推荐2019年高考物理一轮复习 选练习题(7)(含解析)新人教版
- 格式:doc
- 大小:651.00 KB
- 文档页数:7
专题73 带电粒子在磁场中运动(二)直线磁场边界1.(多选)如图所示,ab是匀强磁场的边界,质量(11 H)和α粒子(42He)先后从c点射入磁场,初速度方向与ab边界夹角均为45°,并都到达d点.不计空气阻力和粒子间的作用.关于两粒子在磁场中的运动,下列说法正确的是( )α粒子运动轨迹相同α粒子运动动能相同α粒子运动速率相同α粒子运动时间相同2.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a点射入,从b点射出.下列说法正确的是( )b点速率大于在a点速率C.若仅减小磁感应强度,则粒子可能从b点右侧射出D.若仅减小入射速率,则粒子在磁场中运动时间变短3.[2021·贵阳市模拟](多选)如图所示,MN为两个方向相同且垂直于纸面的匀强磁场的分界面,两磁场的磁感应强度大小关系为B1=2B2,一比荷值为k的带电粒子(不计重力),以一定速率从O点垂直MN进入磁感应强度大小为B1的磁场,则粒子下一次到达O点经历的时间为( )A.3πkB 1 B .4πkB 1 C .2πkB 2 D .3π2kB 24.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qB B .7πm 6qB C .11πm 6qB D .13πm6qB5.[2021·绵阳市模拟]如图所示,长方形abcd 区域内有垂直于纸面向里的匀强磁场,同一带电粒子,以速率v 1沿ab 射入磁场区域,垂直于dc 边离开磁场区域,运动时间为t 1;以速率v 2沿ab 射入磁场区域,从bc 边离开磁场区域时与bc 边夹角为150°,运动时间为t 2.不计粒子重力.则t 1∶t 2是( )A.2∶3B .3∶2C.3∶2D.2∶3 6.[2021·石家庄质检](多选)如图所示,等腰直角三角形abc 区域内存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B ,直角边bc 的长度为L .三个相同的带正电粒子从b 点沿bc 方向分别以速率v 1、v 2、v 3射入磁场,在磁场中运动的时间分别为t 1、t 2、t 3,且t 1∶t 2∶t 3=3∶3∶2.不计粒子的重力及粒子间的相互作用,下列说法正确的是( )v 1=v 2<v 3v 2<v 1<v 3 q m =πBt 2 q m =3v 32BL7.如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面(abcd 所在平面)向外.ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子.已知电子的比荷为k .则从a 、d 两点射出的电子的速度大小分别为( )A.14kBl ,54kBl B .14kBl ,54kBl C.12kBl ,54kBl D .12kBl ,54kBl 8.[2021·河北卷]如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B 的匀强磁场,极板与可调电源相连.正极板上O 点处的粒子源垂直极板向上发射速度为v 0、带正电的粒子束,单个粒子的质量为m 、电荷量为q .一足够长的挡板OM 与正极板成37°倾斜放置,用于吸收打在其上的粒子.C 、P 是负极板上的两点,C 点位于O 点的正上方,P 点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,CP 长度为L 0.忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力,sin37°=35.(1)若粒子经电场一次加速后正好打在P 点处的粒子靶上,求可调电源电压U 0的大小; (2)调整电压的大小,使粒子不能打在挡板OM 上,求电压的最小值U min ;(3)若粒子靶在负极板上的位置P 点左右可调,则负极板上存在H 、S 两点(CH ≤CP <CS ,H 、S 两点未在图中标出),对于粒子靶在HS 区域内的每一点,当电压从零开始连续缓慢增加时,粒子靶均只能接收到n (n ≥2)种能量的粒子,求CH 和CS 的长度(假定在每个粒子的整个运动过程中电压恒定).专题73 带电粒子在磁场中运动(二)直线磁场边界1.AB 带电粒子在磁场中的偏转角度都为90°,对应的弦长都为cd ,故质子和α粒子运动轨迹相同,A 正确;带电粒子在磁场中的运动周期T =2πm qB ,在磁场中的运动时间t =14T ,质子(11 H)和α粒子(42 He)比荷不同,质子和α粒子运动时间不同,D 错误;根据R =mvqB=2mE kqB知,质子和α粒子半径相同,比荷不同,则运动速率不同,又因mq相同,故质子和α粒子运动动能相同,B 项正确,C 错误.2.C 3.BC 4.B5.C 由T =2πm qB ,和离子在磁场中运动的时间为t =θ2π·T ,可知同一离子在同一磁场中运动周期相同,运行时间与速度偏角成正比,所以t 1∶t 2=90°∶60°=3∶2,C 正确.6.BD三个粒子在磁场中的运动轨迹可能如图所示,由图及题意可知时间相等的粒子一定从ab 边射出,另一粒子一定从ac 边射出,由r =mv qB可知v 1<v 3,v 2<v 3,v 1≠v 2,A 错误,B 正确;粒子1、2的轨迹圆弧所对应的圆心角均为π2,故有t 2=14·2πm qB ,得q m =π2Bt 2,C 错误;粒子3的轨迹圆弧所对应的圆心角为π3,轨迹半径r ′sin π3=L ,又r ′=mv 3qB ,得q m =3v 32BL ,故D 正确.7.B 本题考查了电子在磁场中运动的问题,有利于综合分析能力、应用数学知识处理物理问题能力的培养,突出了核心素养中的模型建构、科学推理、科学论证要素.从a 点射出的电子运动轨迹的半径R 1=l4,由Bqv 1=m v 21 l 4得v 1=Bql 4m =14kBl ;从d 点射出的电子运动轨迹的半径R 2满足关系⎝⎛⎭⎪⎫R 2-l 22+l 2=R 22 ,得R 2=54l ,由Bqv 2=m v 22 54l得v 2=5Bql 4m =54kBl ,故正确选项为B.8.(1)qB 2L 20 8m -mv 20 2q (2)7mv 218q(3)见解析解析:(1)根据动能定理得qU 0=12mv 2-12mv 20 ,带电粒子进入磁场,由洛伦兹力提供向心力得qvB =m v 2r,又有r =L 02,联立解得U 0=qB 2L 20 8m -mv 22q.(2)使粒子不能打在挡板OM 上,则加速电压最小时,粒子的运动轨迹恰好与挡板OM 相切,如图甲所示,设此时粒子加速后的速度大小为v 1,在上方磁场中运动的轨迹半径为r 1,在下方磁场中运动的轨迹半径为r 2,由几何关系得2r 1=r 2+r 2sin37°,解得r 1=43r 2,由题意知,粒子在下方磁场中运动的速度为v 0,由洛伦兹力提供向心力得qv 1B =m v 21r 1,qv 0B =mv 20 r 2,由动能定理得qU min =12mv 21 -12mv 20 ,解得U min =7mv 218q.(3)画出粒子的运动轨迹,由几何关系可知P 点的位置满足k (2r P -2r 2)+2r P =x CP (k =1,2,3…).当k =1时,轨迹如图乙所示;当k =5时,轨迹如图丙所示.由题意可知,每个粒子的整个运动过程中电压恒定,粒子在下面的磁场中运动时,根据洛伦兹力提供向心力,有qv 0B =m v 20 r 2,解得r 2=mv 0qB ,为定值,由第(2)问可知,r P ≥43r 2,所以当k 取1,r P =43r 2时,x CP取最小值,即CH =x CP min =103·mv 0qB,CS →无穷远.。
能力课 气体实验定律的综合应用一、选择题1.对于一定质量的理想气体,在温度不变的条件下,当它的体积减小时,下列说法正确的是( )①单位体积内分子的个数增加 ②在单位时间、单位面积上气体分子对器壁碰撞的次数增多 ③在单位时间、单位面积上气体分子对器壁的作用力不变 ④气体的压强增大A .①④B .①②④C .①③④D .①②③④解析:选B 在温度不变的条件下,当它的体积减小时,单位体积内分子的个数增加,气体分子单位时间内与单位面积器壁碰撞的次数越多,气体压强增大,故B 正确,A 、C 、D 错误.2.(多选)如图所示,一定质量的理想气体,沿状态A 、B 、C 变化,下列说法中正确的是( )A .沿A →B →C 变化,气体温度不变 B .A 、B 、C 三状态中,B 状态气体温度最高 C .A 、B 、C 三状态中,B 状态气体温度最低D .从A →B ,气体压强减小,温度升高E .从B →C ,气体密度减小,温度降低解析:选BDE 由理想气体状态方程pVT=常数可知,B 状态的pV 乘积最大,则B 状态的温度最高,A 到B 的过程是升温过程,B 到C 的过程是降温过程,体积增大,密度减小,选项B 、D 、E 正确,选项A 、C 错误.3.如图所示,U 形汽缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知汽缸不漏气,活塞移动过程中与汽缸内壁无摩擦.初始时,外界大气压强为p 0,活塞紧压小挡板.现缓慢升高汽缸内气体的温度,则选项图中能反映汽缸内气体的压强p 随热力学温度T 变化的图象是( )解析:选B 当缓慢升高汽缸内气体温度时,开始一段时间气体发生等容变化,根据查理定律可知,缸内气体的压强p 与汽缸内气体的热力学温度T 成正比,在p T 图象中,图线是过原点的倾斜的直线;当活塞开始离开小挡板时,缸内气体的压强等于外界的大气压,气体发生等压膨胀,在p T 图象中,图线是平行于T 轴的直线,B 正确.二、非选择题4.(2018届宝鸡一模)如图所示,两端开口的汽缸水平固定,A 、B 是两个厚度不计的活塞,面积分别为S 1=20 cm 2,S 2=10 cm 2,它们之间用一根细杆连接,B 通过水平细绳绕过光滑的定滑轮与质量为M 的重物C 连接,静止时汽缸中的空气压强p =1.3×105Pa ,温度T =540 K ,汽缸两部分的气柱长均为L .