是1+5个正方体木块叠放而成,图③是1+5+9个正方体木块叠放而成,由此得到第⑥个图形是1+5+9+13+17+21个正方体木块叠放而成的,而1+5+9+13+17+21=66.故选:B .【点睛】此题考查观察发现规律及运用规律的能力,其关键是要结合图形,对前几个图形中的正方体木块的总个数进行拆分.2.D解析:D【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数.【详解】解:由题意得:第一个图形三角形的个数为4×1-3=1个,第二个图形三角形的个数为4×2-3=5个,第三个图形三角形的个数为4×3-3=9个,第四个图形三角形的个数为4×4-3=13个,……∴第n 个图形三角形的个数为()43n -个;故选:D .【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可.3.B解析:B【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.解:∵原正方形的周长为xcm ,∴原正方形的边长为4x cm , ∵将它按图的方式向外等距扩2cm ,∴新正方形的边长为(4x +4)cm , 则新正方形的周长为4×(4x +4)=x+16(cm ), 因此需要增加的长度为x+16-x=16cm .故选:B .【点睛】 本题主要考查列代数式,解题的关键是根据题意表示出新正方形的边长及代数式的书写规范.4.B解析:B【分析】根据题意,得外层最大正方形的边长为(a+b ),利用平移思想,把阴影的周长表示为2AC+2(AB-b ),化简即可.【详解】根据题意,得阴影的周长表示为2AC+2(AB-b )=4AC-2b,∵AC=a+b ,∴阴影部分的周长是=4a+4b-2b=4a+2b ,故选B.【点睛】本题考查了用代数式表示图形的周长,熟练用字母表示正方形的边长和周长,运用平移思想表示图形的周长是解题的关键.5.D解析:D【分析】根据相对面上的数字之和为9可得109x +=、29y -=、329z +=,得出x 、y 、z 的值即可求解.【详解】解:根据题意可得:109x +=,解得1x =-;29y -=,解得11y =;329z +=,解得3z =;∴111313x y z ++=-++=,【点睛】本题考查正方体的相对面,具备空间想象能力是解题的关键.6.A解析:A【分析】通过图形中火柴棍的根数与序数n的对应关系,找到规律即可解决.【详解】解:设摆出第n个图案用火柴棍为S n.①图,S1=4=2×1×2;②图,S2=4+3×4−(1+3)=4+2×4=4×(1+2)=2×2×3;③图,S3=4(1+2)+5×4−(3+5)=4×(1+2+3)=2×3×4;…;第n个图中火柴棍的根数是:S n=4×(1+2+3+…+n)=2n(n+1),故选:A.【点睛】本题考查了图形的变化类问题,解题的关键是仔细的观察每一个图形,找到有关图形个数的规律.7.B解析:B【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第200次以后所产生的那个新数串的所有数之和.【详解】解:设A=3,B=9,C=6,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B-A)+B+(C-B)+C=B+2C=(A+B+C)+1×(C-A),n=2时,S2=A+(B-2A)+(B-A)+A+B+(C-2B)+(C-B)+B+C=-A+B+3C=(A+B+C)+2×(C-A),…故n=200时,S200=(A+B+C)+200×(C-A)=-199A+B+201C=-199×3+9+201×6=618,故选:B.【点睛】本题考查找规律-数字的变化,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.8.A解析:A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n 为正整数),偶数项:-2、-4、-6、-8,…,-2n (n 为正整数),∵2021是奇数项,∴2n-1=2021,∴n =1011,∵每四条射线为一组,始边为OC ,∴1011÷4=252...3,∴标记为“2021”的点在射线OA 上,故选:A .【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律. 9.C解析:C【分析】直接利用单项式和多项式的有关定义分析得出答案.【详解】解:A 、单项式x 的系数是1,故此选项错误;B 、单项式﹣32xy 2的系数是﹣9,次数是3,故此选项错误;C 、多项式x 2+2x 的次数是2,正确;D 、单项式﹣5次数是0,故此选项错误.故选:C .【点睛】此题考查单项式系数和次数定义,及多项式的次数定义,熟记定义是解题的关键. 10.C解析:C【分析】根据多项式的项的定义,多项式的次数的定义即可确定其次数.【详解】解:由于组成该多项式的单项式(项)共有三个3m 3,4m 2n 2,﹣1,其中最高次数为2+2=4,所以多项式322341m m n +-的次数分别是4.故选:C .【点睛】本题考查了对多项式的项和次数的掌握情况,难度不大.