已知大气压强p 0=1×105Pa ,取g =10 m/s 2,缸内空气可看作理想气体,不计一切摩擦.求:(1)重物C 的质量M ;(2)逐渐降低汽缸中气体的温度,活塞A 将向右缓慢移动,当活塞A 刚靠近D 处而处于平衡状态时缸内气体的温度.解析:(1)活塞整体受力处于平衡状态,则有pS 1+p 0S 2=p 0S 1+pS 2+Mg代入数据解得M =3 kg.(2)当活塞A 靠近D 处时,活塞整体受力的平衡方程没变,气体压强不变,根据气体的等压变化有S 1+S 2L T =S 2×2LT ′解得T ′=360 K. 答案:(1)3 kg (2)360 K5.(2018届鹰潭一模)如图所示,是一个连通器装置,连通器的右管半径为左管的两倍,左端封闭,封有长为30 cm 的气柱,左右两管水银面高度差为37.5 cm ,左端封闭端下60 cm 处有一细管用开关D 封闭,细管上端与大气联通,若将开关D 打开(空气能进入但水银不会入细管),稳定后会在左管内产生一段新的空气柱.已知外界大气压强p 0=75 cmHg.求:稳定后左端管内的所有气柱的总长度为多少?解析:空气进入后将左端水银柱隔为两段,上段仅30 cm ,初始状态对左端上面空气有p 1=p 0-h 1=75 cmHg -37.5 cmHg =37.5 cmHg末状态左端上面空气柱压强p 2=p 0-h 2=75 cmHg -30 cmHg =45 cmHg 由玻意耳定律p 1L 1S =p 2L 2S 解得L 2=p 1L 1p 2=37.5×3045cm =25 cm 上段水银柱上移,形成的空气柱长为5 cm ,下段水银柱下移,与右端水银柱等高 设下移的距离为x ,由于U 形管右管内径为左管内径的2倍,则右管横截面积为左管的4倍, 由等式7.5-x =x4,解得x =6 cm所以产生的空气柱总长为L =(6+5+25)cm =36 cm. 答案:36 cm6.(2019届河北四市调研)如图,横截面积相等的绝热汽缸A 与导热汽缸B 均固定于地面,由刚性杆连接的绝热活塞与两汽缸间均无摩擦,两汽缸内都装有理想气体,初始时体积均为V 0、温度为T 0且压强相等,缓慢加热A 中气体,停止加热达到稳定后,A 中气体压强变为原来的1.5倍,设环境温度始终保持不变,求汽缸A 中气体的体积V A 和温度T A .解析:设初态压强为p 0,对汽缸A 加热后A 、B 压强相等:p B p 0B 中气体始、末状态温度相等,由玻意耳定律得 p 0V 0p 0V B2V 0=V A +V B 解得V A =43V 0对A 部分气体,由理想气体状态方程得p 0V 0T 0=错误! 解得T A =2T 0.答案:43V 0 2T 07.(2018年全国卷Ⅲ)在两端封闭、粗细均匀的U 形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U 形管两端竖直朝上时,左、右两边空气柱的长度分别为l 1=18.0 cm 和l 2=12.0 cm ,左边气体的压强为12.0 cmHg.现将U 形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U 形管平放时两边空气柱的长度.在整个过程中,气体温度不变.解析:设U 形管两端竖直朝上时,左、右两边气体的压强分别为p 1和p 2.U 形管水平放置时,两边气体压强相等,设为p ,此时原左、右两边空气柱长度分别变为l 1′和l 2′.由力的平衡条件有p 1=p 2+ρg (l 1-l 2)①式中ρ为水银密度,g 为重力加速度. 由玻意耳定律有p 1l 1=pl 1′② p 2l 2=pl 2′③ l 1′-l 1=l 2-l 2′④由①②③④式和题给条件得l 1′=22.5 cm l 2′=7.5 cm.答案:22.5 cm 7.5 cm8.(2019届福州质检)如图所示,开口向上竖直放置的内壁光滑绝热汽缸,汽缸下面有加热装置.开始时整个装置处于平衡状态,缸内理想气体Ⅰ、Ⅱ两部分高度均为L 0,温度均为T 0.已知活塞A 导热、B 绝热,A 、B 质量均为m 、横截面积为S ,外界大气压强为p 0保持不变,环境温度保持不变.现对气体Ⅱ缓慢加热,当A 上升h 时停止加热,求:(1)此时气体Ⅱ的温度;(2)若在活塞A 上逐渐添加铁砂,当铁砂质量等于m 时,气体Ⅰ的高度. 解析:(1)气体Ⅱ这一过程为等压变化 初状态:温度T 0、体积V 1=L 0S 末状态:温度T 、体积V 2=(L 0+h )S 根据查理定律可得V 1T 0=V 2T解得T =L 0+hL 0T 0. (2)气体Ⅰ这一过程做等温变化 初状态:压强p 1′=p 0+mg S体积V 1′=L 0S末状态:压强p 2′=p 0+2mgS体积V 2′=L 1′S由玻意耳定律得p 1′L 0S =p 2′L 1′S 解得L 1′=p 0S +mgp 0S +2mgL 0.答案:(1)L 0+h L 0T 0 (2)p 0S +mgp 0S +2mgL 0 |学霸作业|——自选一、选择题1.(多选)(2018届兰州一中月考)如图所示,密闭容器内可视为理想气体的氢气温度与外界空气的温度相同,现对该容器缓慢加热,当容器内的氢气温度高于外界空气的温度时,则( )A .氢分子的平均动能增大B .氢分子的势能增大C .氢气的内能增大D .氢气的内能可能不变E .氢气的压强增大解析:选ACE 温度是分子的平均动能的标志,氢气的温度升高,则分子的平均动能一定增大,故A 正确;氢气视为理想气体,气体分子势能忽略不计,故B 错误;密闭容器内气体的内能由分子动能决定,氢气的分子动能增大,则内能增大,故C 正确,D 错误;根据理想气体的状态方程pV T=C 可知,氢气的体积不变,温度升高则压强增大,故E 正确.2.(多选)对于一定量的稀薄气体,下列说法正确的是( ) A .压强变大时,分子热运动必然变得剧烈 B .保持压强不变时,分子热运动可能变得剧烈 C .压强变大时,分子间的平均距离必然变小 D .压强变小时,分子间的平均距离可能变小解析:选BD 根据理想气体的状态方程pV T=C 可知,当压强变大时,气体的温度不一定变大,分子热运动也不一定变得剧烈,选项A 错误;当压强不变时,气体的温度可能变大,分子热运动也可能变得剧烈,选项B 正确;当压强变大时,气体的体积不一定变小,分子间的平均距离也不一定变小,选项C 错误;当压强变小时,气体的体积可能变小,分子间的平均距离也可能变小,选项D 正确.V 与温度T 的关系图象,它由状态A 经等温过程到状态B ,再经等容过程到状态C .设A 、B 、C 状态对应的压强分别为p A 、p B 、p C ,则下列关系式中正确的是( )A .p A <pB ,p B <pC B .p A >p B ,p B =p C C .p A >p B ,p B <p CD .p A =p B ,p B >p C解析:选A 由pVT=常量,得A 到B 过程,T 不变,体积减小,则压强增大,所以p A <p B ;B 经等容过程到C ,V 不变,温度升高,则压强增大,即p B <p C ,所以A 正确.二、非选择题4.图甲是一定质量的气体由状态A 经过状态B 变为状态C 的V T 图象.已知气体在状态A 时的压强是1.5×105Pa.(1)说出A →B 过程中压强变化的情形,并根据图象提供的信息,计算图甲中T A 的温度值;(2)请在图乙坐标系中,作出该气体由状态A 经过状态B 变为状态C 的p T 图象,并在图线相应位置上标出字母A 、B 、C .如果需要计算才能确定的有关坐标值,请写出计算过程.解析:(1)从题图甲可以看出,A 与B 连线的延长线过原点,所以A →B 是一个等压变化,即p A =p B根据盖—吕萨克定律可得V A T A =V BT B所以T A =V A V BT B =,0.6)×300 K=200 K.(2)由题图甲可知,由B →C 是等容变化,根据查理定律得p B T B =p C T C所以p C =T C T B p B =400300p B =43p B =43×1.5×105 Pa =2.0×105Pa则可画出由状态A →B →C 的p T 图象如图所示. 答案:(1)等压变化 200 K (2)见解析5.(2018届商丘一中押题卷)如图所示,用绝热光滑活塞把汽缸内的理想气体分A 、B 两部分,初态时已知A 、B 两部分气体的热力学温度分别为330 K 和220 K ,它们的体积之比为2∶1,末态时把A 气体的温度升高70 ℃,把B 气体温度降低20 ℃,活塞可以再次达到平衡.求气体A 初态的压强p 0与末态的压强p 的比值.解析:设活塞原来处于平衡状态时A 、B 的压强相等为p 0,后来仍处于平衡状态压强相等为p .根据理想气体状态方程,对于A 有p 0V A T A =pV A ′T A ′① 对于B 有 p 0V B T B =pV B ′T B ′② 化简得V A ′V B ′=83③ 由题意设V A =2V 0,V B =V 0④ 汽缸的总体积为V =3V 0⑤ 所以可得V A ′=811V =2411V 0⑥将④⑥代入①式得p 0p =910. 答案:9106.(2018年全国卷Ⅱ)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a 和b ,a 、b间距为h ,a 距缸底的高度为H ;活塞只能在a 、b 间移动,其下方密封有一定质量的理想气体.已知活塞质量为m ,面积为S ,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p 0,温度均为T 0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b 处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g .解析:开始时活塞位于a 处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动,设此时汽缸中气体的温度为T 1,压强为p 1,根据查理定律有p 0T 0=p 1T 1① 根据力的平衡条件有p 1S =p 0S +mg ②联立①②式可得T 1=⎝ ⎛⎭⎪⎫1+mg p 0S T 0③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达b 处,设此时汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积分别为V 1和V 2.根据盖—吕萨克定律有V 1T 1=V 2T 2④ 式中V 1=SH ⑤ V 2=S (H +h )⑥联立③④⑤⑥式解得T 2=⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0⑦ 从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为W =(p 0S +mg )h .答案:⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0 (p 0S +mg )h 7.(2016年全国卷Ⅲ)一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变.解析:设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强为p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′.以cmHg 为压强单位.由题给条件得p 1=p 0+(20.0-5.00)cmHg ① l 1′=,2)))cm ②由玻意耳定律得p 1l 1=p 1′l 1′③ 联立①②③式和题给条件得p 1′=144 cmHg ④依题意p 2′=p 1′⑤l 2′=4.00 cm +,2) cm -h ⑥由玻意耳定律得p 2l 2=p 2′l 2′⑦联立④⑤⑥⑦式和题给条件得h =9.42 cm. 答案:144 cmHg 9.42 cm8.(2019届沈阳模拟)如图所示,内壁光滑的圆柱形导热汽缸固定在水平面上,汽缸内被活塞封有一定质量的理想气体,活塞横截面积为S ,质量和厚度都不计,活塞通过弹簧与汽缸底部连接在一起,弹簧处于原长,已知周围环境温度为T 0,大气压强恒为p 0,弹簧的劲度系数k =p 0Sl 0(S 为活塞横截面积),原长为l 0,一段时间后,环境温度降低,在活塞上施加一水平向右的压力,使活塞缓慢向右移动,当压力增大到某一值时保持恒定,此时活塞向右移动了l 0p 0.(1)求此时缸内气体的温度T 1;(2)对汽缸加热,使气体温度缓慢升高,当活塞移动到距汽缸底部l 0时,求此时缸内气体的温度T 2.解析:(1)汽缸内的气体,初态时:压强为p 0,体积为V 0=Sl 0,温度为T 0末态时:压强为p 1p 0,体积为V 1=S (l 0l 0) 由理想气体状态方程得p 0V 0T 0=p 1V 1T 1解得T 1T 0.(2)当活塞移动到距汽缸底部l 0时,体积为V 2Sl 0,设气体压强为p 2 由理想气体状态方程得p 0V 0T 0=p 2V 2T 2此时活塞受力平衡方程为p 0S +F -p 2S +k (l 0-l 0)=0l 0后压力F 保持恒定,活塞受力平衡 p 0S +Fp 0S -k (l 0)=0解得T 2T 0. 答案:T 0 T 09.(2017年全国卷Ⅱ)一热气球体积为V ,内部充有温度为T a 的热空气,气球外冷空气的温度为T b .已知空气在1个大气压,温度T 0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g .(1)求该热气球所受浮力的大小; (2)求该热气球内空气所受的重力;(3)设充气前热气球的质量为m 0,求充气后它还能托起的最大质量.解析:(1)设1个大气压下质量为m 的空气在温度为T 0时的体积为V 0,密度为ρ0=mV 0① 在温度为T 时的体积为V T ,密度为ρ(T )=m V T② 由盖—吕萨克定律得V 0T 0=V TT③ 联立①②③式得ρ(T )=ρ0T 0T④气球所受到的浮力为f =ρ(T b )gV ⑤联立④⑤式得f =Vgρ0T 0T b.⑥(2)气球内热空气所受的重力为G =ρ(T a )Vg ⑦联立④⑦式得G =Vg ρ0T 0T a.⑧ (3)设该气球还能托起的最大质量为m ,由力的平衡条件得mg =f -G -m 0g ⑨ 联立⑥⑧⑨式得m =Vρ0T 0⎝ ⎛⎭⎪⎫1T b -1T a -m 0. 答案:(1)Vgρ0T 0T b (2)Vgρ0T 0T a(3)Vρ0T 0⎝ ⎛⎭⎪⎫1T b -1T a -m 0。
2019高考物理一轮选训练导(7)李仕才一、选择题1、(2017·河南省商丘市高考物理二模考试)正方体空心框架ABCDA 1B 1C 1D 1下表面在水平地面上,将可视为质点的小球从顶点A 在∠BAD 所在范围内(包括边界)沿不同的水平方向分别抛出,落点都在△B 1C 1D 1平面内(包括边界).不计空气阻力,以地面为重力势能参考平面.则下列说法正确的是( )A .小球初速度的最小值与最大值之比是1∶2B .落在C 1点的小球,运动时间最长C .落在B 1D 1线段上的小球,落地时机械能最小值与最大值之比是1∶2D .轨迹与AC 1线段相交的小球,在交点处的速度方向都相同解析:选D.A 、小球落在A 1C 1线段中点时水平位移最小,落在C 1时水平位移最大,由几何关系知水平位移的最小值与最大值之比是1∶2,由x =v 0t ,t 相等得小球初速度的最小值与最大值之比是1∶2,故A 错误;B 、小球做平抛运动,由h =gt 2得t =,下落高度122h g 相同,平抛运动的时间相等,故B 错误;C 、落在B 1D 1线段中点的小球,落地时机械能最小,落在B 1D 1线段上D 1或B 1的小球,落地时机械能最大.设落在B 1D 1线段中点的小球初速度为v 1,水平位移为x 1.落在B 1D 1线段上D 1或B 1的小球初速度为v 2.水平位移为x 2.由几何关系有x 1∶x 2=1∶,由x =v 0t ,得:v 1∶v 2=1∶,落地时机械能等于抛出时的机械能,22分别为:E 1=mgh +mv ,E 2=mgh +mv ,可知落地时机械能的最小值与最大值之比不等于12211221∶2.故C 错误.D 、设AC 1的倾角为α,轨迹与AC 1线段相交的小球,在交点处的速度方向与水平方向的夹角为θ.则有tan α===,tan θ=,则tan θ=2tan α,可y x 12gt 2v 0t gt 2v 0gt v0知θ一定,则轨迹与AC 1线段相交的小球,在交点处的速度方向相同,故D 正确.【链接】距地面高5 m 的水平直轨道上A 、B 两点相距3 m ,在B 点用细线悬挂一大小可忽略的小球,离地高度为h ,如图。
2019-2020学年度上学期高中物理一轮总复习试题内容:《x-t、v-t、a-t图像的应用》命题人:嬴本德测试时间:100分钟试卷满分:150分一、单选题:本题共30小题,每小题2分,共60分。
在每个小题给出的四个选项中,只有一个选项符合题目要求。
1.如图所示为甲和乙在地面同一直线上运动的v-t图象,已知t=0时甲乙从同一位置出发,则在0~4s内对于甲、乙运动描述正确的是()A.甲做往返运动,4s末回到起点B.在t=2s时甲乙相距最大C.甲和乙之间的最大距离为8mD.甲和乙之间的最大距离为m3162.某物理兴趣小组用加速度传感器探究一质量为m的物体从静止开始做直线运动的情况,得到加速度随时间变化的关系如图所示,则由图象可知()A.物体在t=6s时速度为2.6m/sB.物体在10~14 s内的平均速度为3.8 m/sC.物体先做加速运动,再做减速运动,最后做匀速运动D.物体在t=2 s与t=8 s时所受合外力大小相等,方向相反3.一质点由静止开始沿直线运动,其速度-位移图象如图所示,运动到距出发点x0处,速度大小为v0.下列选项正确的是()A.质点做匀加速直线运动B.质点运动前2x的平均速度大于后2x的平均速度C.质点运动x0的平均速度为2vD.以上说法都不对4.如图是某质点甲运动的速度-时间图像,下列说法正确的是()A.质点在0~1 s内的平均速度是2 m/sB.质点在0~2 s内的位移大小是2 mC.质点在4 内的平均速度是1.25m/sD.质点在0~4 s内的位移是0 m5.光滑的水平面上有一物体在外力作用下做直线运动,物体的加速度随时间变化(a﹣t)的关系如图所示.已知t=0时物体的速度为2m/s,以此时的速度方向为正方向.下列说法中正确的是()A.0~1s内物体做匀加速直线运动B.t=1s时物体的速度为4m/sC.t=1s时物体开始反向运动D.t=2s时物体离出发点最远6.甲乙两辆汽车在同一平直公路上行驶,其位移-时间图像如图所示,其中甲车图像为直线,乙车图像为抛物线,则下列关于两车运动情况的说法正确的是()A.甲车做直线运动,乙车做曲线运动B.在t=2s时,甲、乙两车相遇C.在t=2s时,甲、乙两车速度大小相等D.在0~4s内,甲、乙两车的平均速度大小均为2m/s7.甲、乙两车从同一地点沿同一方向在一平直公路上做直线运动,它们的v-t图象如图所示.下列判断正确的是()A.t=4s时,甲、乙两车相距最远B.t=8s时,乙车正好追上甲车C.0~10s运动过程中,乙车始终没有追上甲车D.t=6s之前,甲、乙两车越来越近8.如图,是一辆汽车做直线运动的x-t图象,对线段OA、AB、BC、CD 所表示的运动,下列说法正确的是A.OA段运动最快B.AB段汽车做匀速直线运动C.运动4h后汽车的位移大小为30kmD.CD段表示的运动方向与初始运动方向相反s9.东方网有消息报道:上海海洋大学研发的1.1万米载人潜水器,获得了上海市科委立项支持,这一深度已可抵达目前地球所知的最深的海沟-马里亚纳海沟.这意味着中国载人潜水器将在全世界近100%的海洋范围内自由行动.如图所示为潜水器在某次实验中下潜的速度一时间图象,规定向下为速度的正方向,则()A.3s末潜水器的加速度为零B.0~1s内潜水器的加速度小于3s~5s内的加速度C.5s末,潜水器回到出发点D.5s末,潜水器离出发点最远10.我国“蛟龙号”深潜器经过多次试验,终于在2012年6月24日以7020m深度创下世界最新纪录(国外最深不超过6500m),这预示着它可以征服全球99.8%的海底世界.在某次实验中,深潜器内的显示屏上显示出的深度曲线如图(a)所示、速度图象如图(a)所示,则下列说法中正确的是()A.(a)图表示深潜器一直在下潜B.本次实验中深潜器的最大加速度是0.025m/s2C.