解题的关键是明确多项式的次数是多项式中最高次项的次数.11.C解析:C【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【详解】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=10+10=20,b=10+5=15,c=5+1=6,故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.D解析:D【分析】百位的数字是b,则实际的数应该是100b,再加上a即可.【详解】解:这个三位数的百位是数字b,十位和个位组成的数是a,.则这个三位数是:100b a故选:D.【点睛】本题考查列代数式,解题的关键是掌握数字问题的列式方法.二、填空题13.3m或3m-1或3m-2或3m-3【分析】分三个顶点都没有小球只有一个顶点上有小球有两个顶点上有小球三个顶点上都有小球四类分类讨论即可求解【详解】解:根据题意三角形的三条边上都分别有m个小球但不知小解析:3m或3m-1或3m-2或3m-3【分析】分三个顶点都没有小球、只有一个顶点上有小球、有两个顶点上有小球、三个顶点上都有小球四类分类讨论即可求解.【详解】解:根据题意,三角形的三条边上都分别有m个小球,但不知小球的位置,所以需要分情况讨论.第一种情况:如图1,三角形每条边上都有m个小球,但三个顶点上都没有小球,此时小球总数为3m.第二种情况:如图2,三角形每条边上都有m个小球,但是只有一个顶点上有小球,三条边上总共有3m个小球,但是该顶点上的小球算了两次,所以此时小球总数为3m-1.第三种情况:如图3,三角形每条边上都有m个小球,但是有两个顶点上有小球,三条边上总共有3m个小球,但是两个顶点上的两个小球计算重复,所以此时小球总数为3m-2.第四种情况:如图4,三角形每条边上都有m个小球,此时三个顶点上都有小球,三条边上总共有3m个小球,但是三个顶点上的三个小球计算重复,所以此时小球总数为3m-3.故答案为:3m或3m-1或3m-2或3m-3【点睛】本题考查了根据题意列代数式,根据题意进行分类讨论是解题关键.14.-11【分析】直接根据题意中所表示的计算方法进行计算即可;【详解】∵∴原式=故答案为:-11【点睛】本题考查了整式的加减正确理解题意并掌握整式的加减是解题的关键解析:-11 【分析】直接根据题意中所表示的计算方法进行计算即可; 【详解】 ∵a b a d c b c d=-+-∴ 原式=22226352xy x xy x xy x +-+---+()()222=22311xy xy xy x x x +-+-+-=11-故答案为:-11. 【点睛】本题考查了整式的加减,正确理解题意并掌握整式的加减是解题的关键.15.【分析】根据将其转化为然后得到然后再计算即可【详解】解:∵∴∴∴故答案是:【点睛】本题考查了数字类的规律探索熟悉相关性质能对数据进行推理分析是解题的关键解析:10101011. 【分析】根据11234(1)n a nn 将其转化为11212na n n,然后得到122nnn S a a a n,然后再计算2020S 即可.【详解】 解:∵111121111234(1)122na n n nn n n∴111121223a2111212334a31112123445a ⋯∴12nn S a a a11111111222223344512n n11111111223344512n n11222n2nn =+, ∴20202020202010102020220221011S , 故答案是:10101011. 【点睛】本题考查了数字类的规律探索,熟悉相关性质,能对数据进行推理分析是解题的关键.16.【分析】结合题意根据数字类规律乘方的性质推导出第n 个单项式的表达式从而得到答案【详解】第一个单项式:第二个单项式:第三个单项式:第四个单项式:……第n 个单项式:∴第20个单项式为:故答案为:【点睛】 解析:20392x -【分析】结合题意,根据数字类规律、乘方的性质,推导出第n 个单项式的表达式,从而得到答案. 【详解】 第一个单项式:2x 第二个单项式:34x - 第三个单项式:58x 第四个单项式:716x - ……第n 个单项式:()12112n n n x +--∴第20个单项式为:()212022012039122x x ⨯--=- 故答案为:20392x -. 【点睛】本题考查了数字类规律、乘方的知识;解题的关键是熟练掌握数字类规律、乘方的性质,从而完成求解.17.【分析】根据题干中的方法令则作差即可求解【详解】解:令则∴∴故答案为:【点睛】本题考查有理数的简便运算理解题干中的方法是解题的关键解析:2021716- 【分析】根据题干中的方法令23202017777S =+++++,则2320202021777777S =+++++,作差即可求解.【详解】解:令23202017777S =+++++,则2320202021777777S =+++++,∴2021771S S -=-,∴2021716S -=,故答案为:2021716-.【点睛】本题考查有理数的简便运算,理解题干中的方法是解题的关键.18.-1990【分析】根据时=2020求出2p-3q=2005将其代入x=-1时添加括号后的中计算即可得到答案【详解】当时=2020∴2p-3q+15=2020∴2p-3q=2005∴当x=-1时=-2解析:-1990 【分析】 根据1x =时,32315pxqx -+=2020,求出2p-3q=2005,将其代入x=-1时添加括号后的32315px qx -+中,计算即可得到答案.