在3~4min和6~8min的时间段内深潜器具有向上的加速度D.在6~10min时间段内深潜器的平均速度为011.甲、乙两物体在同一直线上运动,运动情况如图所示,下列说法中正确的是()A.经过12s,甲、乙两物体相遇B.经过6s,甲物体到达乙物体的出发点C.甲、乙两物体速度的大小相等、方向相反D.经过12s,乙物体的速度变为零12.如图所示是甲、乙两物体从同一点出发的位移-时间(x-t)图象,由图象可以看出在0~4 s这段时间内()A.甲先上坡后下坡B.甲、乙两物体始终同向运动C.甲、乙两物体之间的最大距离为4mD.4s时甲乙两物体相遇13.2019年9月13日,美国导弹驱逐舰“迈耶”号擅自进人中国西沙群岛海域.我军组织有关海空兵力,依法依规对美舰进行了识别查证,予以警告,成功将其驱离.下图是美国导弹驱逐舰“迈耶”号在海面上被我军驱离前后运动的速度-时间图象,如图所示,则下列说法正确的是()A.美舰在0~66s内从静止出发做加速度增大的加速运动B.美舰在66s末开始调头逃离C.美舰在96~116s内做匀减速直线运动D.美舰在66~96s内运动了225m14.为检测某新能源动力车的刹车性能,现在平直公路上做刹车实验,如图所示是动力车整个刹车过程中位移与速度平方之间的关系图象,下列说法正确的是()A.动力车的初速度为40 m/sB.刹车过程动力车的加速度大小为5 m/s2C.刹车过程持续的时间为10sD.从开始刹车时计时,经过6s,动力车的位移为30m15.甲、乙两车在平直公路上同向行驶,其v-t图像如图所示.已知两车在t=3s时并排行驶,则正确的是()A.两车另一次并排行驶的时刻是t=1sB.在t=0时,乙车在甲车前7mC.乙车做匀加速直线运动,加速度为10m/s2D.甲车2秒内行驶的距离为30m16.汽车的加速性能是反映汽车性能的重要指标.速度变化得越快,表明它的加速性能越好.右图为研究甲、乙、丙三辆汽车加速性能得到的v-t图像,根据图像可以判定()A.甲车的加速性能最好B.乙车比甲车的加速性能好C.丙车比乙车的加速性能好D.甲、丙两车的加速性能相同17.汽车在平直公路上做刹车试验,若从t=0时起汽车在运动过程中的位移与速度的平方之间的关系如图所示,下列说法正确的是()A.t=0时汽车的速度为20 m/sB.刹车过程持续的时间为5 sC.刹车过程经过3 s时汽车的位移为10 mD.刹车过程汽车的加速度大小为10 m/s218.如图所示为某质点做直线运动时的v-t图象图象关于图中虚线对称,则在0~t1时间内,关于质点的运动,下列说法正确的是()A.若质点能两次到达某一位置,则两次的速度都不可能为零B.若质点能三次通过某一位置,则可能三次都是加速通过该位置C.若质点能三次通过某一位置,则可能两次加速通过,一次减速通过D.若质点能两次到达某一位置,则两次到达这一位置的速度大小一定相等19.一物体由静止开始运动,其加速度a与位移x关系图线如图所示.下列说法正确的是()A.物体最终静止B.物体的最大速度为02xaC.物体的最大速度为0223xaD.物体的最大速度为03xa20.如图甲所示,一斜面上安装有两个光电门,其中光电门乙固定在斜面上靠近底端处,光电门甲的位置可移动,将一带有遮光片的滑块自斜面上滑下时,用米尺测量甲、乙之间的距离x.与两个光电门都相连的计时器可以显示出遮光片从光电门甲至乙所用的时间T.改变光电门甲的位置进行多次测量,每次都使滑块从同一点由静止开始下滑,作出ttx-的图象如图乙所示.由此可以得出()A.滑块经过光电门乙的速度大小为v0B.滑块经过甲、乙两光电门最长时间为t0C.滑块运动的加速度的大小tvD.图线下所围的面积表示物体由静止开始下滑至光电门乙的位移大小21.有四个物体A、B、C、D,物体A、B运动的x-t图象如图所示;物体C、D从同一地点沿同一方向运动的v-t图象如图所示.根据图象做出的以下判断中正确的是()A.物体A和B均做匀变速直线运动B.在0~3 s的时间内,物体A、B的间距逐渐减小C.t=3 s时,物体C、D的位移相同D.在0~3 s的时间内,物体C与D的间距逐渐增大22.如图,直线a与四分之一圆弧b分别表示两质点A、B从同一地点出发,沿同一方向做直线运动的v-t图,当B的速度变为0时,A恰好追上B,则A的加速度为()A.1.0m/s2B.2.0m/s2C.2πm/s2D.πm/s223.某质点做直线运动,运动速率的倒数v1与位移x的关系如图所示(OA与AA′距离相等),关于质点的运动,下列说法正确的是()A.质点做匀速直线运动B.xv-1图线斜率等于质点运动的加速度C.质点从C运动到C′所用的运动时间是从O运动到C所用时间的3倍D.质点从C运动到C′的运动位移是从O运动到C的运动位移的3倍24.甲乙两个物体在同一时刻沿同一直线运动,它们的速度﹣时间图象如图所示,下列有关说法正确的是()A.在4~6 s内,甲、乙两物体的加速度大小相等,方向相反B.前6 s内甲通过的路程更大C.前4 s内甲、乙两物体的平均速度相等D.甲、乙两物体一定在2 s末相遇25.中国火箭航天集团专家称,人类能在20年后飞往火星.若一物体从火星表面竖直向上抛出(不计气体阻力)时的x-t图象如图所示,则()A.该火星表面的重力加速度为3.2 m/s2B.该物体上升过程用时为10 sC.该物体被抛出时的初速度为8 m/sD.该物体落到火星表面时的速度为16 m/s26.可视为质点的M、N两车在同地、同时沿同一方向做直线运动,M做初速个度为零,加速度大小为a1的匀加速直线运动,N做初速度为v0、加速度大小为a2的匀减速直线运动至速度减为零,取出发点位置为x=0,如图所示为M、N两车在运动过程中的位置(x)-速度(v)图象,则()A.N的初速度大小为2m/sB.M、N两车加速度大小之和为6m/s2C.M车加速度大小是N车加速度大小的4倍D.M车加速度大小为2m/s227.如图所示,三个图象表示A、B、C、D、E、F六个物体的运动情况,下列说法中正确的是()A.速度相等的物体是B、DB.合力为零的物体是A、C、EC.合力是恒力的物体是D、FD.合力是变力的物体是F28.甲乙两辆汽车在平直的公路上沿同一方向做直线运动,t=0时刻甲车在乙车前方9m处.在描述两车运动的v-t图像中(如图),直线a、b分别描述了甲乙两车在0~20s时间内的运动情况.关于两车之间的位置关系,下列说法正确的是()A.在0~10s内两车逐渐靠近B.在0~20s内两车相遇两次C.在5~15s内甲车发生的位移大于乙车发生的位移D.在t=10s时两车间距最小二、多选题:本题共30小题,每小题3分,共90分。
2019高考物理一轮选训习题(7)(含解析)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考物理一轮选训习题(7)(含解析)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考物理一轮选训习题(7)(含解析)新人教版的全部内容。
2019人教高考物理一轮选训习题(7)及答案李仕才一、选择题1、(多选)如图所示,真空中xOy平面内有一束宽度为d的带正电粒子束沿x轴正向运动,所有粒子为同种粒子,速度大小相等,在第一象限内有一方向垂直xOy平面的有界匀强磁场区(图中未画出),所有带电粒子通过磁场偏转后都会聚于x轴上的a点.下列说法中正确的是( )世纪金榜导学号49294172A。
磁场方向一定是垂直xOy平面向里B.所有粒子通过磁场区的时间相同C。
所有粒子在磁场区运动的半径相等D.磁场区边界可能是圆【解题指导】(1)磁场的方向可由带电粒子的受力方向判断。
(2)粒子在磁场中的运动时间与圆心角有关。
(3)带电粒子进入磁场的位置为一圆弧,且圆弧的半径与粒子在磁场中的轨迹半径相同.【解析】选C、D。
由题意可知,正粒子经磁场偏转,都集中于一点a,根据左手定则,磁场的方向垂直xOy平面向外,故A错误;由洛伦兹力提供向心力,可得T=,而运动的时间还与圆心角有关,因此粒子的运动时间不等,故B错误;由洛伦兹力提供向心力,可得R=,由于是同种粒子,且速度大小相等,所以它们的运动半径相等,故C正确;所有带电粒子通过磁场偏转后都会聚于x轴上的a点,因此磁场区边界可能是圆,也可能是圆弧,故D正确。
2、嫦娥三号月球探测器成功完成月面软着陆,并且着陆器与巡视器(“玉兔号"月球车)成功分离,这标志着我国的航天事业又一次腾飞,下面有关嫦娥三号的说法正确的是( )A.嫦娥三号刚刚升空的时候速度很小,加速度也很小B。
第1讲电磁感应现象楞次定律一、单项选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.如下列图,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现假设使矩形框以左边的一条边为轴转到竖直的虚线位置,如此此过程中磁通量的改变量的大小是( C )A.3-12BS B.3+12NBSC.3+12BS D.3-12NBS[解析] sin θ磁通量与匝数无关,Φ=BS中,B与S必须垂直。
初态Φ1=B cos θ·S,末态Φ2=-B cos θ·S,磁通量的变化量大小ΔΦ=|Φ2-Φ1|=|BS(-cos 30°-sin30°)|=3+12BS,所以应选C项。
2.(2020·浙江诸暨模拟)有人设计了一种储能装置:在人的腰部固定一块永久磁铁,N 极向外;在手臂上固定一个金属线圈,线圈连接着充电电容器。
当手不停地前后摆动时,固定在手臂上的线圈能在一个摆动周期内,两次扫过别在腰部的磁铁,从而实现储能。
如下说法正确的答案是( D )A.该装置违反物理规律,不可能实现B.此装置会使手臂受到阻力而导致人走路变慢C.在手摆动的过程中,电容器极板的电性不变D.在手摆动的过程中,手臂受到的安培力方向交替变化[解析] D.在手摆动的过程中,线圈交替的进入或者离开磁场,使穿过线圈的磁通量发生变化,因而会产生感应电流,从而实现储能,该装置符合法拉第电磁感应定律,可能实现,选项A错误;此装置不会影响人走路的速度,选项B错误;在手摆动的过程中,感应电流的方向不断变化,如此电容器极板的电性不断改变。
选项C错误;在手摆动的过程中,感应电流的方向不断变化,手臂受到的安培力方向交替变化。
选项D正确。
3.如下列图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且与线圈相互绝缘。