【详解】 当1x =时,32315px qx -+=2020,∴2p-3q+15=2020,∴2p-3q=2005, ∴当x=-1时,32315px qx -+=-2p+3q+15=-(2p-3q )+15=-2005+15=-1990,故答案为:-1990.【点睛】此题考查已知式子的值求代数式的值,正确掌握整式的添括号法则是解题的关键.19.3【分析】先将多项式合并同类项再令xy 项的系数为0【详解】解:∵x2+2kxy-5y2-2x-6xy+4=x2+(2k-6)xy-5y2-2x+4又∵多项式x2+2kxy-5y2-2x-6xy+4中解析:3 【分析】先将多项式合并同类项,再令xy 项的系数为0.【详解】解:∵x 2+2kxy-5y 2-2x-6xy+4=x 2+(2k-6)xy-5y 2-2x+4 又∵多项式x 2+2kxy-5y 2-2x-6xy+4中不含xy 的项, ∴2k-6=0,解得k=3, 故答案为:3. 【点睛】本题考查了合并同类项和解一元一次方程,能正确合并同类项是解题的关键.20.1【分析】根据求出代入计算即可【详解】∵∴∴=故答案为:1【点睛】此题考查已知式子的值求代数式的值掌握有理数混合运算法则是解题的关键解析:1 【分析】根据2320x y -+=求出232x y -=-,代入计算即可. 【详解】∵2320x y -+=, ∴232x y -=-,∴()2235x y -+=2(2)51⨯-+=, 故答案为:1. 【点睛】此题考查已知式子的值求代数式的值,掌握有理数混合运算法则是解题的关键.三、解答题21.2223x y -+;53-【分析】先去括号,再根据整式的加减运算法则化简,再代入数值计算即可. 【详解】 解:原式2222213823333535x x xy y x xy y =---++++ ()2218233333355x xy y ⎛⎫⎛⎫=--++-++ ⎪ ⎪⎝⎭⎝⎭2223x y =-+, 当2x =-,1y =时,原式=22(2)13-⨯-+=53-. 【点睛】本题考查整式的加减-化简求值、有理数的混合运算,熟练掌握整式的加减运算法则是解答的关键.22.(1)2122ab b π-;(2)98【分析】(1)根据“窗户能射进阳光的面积=长方形的面积-窗帘的面积”,列式即可; (2)根据(1)得出的式子,再把a 、b 的值代入计算即可求出答案. 【详解】解:(1)窗帘的面积是22121()222b b ππ=. ∵窗户能射进阳光的面积=长方形的面积-窗帘的面积, ∴窗户能射进阳光的面积是2122ab b π-; (2)由(1)得:2122S ab b π=-, 当32a =,12b =时,窗户能射进阳光的面积是: 22131119223222228S ab b π⎛⎫=-≈⨯⨯-⨯⨯≈ ⎪⎝⎭.【点睛】本题考查了列代数式以及代数式求值,注意利用长方形和圆的面积公式解决问题. 23.(1)4;(2)8;(3)0. 【分析】(1)观察等式可发现只要令x=1即可求出0a .(2)观察等式可发现只要令x=2即可求出6543210++++++a a a a a a a . (3)令x=0即可求出等式一,令x=2即可求出等式二,两个式子相加即可求出来. 【详解】解:(1)当1x =时,041=4=⨯a(2)当2x =时,可得654321042=8++++++=⨯a a a a a a a (3)当0x =时,可得65432100+-++=--a a a a a a a ① 由(2)得654321042=8++++++=⨯a a a a a a a ② ②+①得:406282222++=+a a a a ,()64202=828240∴++-=-⨯=a a a a ,6420=∴++a a a .【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键. 24.22xy +,5【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 【详解】解:()()222232522x xy yxxy y -+--+2222325224x xy y x xy y =-+-+- 22x y =+当1x =,2y =-时, 原式()2212=+- 5=【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 25.22x y -+,-16. 【分析】先去括号,再合并同类项,把值代入计算即可. 【详解】解:()()22223325x x y x y --+-22229655x x y x y =-++-22x y =-+把3x =-,2y =代入,原式=()22223216x y -+=-⨯-+=-. 【点睛】本题考查了整式的化简求值,解题关键是熟练运用整式加减的法则和去括号的法则进行合并,代入数值准确计算. 26.226xy xy +,0 【分析】根据整式加减法的性质计算,即可完成化简;结合3x =,13y =-,根据代数式、含乘方的有理数混合运算性质计算,即可得到答案. 【详解】2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦222252258x y xy xy x y xy ⎡⎤=--++⎣⎦222252258x y xy xy x y xy =-+-+ 226xy xy =+∵3x =,13y =-∴2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦226xy xy =+21123+6333⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭2+2=-0=.【点睛】本题考查了整式加减、代数式、有理数运算的知识;解题的关键是熟练掌握整式加减、代数式、含乘方的有理数混合运算的性质,从而完成求解.。