当MN中电流突然减小时,线圈所受安培力的合力方向( B )A.向左B.向右C.垂直纸面向外D.垂直纸面向里[解析] 解法一:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,线圈abcd中产生的感应电流方向为顺时针方向,由左手定如此可知ab边与cd边所受安培力方向均向右,所以线圈所受安培力的合力方向向右,B正确。
电容器与电容 带电粒子在电场中的运动[基础知识·填一填][知识点1] 电容器及电容 1.电容器(1)组成:由两个彼此 绝缘 又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的 绝对值 . (3)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的 异种电荷_ ,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中 电能 转化为其他形式的能.2.电容(1)定义:电容器所带的 电荷量 与两个极板间的 电势差 的比值. (2)定义式: C =Q U.(3)单位:法拉(F)、微法(μF)、皮法(pF).1 F = 106μF= 1012pF. (4)意义:表示电容器 容纳电荷 本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否 带电 及 电压 无关.3.平行板电容器的电容(1)决定因素:正对面积、介电常数、两板间的距离. (2)决定式: C =εr S4πkd.判断正误,正确的划“√”,错误的划“×”.(1)电容器所带的电荷量是指每个极板所带电荷量的代数和.(×) (2)电容器的电容与电容器所带电荷量成反比.(×) (3)放电后的电容器电荷量为零,电容也为零.(×) [知识点2] 带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20.(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质: 匀变速曲线 运动. (3)处理方法:利用运动的合成与分解. ①沿初速度方向:做 匀速 运动.②沿电场方向:做初速度为零的 匀加速 运动. 判断正误,正确的划“√”,错误的划“×”. (1)带电粒子在匀强电场中只能做类平抛运动.(×)(2)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动.(√) (3)带电粒子在电场中运动时重力一定可以忽略不计.(×) [知识点3] 示波管1.装置:示波管由电子枪、偏转电极和荧光屏组成,管内抽成真空,如图所示. 2.原理(1)如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线传播,打在荧光屏 中心 ,在那里产生一个亮斑.(2)YY ′上加的是待显示的 信号电压 ,XX ′上是机器自身产生的锯齿形电压,叫做扫描电压.若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内变化的图象.[教材挖掘·做一做]1.(人教版选修3-1 P32第1题改编)(多选)如图所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U ,电容器已带电,则下列判断正确的是( )A .增大两极板间的距离,指针张角变大B .将A 板稍微上移,静电计指针张角变大C .若将玻璃板插入两板之间,则静电计指针张角变大D .若减小两板间的距离,则静电计指针张角变小解析:ABD [电势差U 变大(小),指针张角变大(小).电容器所带电荷量一定,由公式C =εr S 4πkd 知,当d 变大时,C 变小,再由C =QU得U 变大;当A 板上移时,正对面积S 变小,C 也变小,U 变大;当插入玻璃板时,C 变大,U 变小;而两板间的距离减小时,C 变大,U 变小,所以选项A 、B 、D 正确.]2.(人教版选修3-1 P39第2题改编)两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edhU B .edUhC.eU dhD.eUh d解析:D [电子从O 点到A 点,因受电场力作用,速度逐渐减小.根据题意和图示判断,电子仅受电场力,不计重力.这样,我们可以用能量守恒定律来研究问题,即12mv 20=eU OA .因E =U d ,U OA =Eh =Uh d ,故12mv 20=eUhd,故选项D 正确.] 3.(人教版选修3-1 P39第4题改编)如图所示,含有大量11H 、21H 、42He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.下列有关荧光屏上亮点分布的说法正确的是( )A .出现三个亮点,偏离O 点最远的是11H B .出现三个亮点,偏离O 点最远的是42He C .出现两个亮点 D .只会出现一个亮点 答案:D4.(人教版选修3-1 P36思考与讨论改编)如图是示波管的原理图,它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成.管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.(1)带电粒子在 __________ 区域是加速的,在 ________ 区域是偏转的. (2)若U YY ′>0,U XX ′=0,则粒子向 ________ 板偏转,若U YY ′=0,U XX ′>0,则粒子向 ________ 板偏转.答案:(1)Ⅰ Ⅱ (2)Y X考点一 平行板电容器的动态分析[考点解读]1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.②根据E =U d分析场强的变化. ③根据U AB =Ed 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd先分析电容的变化,再分析U 的变化.②根据E =U d=4k πQεr S分析场强变化.[典例赏析][典例1] (多选)如图所示,平行板电容器与直流电源连接,下极板接地,一带电油滴位于电容器中的P 点且处于静止状态,现将上极板竖直向上移动一小段距离,则( )A .带电油滴将沿竖直方向向上运动B .P 点电势将降低C .电容器的电容减小,极板带电荷量减小D .带电油滴的电势能保持不变[解析] BC [电容器与电源相连,两极板间电压不变,下极板接地,电势为0.油滴位于P 点处于静止状态,因此有mg =qE .当上极板向上移动一小段距离时,板间距离d 增大,由C =εr S 4πkd 可知电容器电容减小,板间场强E 场=Ud 减小,油滴所受的电场力减小,mg>qE ,合力向下,带电油滴将向下加速运动,A 错;P 点电势等于P 点到下极板间的电势差,由于P 到下极板间距离h 不变,由φP =ΔU =Eh 可知,场强E 减小时P 点电势降低,B 对;由C =Q U可知电容器所带电荷量减小,C 对;带电油滴所处P 点电势下降,而由题图可知油滴带负电,所以油滴电势能增大,D 错.]分析平行板电容器动态变化的三点关键1.确定不变量:先明确动态变化过程中的哪些量不变,是电荷量保持不变还是极板间电压不变.2.恰当选择公式:灵活选取电容的决定式和定义式,分析电容的变化,同时用公式E =U d分析极板间电场强度的变化情况.3.若两极板间有带电微粒,则通过分析电场力的变化,分析其运动情况的变化.[题组巩固]1.(2016·全国卷Ⅰ)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变解析:D [据C =εr S4πkd 可知,将云母介质移出电容器,C 变小,电容器接在恒压直流电源上,电压不变,据Q =CU 可知极板上的电荷量变小,据E =U d可知极板间电场强度不变,故选D.]2.(2018·北京卷) 研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A .实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B .实验中,只将电容器b 板向上平移,静电计指针的张角变小C .实验中,只在极板间插入有机玻璃板, 静电计指针的张角变大D .实验中,只增加极板带电荷量,静电计指针的张角变大,表明电容增大解析:A [当用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异种电荷,从而使电容器带电,故选项A 正确;根据电容器电容的决定式:C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =QU可知, 电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故选项B 错误;根据电容器电容的决定式:C =εr S4πkd,只在极板间插入有机玻璃板,则介电常数εr 增大,则电容C 增大,根据C =Q U可知, 电荷量Q 不变,则电压U 减小,则静电计指针的张角减小,故选项C 错误;根据C =Q U可知,电荷量Q 增大,则电压U 也会增大,而电容由电容器本身决定,C不变,故选项D 错误.]考点二 带电粒子在电场中的直线运动[考点解读]1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =Ud,v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1.[典例赏析][典例2] (2019·湖南长沙模拟)如图所示,在A 点固定一正电荷,电荷量为Q ,在离A 高度为H 的C 处由静止释放某带同种电荷的液珠,开始运动瞬间向上的加速度大小恰好等于重力加速度g .已知静电力常量为k ,两电荷均可看成点电荷,不计空气阻力.求:(1)液珠的比荷;(2)液珠速度最大时离A 点的距离h ;(3)若已知在点电荷Q 的电场中,某点的电势可表示成φ=kQr,其中r 为该点到Q 的距离(选无限远的电势为零).