一、选择题1.下列图形都是由同样大小的笑脸按一定的规律组成,其中第①个图形一共有2个笑脸,第②个图形一共有8个笑脸,第③个图形一共有18 个笑脸…按此规律,则第⑥个图形中笑脸的个数为( )A .98B .72C .50D .36 2.一组数据排列如下:12 3 43 4 5 6 74 5 6 7 8 9 10… 按此规律,某行最后一个数是148,则此行的所有数之和是( )A .9801B .9603C .9025D .81003.如图,将一个边长为m 的正方形纸片剪去两个小长方形,得到一个类似“9”的图案,再将剪下的两个小长方形无缝隙地拼成一个新的长方形,则新长方形的周长可表示为( )A .59m n -B .5.58m n -C .45m n -D .58m n - 4.将连续正整数按如图所示的位置顺序排列:根据排列规律,则2021应在( )A .A 处B .B 处C .C 处D .D 处5.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中①,②两张正方形纸片既不重叠也无空隙.已知①号正方形边长为a ,②号正方形边长为b ,则阴影部分的周长是( )A .22a b +B .42a b +C .24a b +D .33a b + 6.有依次排列的3个数:3,9,6,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,3-,6,这称为第一次操作:做第二次同样的操作后也可产生一个新数串:3,3,6,3.9,12-,3-,9,6,继续依次操作下去,问:从数串3,9,6开始操作第200次以后所产生的那个新数串的所有数之和是( )A .600B .618C .680D .718 7.一个正方形的边长减少10%,则它的面积减少( )A .19%B .20%C .1%D .10% 8.下列说法正确的是( )A .绝对值是本身的数都是正数B .单项式23x y 的次数是2C .除以一个不为0的数,等于乘以这个数的相反数D .3π是一个单项式 9.如图,四张大小不一的正方形纸片,,,A B C D 分别放置于长方形的角落或边上,其中B C 、和D 纸片之间既不重叠也无空隙,在长方形的周长已知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长( ).A .AB .BC .CD .D 10.下列运算正确的是( ) A .2347a a a +=B .44a a -=C .32523a a a +=D .10.2504ab ab -+= 11.如图,平面内有公共端点的六条射线OA 、OB 、OC ,OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7、…,则数字“2020”在射线( )A .OB 上 B .OC 上 C .OD 上 D .OE 上 12.若327x y 和3211-m x y 的和是单项式,则代数式1224-m 的值是( )A .3-B .4-C .5-D .12-二、填空题13.若一个正整数能表示为两个正整数的平方差,则称它为“平方差数”(如22321=-,221653=-,则3和16都是“平方差数”),已知“平方差数”按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,……,则数字2019是第______个“平方差数”,第2019个“平方差数”是______.14.观察下面的式子:111122=-⨯,1112323=-⨯,1113434=-⨯,…,可以发现它们的计算规律是()11111n n n n =-++(n 为正整数).若一容器装有1升水,按照如下要求把水倒出:第一次倒出12升水,第二次倒出的水量是12升水的13,第三次倒出的水量是13升水的14,第四次倒出的水量是14升水的15,…,第n 次倒出的水量是1n 升水的11n +,…按这种倒水方式,前n 次倒出水的总量为______升.15.数轴上两点A ,B 所表示的数分别为a 和b ,且满足()2280a b ++-=.点E 以每秒1个单位的速度从原点O 出发向右运动,同时点M 从点A 出发以每秒7个单位的速度向左运动,点N 从点B 出发,以每秒10个单位的速度向右运动,P ,Q 分别为ME ,ON 的中点.思考,在运动过程中,MN OE PQ-的值______________. 16.乐乐家离姥姥家20km ,乐乐坐公交从家到姥姥家,需要xh ,骑自行车从家到姥姥家所用的时间比坐公交所用的时间多1h .则骑自行车的平均速度为___km/h (用含x 式子表示).17.已知A ,B ,C 三点在数轴上的位置如图所示,它们表示的数分别是a ,b ,c .若a =﹣3且点B 到点A ,C 的距离相等,P 是数轴上B ,C 两点之间的一个动点,设点P 表示的数为x ,当P 点在运动过程中,bx+cx+|x ﹣c|﹣10|x+a|的值保持不变,则b 的值为_____.18.已知有理数a ,b ,c 在数轴上的位置如图所示,化简:3b c c a a b ----+=______.19.已知2320x y -+=,则()2235x y -+的值为______.20.如果2x =-,12y =,那么代数式()2214333x xy x xy ⎛⎫--- ⎪⎝⎭的值是__________. 三、解答题21.如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示),留下一个“T ”型的图形(阴影部分)(1)用含x ,y 的代数式表示“T ”型图形的面积并化简.(2)若7x =米,21y =米,“T ”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.22.按如下规律摆放三角形:(1)图④中分别有 个三角形?(2)按上述规律排列下去,第n 个图形中有 个三角形?(3)按上述规律排列下去,第2021个图形中有 个三角形?23.某大型商场销售一种茶具和茶碗,茶具每套定价200元,茶碗每只定价20元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一套茶具送一只茶碗;方案二,茶具和茶碗按定价的九五折付款,现在某客户要到商场购买茶具30套,茶碗x 只(x >30).(1)若客户按方案一,需要付款 元;若客户按方案二,需要付款 元.(用含x 的代数式表示)(2)若x =40,试通过计算说明此时哪种购买方案比较合适?(3)当x =40,能否找到一种更为省钱的方案,如果能,写出你的方案,并计算出此方案应付钱数;如果不能,说明理由.24.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=;(3)取1x =-时,可以得到432106a a a a a -+-+=-;(4)把(2),(3)的结论相加,就可以得到42a 22a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654654(1)(1)(1)a x a x a x -+-+-323210(1)(1)(1)4a x a x a x a x +-+-+-+=. 求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.25.先化简,再求值:2222332232a b ab ab a b ab ab ⎛⎫---++ ⎪⎝⎭,其中3a =-,2b =-. 26.已知:21A by ay =--,223101B y ay y =+--,且多项式2A B -的值与字母y 的取值无关,求()()2222222132a b ab a b ab ⎡⎤+--++⎣⎦的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中笑脸的个数.【详解】解:第①个图形一共有2个笑脸,第②个图形一共有:2+(3×2)=8个笑脸,第③个图形一共有8+(5×2)=18个笑脸,……第n 个图形一共有:1×2+3×2+5×2+7×2+…+2(2n-1)=2[1+3+5+…+(2n-1)],=[1+(2n-1)]×n=2n 2,则第⑥个图形一共有:2×62=72个笑脸;故选:B .【点睛】本题考查了规律型:图形变化类,把图形分成三部分进行考虑,并找出第n 个图形的个数的表达式是解题的关键.2.A解析:A【分析】每一行的最后一个数字分别是1,4,7,10…,易得第n 行的最后一个数字为1+3(n ﹣1)=3n ﹣2,由此建立方程求得最后一个数是148在哪一行,再由求和法计算可得.【详解】解:∵每一行的最后一个数分别是1,4,7,10…,∴第n 行的最后一个数字为1+3(n ﹣1)=3n ﹣2,∴3n ﹣2=148,解得:n =50,因此第50行最后一个数是148,∴此行的数之和为50+51+52+…+147+148=(50148)(148501)2+-+ =9801,故选:A .【点睛】本题考查了有理数中的规律探究问题,熟练掌握数字的规律,并灵活选用方程思想求解是解题的关键. 3.A解析:A【分析】根据图形给出的已知条件列出算式,进行整式加减即可得结论.【详解】解:由图可得,新长方形的长为()(2)23m n m n m n -+-=-,宽为113(3)222m n m n -=-,则新长方形的周长为13592322592222m n m n m n m n ⎫⎫⎛⎛-+-⨯=-⨯=- ⎪ ⎪⎝⎝⎭⎭. 故选A .【点睛】本题考查了整式的加减,解决本题的关键是观察图形正确列出算式.4.D解析:D【分析】设第n个A位置的数为An,第n个B位置的数为Bn,第n个C位置的数为Cn,第n个D 位置的数为Dn,根据给定部分An,Bn,Cn,Dn的值找出规律,An=4n-2,Bn=4n-1,Cn=4n,Dn=4n+1(n为自然数),以此规律即可得出结论.