求液珠能到达的最高点B 离A 点的高度r B .[解析] (1)设液珠的电荷量为q ,质量为m ,由题意知,当液珠在C 点时k QqH2-mg =mg 比荷为q m =2gH 2kQ(2)当液珠速度最大时,k Qq h2=mg 得h =2H(3)设BC 间的电势差大小为U CB ,由题意得U CB =φC -φB =kQ H -kQr B对液珠由释放处至液珠到达最高点(速度为零)的全过程应用动能定理得qU CB -mg (r B -H )=0即q ⎝ ⎛⎭⎪⎫kQ H -kQr B -mg (r B -H )=0解得:r B =2H ,r B =H (舍去). [答案] (1)2gH 2kQ(2)2H (3)2H带电体在匀强电场中的直线运动问题的解题步骤[题组巩固]1.(多选)如图所示,带电小球自O 点由静止释放,经C 孔进入两水平位置的平行金属板之间,由于电场的作用,刚好下落到D 孔时速度减为零.对于小球从C 到D 的运动过程,已知从C 运动到CD 中点位置用时t 1,从C 运动到速度等于C 点速度一半的位置用时t 2,下列说法正确的是( )A .小球带负电B .t 1<t 2C .t 1>t 2D .将B 板向上平移少许后小球可能从D 孔落下解析:AB [由题图可知,A 、B 间的电场强度方向向下,小球从C 到D 做减速运动,受电场力方向向上,所以小球带负电,选项A 正确;由于小球在电场中受到的重力和电场力都是恒力,所以小球做匀减速直线运动,其速度图象如图所示,由图可知,t 1<t 2,选项B 正确,C 错误;将B 板向上平移少许时两板间的电压不变,根据动能定理可知,mg (h +d )-qU =0,mg (h +x )-qUx d ′=0,联立得x =h h +d -d ′d ′<d ′,即小球不到D 孔就要向上返回,所以选项D 错误.]2.(2017·江苏卷)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析:A [设A 、B 板间的电势差为U 1,B 、C 间电势差为U 2,板间距为d ,电场强度为E ,第一次由O 点静止释放的电子恰好能运动到P 点,根据动能定理得:qU 1=qU 2=qEd ,将C 板向右移动,B 、C 板间的电场强度:E =U 2d =Q C 0d =4πkQεr S不变,所以电子还是运动到P 点速度减小为零,然后返回,故A 正确,B 、C 、D 错误.]考点三 带电粒子在匀强电场中的偏转[考点解读]1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0b.不能飞出电容器:y =12at 2=qU 2mdt 2,t =2mdyqU(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv2离开电场时的偏转角:tan θ=v y v 0=qUl mdv202.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·⎝ ⎛⎭⎪⎫l v 02tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.[典例赏析][典例3] 如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流,以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m =4×10-5kg ,电荷量q =+1×10-8C ,g 取10 m/s 2.求:(1)微粒入射速度v 0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U 应取什么范围?[审题指导] 开关闭合前,微粒做平抛运动,开关闭合后,微粒做类平抛运动,两个过程的分析方法相同,都要用到运动的合成与分解.[解析] (1)开关S 闭合前,由L 2=v 0t ,d 2=12gt 2可解得v 0=L2gd=10 m/s. (2)电容器的上极板应接电源的负极.当所加的电压为U 1时,微粒恰好从下板的右边缘射出,即d 2=12a 1⎝ ⎛⎭⎪⎫L v 02, 又a 1=mg -qU 1dm,解得U 1=120 V当所加的电压为U 2时,微粒恰好从上极板的右边缘射出,即d 2=12a 2⎝ ⎛⎭⎪⎫L v 02, 又a 2=q U 2d-mg m,解得U 2=200 V所以120 V ≤U ≤200 V.[答案] (1)10 m/s (2)与负极相连,120 V ≤U ≤200 V带电粒子在电场中偏转问题求解通法1.解决带电粒子先加速后偏转模型的通法:加速电场中的运动一般运用动能定理qU =12mv 2进行计算;在偏转电场中的运动为类平抛运动,可利用运动的分解进行计算;二者靠速度相等联系在一起.2.计算粒子打到屏上的位置离屏中心的距离Y 的四种方法: (1)Y =y +d tan θ(d 为屏到偏转电场的水平距离).(2)Y =⎝ ⎛⎭⎪⎫L2+d tan θ(L 为电场宽度). (3)Y =y +v y ·d v 0.(4)根据三角形相似Y y =L2+d L2.[题组巩固]1.(多选)如图所示,带电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相等的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则( )A .A 和B 在电场中运动的时间之比为1∶2 B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1解析:ABC [粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2,选项A 正确;竖直方向由h =12at 2得a =2ht 2,它们沿竖直方向下落的加速度大小之比为a A ∶a B =4∶1,选项B 正确;根据a =qE m 得m =qEa,故m A ∶m B =1∶12,选项C 正确;A 和B 的位移大小不相等,选项D 错误.]2.(2016·北京卷23题改编)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102 V ,d =4.0×10-2m ,m =9.1×10-31 kg ,e =1.6×10-19 C ,g =10 m/s 2. 解析:(1)根据动能定理,有eU 0=12mv 20, 电子射入偏转电场时的初速度v 0=2eU 0m 在偏转电场中,电子的运动时间Δt =Lv 0=L m 2eU 0加速度a =eE m =eU md偏转距离Δy =12a (Δt )2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力 G =mg ≈10-29 N 电场力F =eUd ≈10-15 N由于F ≫G ,因此不需要考虑电子所受的重力.答案:(1) 2eU 0m UL 24U 0d(2)见解析 思想方法(十四) 电容器在现代科技生活中的应用[典例] (多选)目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO 涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置.对于电容触摸屏,下列说法正确的是( )A.电容触摸屏只需要触摸,不需要压力即能产生位置信号B.使用绝缘笔在电容触摸屏上也能进行触控操作C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小D.手指与屏的接触面积变大时,电容变大[解析]AD [据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确.][题组巩固]1.(2019·汕头模拟)图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动.若某次膜片振动时,膜片与极板距离增大,则在此过程中( ) A.膜片与极板间的电容增大B.极板所带电荷量增大C.膜片与极板间的电场强度增大D.电阻R中有电流通过解析:D [根据C=εr S4πkd可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=Ud可知,膜片与极板间的电场强度减小,选项C错误.]2.(多选)电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容.则( ) A.电介质插入极板间越深,电容器电容越小B.当传感器以恒定加速度运动时,电路中有恒定电流C.若传感器原来向右匀速运动,突然减速时弹簧会压缩D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流解析:CD [由C =εr S 4πkd知,电介质插入越深,εr 越大,即C 越大,A 错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B 错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C 对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr 增大,C 增大,电源电动势不变,由C =Q U 知,Q 增大,上极板电荷量增大,即电路中有顺时针方向的电流,D 对.。
第3讲机械能守恒定律及其应用1 重力做功与重力势能(1)重力做功的特点:重力做功与路径无关,只与初、末位置的高度差有关。
(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
②定量关系:物体从位置A到位置B的过程中,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p。
③重力势能的变化量是绝对的,与参考面的选取无关。
湖南长沙雅礼中学月考)(多选)质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,下列说法正确的是()。
A.物体的重力势能减少2mghB.物体的机械能保持不变C.物体的动能增加2mghD.物体的机械能增加mgh【答案】CD2 弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。
(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。
(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式可表示为W=-ΔE p。
【温馨提示】弹性势能是由物体的相对位置决定的。
同一根弹簧的伸长量和压缩量相同时,弹簧的弹性势能相同。
(2018江苏南京10月模拟)如图所示,在光滑水平面上有一物体,它的左端固定连接一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()。
A.弹簧的弹性势能逐渐减少B.弹簧的弹性势能逐渐增加C.弹簧的弹性势能先增加再减少D.弹簧的弹性势能先减少再增加【答案】D3 机械能守恒定律(1)内容:在只有重力或弹力做功的系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)机械能守恒定律的三种表达形式及应用①守恒观点:a.表达式,E k1+E p1=E k2+E p2或E1=E2。
b.意义,系统初状态的机械能等于末状态的机械能。
(人教)物理2019高考一轮选练练题(4)及答案李仕才一、选择题1、如图所示,水平推力F使物体静止于斜面上,贝1」()A.物体一定受3个力的作用B.物体可能受3个力的作用C.物体一定受到沿斜面向下的静摩擦力的作用D.物体一定受到沿斜面向上的静摩擦力的作用解析:选B.以物体为研究对彖受力分析如图,若Feos e =Gsin 0时,物体在水平推力、重力、斜面支持力三力作用下处于平衡状态,则物体受三个力作用;若Feos 0 >Gsin()(或Feos 0 <Gsin())时,物体仍可以静止在斜而上,但物体将受到沿斜而向下(或沿斜面向上)的静摩擦力,综上所述B对.2、某颗行星的同步卫星正下方的行星表而上有一观察者,他用天文望远镜观察被太阳光照射T T的此卫星,发现日落的空时间内有&的时间看不见此卫星.(已知该行星自转周期为T,该行星半径为R,不考虑大气对光的折射)则该同步卫星距该星球的高度是(A )A.RB. 2RC. 5. 6RD. 6. 6RT T解析:根据光的直线传播规律,日落刁时间内有&时间该观察者看不见此卫星,如图所示,同R 2n T 71 n n R步卫星相对地心转过角度为6二2 a , sin a =r,结合0 = t= X 6二3,则a=6s i n6=r可得r=2R,则高度h二r-R二R,选项A正确.3、(2018吉林省梅河口市第五中学高三月考)图示为拖把的示意图,拖把头的质量为m,某 人用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为« ;拖杆 的质量可以忽略,拖把头与地板间的动摩擦因数为重力加速度大小为g 。
当拖把头在地 板上以大小为v 的速度匀速移动时,下列说法正确的是()A. 人拖把头对地板的压力大小为mgB. 拖把头所受地板的摩擦力小于其所受拖杆的推力C. 拖把头的推力大小为/JmgvcosdD. 拖把头克服摩擦力做功的功率为【答案】BC【解析】拖把头受力如图,设该同学沿拖杆方向用大小为F 的力推拖把.将推拖把的力沿竖直和水平方向 分解,按平衡条件有Fcos0^mg = N ?①;Fsm0 = f ?②,又知道f = » ③,式中N 和f 分别为地板对拖把的支持力和摩揀力.联立①②③式得:F=,心 ‘,根据①式结合牛顿第三定律可知 拖把头对地板的压力吨,根据②式可知/A 错误3C 正确;拖把头克服摩撫力做功的功率为 n”严错误sm&- //cos &G4、(多选)如图甲所示,绝缘轻质细绳一端固定在方向相互垂直的匀强电场和匀强磁场川的0 点,另一端连接带.正电的小球,小球电荷量q=6X1()TC,在图示坐标中,电场方向沿竖直方 向,坐标原点0的电势为零.当小球以2 m/s 的速率绕0点在竖直平面内做匀速圆周运动时, 细绳上的拉力刚好为零.在小球从最低点运动到最高点的过程中,轨迹上每点的电势<1)随纵 坐标y 的变化关系如图乙所示,重力加速度g=10 m/s 2.则下列判断正确的是() y/mXX ✓ ■— X 、 X 2 X/ /X 1 R 1 X p\ 0.4 「 X\ \X0 X/ x -0.4 0 \: y/m、 ■ f ✓ X -2 X X X X甲 乙A. 匀强电场的场强大小为3.2X106 V/mB. 小球重力势能增加最多的过程中,电势能减少了 2.4JC. 小球做顺时针方向的匀速圆周运动D. 小球所受的洛伦兹力的大小为3 N解析:选BD.根据小球从最低点运动到最高点的过程中,轨迹上每点的电势4)随纵坐标y 2 X 106的变化关系可得,匀强电场的电场强度大小E=飞一厂V/m=5X10f ,V/m,故选项A 错误; 由于带电小球在运动过程中,只有重力和电场力做功,则只有重力势能和电势能的相互转化, 乂由于带电小球在复合场(重力场、匀强电场和匀强磁场)中做匀速圆周运动,且细绳上的拉 力刚好为零,则有小球受到的竖直向下的重力与其受到的电场力等大、反向,即qE=mg, 因此当带电小球从最低点运动到最高点的过程屮,即小球重力势能增加最多的过程中,电势 能减少量为qE ・2L=2.4 J,故选项B 正确;由于带电小球所受的洛伦兹力提供小球做匀速 圆周运动的向心力,根据左手定则可知,小球沿逆时针方向运动,故选项C 错误;根据牛顿 mv 2第二定律可得F = 又qE=mg,解得F 洛=3 N,即小球所受的洛伦兹力的大小为3N,故选项D 正确.5、如图所示,在直角坐标系xOy 屮,x 轴上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向外.许多质量为叭 电荷量为+q 的粒子,以相同的速率v 沿纸面内,由x 轴负方向 与y 轴正方向Z 间各个方向从原点0射入磁场区域.不计重力及粒子间的相互作用•下列图中 mv阴影部分表示带电粒子在磁场中可能经过的区域,其中R 二qB,正确的图是(D )解析:粒子在磁场中做匀速圆周运动,以X 轴为边界的磁场,粒子从X 轴进入磁场后再离开,mv速度V 与X 轴的夹角相同,根据左手定则和R 二qB,知沿X 轴负方向的粒子刚好进入磁场运动-个圆周,沿y 轴进入的粒子刚好转动半个周期,如图所示,在两图形的相交部分是粒子不能的A 点,此时弹簧恰好水平•将滑块从A 点由静止释放,经R 点到达位于0点正下方的C 点.当 滑块运动到B 点时,弹簧恰处于原长且与斜面垂直.已知弹簧原长为L,斜面倾角()小于45° , 弹簧始终在弹性限度内,重力加速度为g.在此过程中()A. 滑块的加速度可能一直减小B. 滑块经过B 点时的速度可能最大C. 滑块经过C 点的速度大于D. 滑块在AB 过程中动能的增量比BC 过程小解析:选AC.从A 到B 过程中弹簧处于伸长状态,有一个沿斜面向下的分力F 】,并且随着伸 长量的减小,分力Fi 在减小,故此过程中滑块受到的合力F=mgsin 0 +Fi,在减小,故加 速度在减小,从B 到C 过程屮,弹簧处于拉伸状态,有一个沿斜面向上的分力F2,随着伸长 量的增大,F2在增大,若到达C 点时F 2<mgsin 0 ,则滑块受到的合力F=mgsin 0 -F 2,在 减小,故加速度减小,所以从A 到C 过程屮滑块的加速度可能一直减小,A 正确;从B 到C 的过程中,合力F = mgsin ()-F 2,由于弹力是从零增加的,所以是从零开始增大的,故 肯定有一段时间F/mgsin 0 ,所以从B 点后滑块肯定还会加速,所以B 点一定不是速度最另一端与小滑块连接.把滑块放在光滑斜面上大点,B错误;根据儿何知识可得从A到C的竖直高度为4岛,假如只有重力做功,从A到C有:mg~ =|niv2,解得v=、/玄打,因为0小于45°,故A0大于CO,在COS H 2 COS HA点弹簧储存的弹性势能大于在C点弹簧储存的弹性势能,故还有一部分弹性势能转化为动能,故在C点的动能一定大于、/ =[), C正确;从A到B过程小弹力做正功,重力做正\l COS u功,从B到C过程屮重力做正功,弹力做负功,并且从A到B的竖直高度大于从B到C的竖直高度,故滑块在AB过程中动能的增量比BC过程大,D错误.7、如图所示,\1、N为光滑的金属导轨,两导轨平行且在同一水平面内,导轨所在的平而与匀强磁场垂直.导轨的左侧接一定值电阻R,金属杆AB在水平恒力F作用下从静止开始向右运动,则下列杆的速度\,和加速度a随时间t的变化关系正确的是(不计导轨与金属杆电阻)()B212V解析:选B.以金属杆AB为研究对象,根据牛顿第二定律,F—〒=呃,随着速度的增大, 加速度a越来越小,AB加速得越来越慢,最后做匀速运动,选项A错误,选项B正确;加速度a减小,但a与t不是线性关系,选项C、D错误.8、二、非选择题7、用国际单字制的基本单位誉示能量的单位,下列正确的是A.1畑•加%2|B.滋•尬間° W/创D.【来源】浙江新高考2018年4月选考科目物理试题【答案】A【解析】根据W =阿,\F = ma\t可得厶三心“2同,故A正确,B、C、D错误; 二、非选择题某物理实验小组的同学安装“验证动量守恒定律”的实验装置如图所示.让质量为on的小球从斜面上某处自由滚下与静止在支柱上质量为血的小球发生对心碰撞,贝(1)(多选)下列关于实验的说法正确的是A.轨道末端的切线必须是水平的B.斜槽轨道必须光滑C.入射球m:每次必须从同一高度滚下D.应满足入射球叫质量小于被碰小球盹(2)在实验中,根据小球的落点情况,该同学测量出OP、OM、ON、0z P、0z M、0z N的长度,用以上数据合理地写11!验证动量守恒的关系式为(3)________ 在实验中,用20分度的游标卡尺测得两球的直径相等,读数部分如图所示,则小球的直径为mm.解析:(1)要保证小球每次都做平抛运动,则轨道的末端必须水平,A正确;“验证动量守恒定律”的实验屮,通过平抛运动的基本规律求解碰撞前后的速度,只要离开轨道后做平抛运动的初速度相同即可,对斜槽是否光滑没有要求,B错误;要保证碰撞前的速度相同, 所以入射球每次都要从同一高度由静止滚下,C正确;在“验证碰撞中的动量守恒”实验中, 为防止被碰球碰后反弹,入射球的质量口必须大于被碰球的质量血,D错误.(2)入射球与被碰球离开斜槽末端后均从同一高度开始做平抛运动,则小球在空中运动的时间相同.由实验操作可知需要验证动量守恒表达式为miV. =01.7/ 4-m2v2z ,由于运动时间相同则有miVit=niiVi, t + m2v2z t,整理可得mi • 0P=mi • 0M+m2• 0z N.(3)由图可知主尺22 nun处的刻度线与游标尺的笫11小格对齐,则由游标卡尺的读数规则可知小球的直径为22 mm-11X0. 95 mm=ll. 55 mm.答案:(1)AC (2)mi ・OP=nn ・0M+ni2 ・ O' N (3)11.55。