【详解】解:设第n个A位置的数为An,第n个B位置的数为Bn,第n个C位置的数为Cn,第n 个D位置的数为Dn,观察,发现规律:A1=2,B1=3,C1=4,D1=5,A2=6,B2=7,C2=8,D2=9,A3=10,…,∴An=4n-2,Bn=4n-1,Cn=4n,Dn=4n+1(n为自然数).∵2021=505×4+1,∴2021应在D处.故选D.【点睛】点睛:本题考查了规律型中的数字变化类,解题的关键是根据给定的数值的变化找出变化规律,本题属于灵活题,难度一般.5.B解析:B【分析】根据题意,得外层最大正方形的边长为(a+b),利用平移思想,把阴影的周长表示为2AC+2(AB-b),化简即可.【详解】根据题意,得阴影的周长表示为2AC+2(AB-b)=4AC-2b,∵AC=a+b,∴阴影部分的周长是=4a+4b-2b=4a+2b,故选B.【点睛】本题考查了用代数式表示图形的周长,熟练用字母表示正方形的边长和周长,运用平移思想表示图形的周长是解题的关键.6.B解析:B【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第200次以后所产生的那个新数串的所有数之和.【详解】解:设A=3,B=9,C=6,操作第n 次以后所产生的那个新数串的所有数之和为S n . n=1时,S 1=A+(B-A )+B+(C-B )+C=B+2C=(A+B+C )+1×(C-A ),n=2时,S 2=A+(B-2A )+(B-A )+A+B+(C-2B )+(C-B )+B+C=-A+B+3C=(A+B+C )+2×(C-A ),…故n=200时,S 200=(A+B+C )+200×(C-A )=-199A+B+201C=-199×3+9+201×6=618, 故选:B .【点睛】本题考查找规律-数字的变化,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.7.A解析:A【分析】正方形的面积=边长×边长,设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a ,代入公式即可求解.【详解】解:设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a ,(1-10%)a×(1-10%)a =0.81a 2,(a 2-0.81a 2)÷a 2×100%=0.19 a 2÷a 2×100%=19%故选:A【点睛】本题主要考查了列代数式和整式的加减运算.通过设原边长为a ,根据已知条件求出原面积及边长减少10%后的面积是完成本题的关键.8.D解析:D【分析】根据绝对值的意义、有理数的除法法则、单项式的定义进行判断即可.【详解】解:A 选项,绝对值是本身的数是正数或0,故原说法错误;B 选项,单项式23x y 的次数是3,故原说法错误;C 选项,除以一个不为0的数,等于乘这个数的倒数,故原说法错误;D 选项,3表示一个数,是一个单项式,故正确; 故选:D .【点睛】本题主要考查了绝对值、单项式的定义以及有理数的除法,熟记相关定义和法则是解答本题的关键.9.B解析:B【分析】先表示出阴影部分所有竖直的边长之和和所有水平的边长之和,再表示出阴影部分的周长,然后进行整理即可得出答案.【详解】解:根据题意得:阴影部分所有竖直的边长之和=2×长方形的宽,所有水平的边长之和=2×(长方形的长-B 的边长),则阴影部分的周长=2×长方形的宽+2×(长方形的长-B 的边长)=长方形的周长-B 的边长×2所以知道B 的边长,就可以求得阴影部分的周长;故选:B .【点睛】本题考查了整式的加减和长方形的周长公式,根据长方形的周长公式推导出所求的答案是解题的关键.10.D解析:D【分析】根据合并同类项得法则计算即可.【详解】解:A.347a a a +=,故A 选项错误;B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D .【点睛】 本题考查了合并同类项,掌握合并同类项的法则是解题的关键.11.C解析:C【分析】由题意知,6个数字循环一次,则可求2020与4在一条射线上;【详解】由题意可知,6个数字循环一次,∵20206=3364÷,∴2020与4在一条射线上,∴“2020”在射线OD上;故答案选C.【点睛】本题主要考查了规律型数字变化类,准确分析判断是解题的关键.12.D解析:D【分析】根据单项式的和是单项式,可得同类项,根据同类项的意义,可得答案.【详解】由题意,得3m=3,解得m=1,12m−24=12-24=-12.故选:D.【点睛】本题考查了合并同类项,利用单项式的和是单项式得出同类项是解题关键.二、填空题13.2695【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得规律再分别计算结果【详解】解:观察探索规律知全部平方差数从小到大可按每三个数分解析:2695【分析】根据题意观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得规律,再分别计算结果.【详解】解:观察探索规律,知全部平方差数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n,第二个数为4n+1,第三个数为4n+3,∵2019=4×504+3,∴2019是第504组的第3个数,即第1515个平方差数;因为2019=3×673,所以第2019个平方差数是第673组中的第3个数,即为4×673+3=2695,故答案为:1515,2695.【点睛】本题考查了探索规律的问题,解题的关键是根据题意找出规律,从而得出答案,此题难度较大.14.【分析】根据题意列出关系式利用得出的规律化简即可;【详解】前n次倒出的水总量为11【点睛】本题考查规律型:数字的变化类解答本题的关键是根据所给式子找出规律并利用规律解答 解析:1n n + 【分析】根据题意列出关系式,利用得出的规律化简即可;【详解】前n 次倒出的水总量为()1111223341n n ++++=⨯⨯+11111111223341n n -+-+-++-=+1111n n n -=++,【点睛】 本题考查规律型:数字的变化类,解答本题的关键是根据所给式子找出规律,并利用规律解答.15.2【分析】根据非负数的性质可得点A 和B 表示的数设运动时间为t 则点E 对应的数是t 点M 对应的数是-2-7t 点N 对应的数是8+10t 根据题意求得P 点对应的数和Q 点对应的数代入可得结论【详解】解:∵∴a=-解析:2【分析】根据非负数的性质可得点A 和B 表示的数,设运动时间为t ,则点E 对应的数是t ,点M 对应的数是-2-7t ,点N 对应的数是8+10t .根据题意求得P 点对应的数和Q 点对应的数,代入可得结论.【详解】解:∵()2280a b ++-=,∴a=-2,b=8,∴A 表示-2,B 表示8;设运动时间为t ,则点E 对应的数是t ,点M 对应的数是-2-7t ,点N 对应的数是8+10t . ∵P 是ME 的中点, ∴P 点对应的数是(27)132t t t +--=--, 又∵Q 是ON 的中点, ∴Q 点对应的数是0(810)452t t ++=+, ∴MN=(8+10t )-(-2-7t )=10+17t ,OE=t ,PQ=(4+5t )-(-1-3t )=5+8t ,∴1017258MN OE t t PQ t-+-==+, 故答案为:2.【点睛】本题考查数轴上动点问题,整式的加减.能正确表示线段的长度是解题关键.16.【分析】根据平均速度=总路程÷总时间来解题即可;【详解】根据题意可知:路程为20km骑自行车的时间为(x+1)h∴骑自行车的平均速度为:;故答案为:【点睛】本题考查了学生对速度计算公式的理解和掌握正解析:201 x+【分析】根据平均速度=总路程÷总时间来解题即可;【详解】根据题意可知:路程为20km,骑自行车的时间为(x+1)h,∴骑自行车的平均速度为:201x+;故答案为:201 x+.【点睛】本题考查了学生对速度计算公式的理解和掌握,正确理解题意是解题的关键.17.【分析】由bx+cx+|x﹣c|﹣10|x+a|结果是定值说明与x无关可得出b与c 的关系再根据中点得出b与c的另一个关系联立求出b即可【详解】解:∵点P在BC上∴b<x<c∴bx+cx+|x﹣c|﹣解析:8 3【分析】由bx+cx+|x﹣c|﹣10|x+a|结果是定值,说明与x无关,可得出b与c的关系,再根据中点得出b与c的另一个关系,联立求出b即可.【详解】解:∵点P在BC上,∴b<x<c,∴bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣10﹣1)x+c﹣10a,∵结果与x无关,∴b+c=11,又∵a=﹣3且点B到点A,C的距离相等,∴c﹣b=b+3,即c=2b+3,∴b=83.故答案为:83.【点睛】本题考查了整式的加减、数轴、绝对值、有理数的乘法,解决本题的关键是综合运用以上知识.18.-4a+2c 【分析】根据数轴上点的位置判断出绝对值里边式子的正负利用求绝对值的法则化简去括号合并同类项即可得到结果【详解】根据题意得:c <-1<b <0<1<a ∴b−c >0c-a <0a+b >0∴原式=解析:-4a+2c【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用求绝对值的法则化简,去括号,合并同类项,即可得到结果.【详解】根据题意得:c <-1<b <0<1<a ,∴b−c >0,c-a <0,a+b >0,∴原式=( b−c)-3(a-c)-(a+b)= b−c -3a+3c-a-b=-4a+2c ,故答案是:-4a+2c .【点睛】此题考查了整式的加减,数轴,以及绝对值,掌握求绝对值法则,是解题的关键. 19.1【分析】根据求出代入计算即可【详解】∵∴∴=故答案为:1【点睛】此题考查已知式子的值求代数式的值掌握有理数混合运算法则是解题的关键 解析:1【分析】根据2320x y -+=求出232x y -=-,代入计算即可.【详解】∵2320x y -+=,∴232x y -=-,∴()2235x y -+=2(2)51⨯-+=,故答案为:1.【点睛】此题考查已知式子的值求代数式的值,掌握有理数混合运算法则是解题的关键. 20.【分析】原式去括号合并得到最简结果把x 与y 的值代入计算即可求出值;【详解】解:原式=4x2-3xy-3x2+xy=x2-2xy 当x=-2时原式=(-2)²-2×(-2)×=4+2=6故答案为6【点睛解析:【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】解:原式=4x 2-3xy-3x 2+xy=x 2-2xy ,当x=-2,12y =时,原式=(-2)²-2×(-2)×12=4+2=6,故答案为6.【点睛】本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键.三、解答题21.(1)(2x+y)(x+2y)-2y2,2x2+5xy;(2)16660元【分析】(1)用大长方形面积减去两个小正方形面积;(2)先求出x,然后将x、y的值代入即可.【详解】解:(1)(2x+y)(x+2y)-2y2=2x2+4xy+xy+2y2-2y2=2x2+5xy;(2)∵x=7,y=21∴2x2+5xy=2×49+5×7×21=833(平方米),20×833=16660(元),答:草坪的造价为16660元.【点睛】本题考查了列代数式和代数式求值,正确运用运算法则计算是解题的关键.22.(1)14;(2)3n+2;(3)6065【分析】(1)结合题意,总结可知,每个图中三角形个数比图形的编号的3倍多2个三角形,由此可计算出答案;(2)根据(1)中的规律可直接写出答案;(3)把n=2021直接代入(2)的式子中即可计算出结果.【详解】解:(1)n=1时,有5个,即3×1+2(个);n=2时,有8个,即3×2+2(个);n=3时,有11个,即3×3+2(个);则n=4时,有3×4+2=14(个);故答案为:14.(2)由题意知,第n个图形中有三角形(3n+2)个,故答案为:3n+2;(3)当n=2021时,3×2021+2=6065,故答案为:6065.【点睛】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.23.(1)(20x+5400);(19x+5700 );(2)方案一更合适,见解析;(3)可以有更合适的购买方式,按方案一购买30套茶具和30只茶碗,按方案二购买剩余10只茶碗,此方案应付钱数为6190元【分析】(1)由题意分别求出两种方案购买的费用即可;(2)将x =40分别代入(1)中所求的代数式,再比较哪个更优惠即可;(3)两种方案一起购买,按方案一购买30套茶具和30只茶碗,按方案二购买剩余10只茶碗,依此计算即可求解.【详解】解:(1)若客户按方案一,需要付款30×200+20(x ﹣30)=(20x+5400)元; 若客户按方案二,需要付款30×200×0.95+20x×0.95=(19x+5700 )元.故答案为:(20x+5400);(19x+5700 );(2)当x =40时,方案一:20x+5400=800+5400=6200,方案二:19x+5700=760+5700=6460,因为6200<6460,所以方案一更合适;(3)可以有更合适的购买方式.按方案一购买30套茶具赠30只茶碗,需要200×30=6000(元),按方案二购买剩余10只茶碗,需要10×20×0.95=190(元),共计6000+190=6190(元).故此方案应付钱数为6190元.【点睛】本题考查了列代数式及代数式求值问题,得到两种优惠方案付费的关系式是解答本题的关键.24.(1)4;(2)8;(3)0.【分析】(1)观察等式可发现只要令x=1即可求出0a .(2)观察等式可发现只要令x=2即可求出6543210++++++a a a a a a a .(3)令x=0即可求出等式一,令x=2即可求出等式二,两个式子相加即可求出来.【详解】解:(1)当1x =时,041=4=⨯a(2)当2x =时,可得654321042=8++++++=⨯a a a a a a a(3)当0x =时,可得65432100+-++=--a a a a a a a ①由(2)得654321042=8++++++=⨯a a a a a a a ②②+①得:406282222++=+a a a a ,()64202=828240∴++-=-⨯=a a a a ,6420=∴++a a a .【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键. 25.226a b ab ab +-;-126【分析】根据整式加减的性质化简,结合3a =-,2b =-,通过计算即可得到答案.【详解】2222332232a b ab ab a b ab ab ⎛⎫---++ ⎪⎝⎭222232233a b ab ab a b ab ab =--+++226a b ab ab =+-∵3a =-,2b =- ∴2222332232a b ab ab a b ab ab ⎛⎫---++ ⎪⎝⎭226a b ab ab =+- ()()()()()()226323232=⨯-⨯-+-⨯---⨯- 126=-.【点睛】本题考查了整式加减、代数式的知识;解题的关键是熟练掌握整式加减、代数式的性质,从而完成求解.26.-2【分析】先表示出2A B -,根据已知条件得到a ,b 的值,在进行化简求值即可;【详解】解:()()2222123101A B by ay y ay y -=---+-- 2222223101by ay y ay y ----++=()()2221051b y a y =-+--因为多项式2A B -的值与字母y 无关,所以220b -=,1050a -=,解得1,2b a ==,()()2222222132a ab a b ab ⎡⎤+--++⎣⎦2222222232a b ab a b ab =+-+--2ab =-221=-⨯2=-;【点睛】本题主要考查了整式化简求值,准确计算是解题的关键.。