(建议用时:60分钟)一、单项选择题1.(2018·河北定州中学模拟)光滑水平面上有一质量为2 kg 的物体,在五个恒定的水平共点力的作用下处于平衡状态.现同时撤去大小分别为5 N 和15 N 的两个水平力而其余力保持不变,关于此后物体的运动情况的说法中正确的是( )A .一定做匀变速直线运动,加速度大小可能是5 m/s 2B .可能做匀减速直线运动,加速度大小可能是2 m/s 2C .一定做匀变速运动,加速度大小可能是10 m/s 2D .可能做匀速圆周运动,向心加速度大小可能是10 m/s 2解析:选C.根据平衡条件得知,余下力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为5 N 和15 N 的两个力后,物体的合力大小范围为10 N ≤F 合≤20 N ,根据牛顿第二定律F =ma 得物体的加速度范围为:5 m/s 2≤a ≤10 m/s 2;若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上时,物体可以做曲线运动,加速度大小可能是5 m/s 2,故A 错误;若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,则撤去两个力后物体做匀减速直线运动,由上知加速度大小不可能是 2 m/s 2,故B 错误;由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于10 m/s 2,故C 正确;由于撤去两个力后其余力保持不变,恒力作用下不可能做匀速圆周运动,故D 错误.2.(2018·贵州遵义模拟)2013年6月我国航天员在“天宫一号”中进行了我国首次太空授课活动,其中演示了太空“质量测量仪”测质量的实验,助教聂海胜将自己固定在支架一端,王亚平将连接运动机构的弹簧拉到指定位置;松手后,弹簧凸轮机构产生恒定的作用力,使弹簧回到初始位置,同时用光栅测速装置测量出支架复位时的速度和所用时间;这样,就测出了聂海胜的质量为74 kg.下列关于“质量测量仪”测质量的说法正确的是( )A .测量时仪器必须水平放置B .其测量原理是根据牛顿第二定律C .其测量原理是根据万有引力定律D .测量时仪器必须竖直放置解析:选B.“质量测量仪”是先通过光栅测速装置测量出支架复位时的速度和所用时间,则能算出加速度a =Δv Δt,然后根据牛顿第二定律F =ma ,求解质量,所以工作原理为牛顿第二定律.由于在太空中处于完全失重状态,所以测量仪器不论在什么方向上,弹簧凸轮机构产生恒定的作用力都是人所受的合力,故B 正确.3.(2018·湖南石门一中模拟)如图所示,质量分别为m 和2m 的物体A 、B 由轻质弹簧相连后放置在一箱子C 内,箱子质量为m ,整体悬挂处于静止状态;当剪断细绳的瞬间,以下说法正确的是(重力加速度为g )( )A .物体A 的加速度等于gB .物体B 和C 之间的弹力为零C .物体C 的加速度等于gD .物体B 的加速度大于g解析:选D.物体A 受重力和支持力,在细绳剪断瞬间仍受力平衡,所以a =0,故A 错误;B 、C 物体相对静止,将B 、C 看做一个整体,受重力和弹簧的压力,弹簧的压力等于A 物体的重力,故整体的加速度为:a =mg +2mg +mg 2m +m=43g ;故D 正确,C 错误;根据C 项分析知B 与C 之间弹力如果为零,C 的加速度将为g ,故物体B 和C 之间的弹力不为零,故B 错误.4.(2018·贵州贵阳模拟)甲、乙两球质量分别为m 1、m 2,从同一地点(足够高)处同时由静止释放.两球下落过程所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f =k v (k 为正的常量).两球的v -t 图象如图所示.落地前,经时间t 0两球的速度都已达到各自的稳定值v 1、v 2.则下列判断正确的是( )A .释放瞬间甲球加速度较大B.m 1m 2=v 2v 1C .甲球质量大于乙球质量D .t 0时间内两球下落的高度相等解析:选C.释放瞬间v =0,因此空气阻力f =0,两球均只受重力,加速度均为重力加速度g ,故A 错误;两球先做加速度减小的加速运动,最后都做匀速运动,稳定时k v =mg ,因此最大速度与其质量成正比,即v m ∝m ,故m 1m 2=v 1v 2,故B 错误;由于m 1m 2=v 1v 2,而v 1>v 2,故甲球质量大于乙球,故C 正确;图象与时间轴围成的面积表示物体通过的位移,由图可知,t 0时间内两球下落的高度不相等,故D 错误.5.(2018·广西桂林十八中月考)如图所示,在竖直平面内有一矩形,其长边与一圆的底部相切于O 点,现在有三条光滑轨道a 、b 、c ,它们的上端位于圆周上,下端在矩形的底边,三轨道都经过切点O ,现在让一物块先后从三轨道顶端由静止下滑至底端(轨道先后放置),则物块在每一条倾斜轨道上滑动时所经历的时间关系为( )A .t a >t b >t cB .t a <t b <t cC .t a =t b =t cD .无法确定解析:选B.设上面圆的半径为r ,矩形宽为R ,轨道与竖直方向的夹角为α,则轨道的长度s =2r cos α+R cos α,下滑的加速度a =mg cos αm ,根据位移时间公式得,s =12at 2,则t =2s a =4r g +2R g cos 2α.因为a 、b 、c 夹角由小至大,所以有t c >t b >t a .故B 正确,A 、C 、D 错误. 二、多项选择题6.如图所示,总质量为460 kg 的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s 2,当热气球上升到180 m 时,以5 m/s 的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g=10 m/s 2.关于热气球,下列说法正确的是( )A .所受浮力大小为4 830 NB .加速上升过程中所受空气阻力保持不变C .从地面开始上升10 s 后的速度大小为5 m/sD .以5 m/s 匀速上升时所受空气阻力大小为230 N解析:选AD.热气球刚开始上升时,速度为零,不受空气阻力,只受重力、浮力,由牛顿第二定律知F -mg =ma ,得F =4 830 N ,选项A 正确;随着热气球速度逐渐变大,其所受空气阻力发生变化(变大),故热气球并非匀加速上升,其加速度逐渐减小,故上升10 s 后速度要小于5 m/s ,选项B 、C 错误;最终热气球匀速运动,此时热气球所受重力、浮力、空气阻力平衡,由F =mg +f 得f =230 N ,选项D 正确.7. (2018·山东潍坊中学模拟)如图所示,质量为m 的球置于斜面上,被一个竖直挡板挡住.现用一个恒力F 拉斜面,使斜面在水平面上向右做加速度为a 的匀加速直线运动,忽略一切摩擦,以下说法中正确的是( )A .若加速度很小,竖直挡板对球的弹力可能为零B .若加速度很大,斜面对球的弹力可能为零C .斜面对球的弹力大小与加速度大小无关D .斜面、挡板对球的弹力与球的重力三者的合力等于ma解析:选CD.8.(2018·襄阳五中模拟)用一水平力F 拉静止在水平面上的物体,在F 从0开始逐渐增大的过程中,加速度a 随外力F 变化的图象如图所示,g 取10 m/s 2,则可以计算出( )A .物体与水平面间的最大静摩擦力B .F 等于14 N 时物体的速度C .物体与水平面间的动摩擦因数D .物体的质量解析:选ACD.物体受重力、地面的支持力、向右的拉力和向左的摩擦力,根据牛顿第二定律得:F -μmg =ma解得: a =F m-μg 由a 与F 图线,得到0.5=7m-10μ ① 4=14m -10μ ② ①②联立得,m =2 kg ,μ=0.3,故C 、D 正确;故a =0时,F 为6 N ,即最大静摩擦力为6 N ,故A 正确;由于物体先静止后又做变加速运动,无法利用匀变速直线运动规律求速度和位移,又F 为变力无法求F 的功 ,从而也无法根据动能定理求速度,故B 错误.三、非选择题9.(2018·湖南长沙长郡中学月考)如图甲所示,某同学近日做了这样一个实验:将一个小铁块(可看成质点)以一定的初速度,沿倾角可在0~90°之间任意调整的木板向上滑动,设它沿木板向上能达到的最大位移为x ,若木板倾角不同时对应的最大位移x 与木板倾角α的关系如图乙所示.g 取10 m/s 2.求:(结果如果含根号,可以保留)(1)小铁块初速度的大小v 0以及小铁块与木板间的动摩擦因数μ是多少?(2)当α=60°时,小铁块达到最高点后,又回到出发点,小铁块速度将变为多大? 解析:(1)当α=90°时,x =1.25 m ,则v 0=2gx =2×10×1.25 m/s =5 m/s.当α=30°时,x =1.25 m ,a =v 202x =522×1.25m/s 2=10 m/s 2.由牛顿第二定律得a=g sin 30°+μg cos 30°,解得μ=3 3.(2)当α=60°时,上滑的加速度a1=g sin 60°+μg cos 60°,下滑的加速度a2=g sin 60°-μg cos 60°.因为v2=2ax,则v1=a2a1v0=22v0=522m/s.答案:(1)5 m/s33(2)522m/s10.(2018·山东潍坊中学模拟)如图所示,固定的两斜面AB、AC倾角分别为37°和53°,两物块P、Q用一根不可伸长的轻绳相连,跨过固定在斜面顶端的定滑轮放在斜面上.物块P在沿斜面AB向下的拉力F作用下处于静止状态.P、Q质量均为0.1 kg,AC光滑,P与AB间的动摩擦因数为0.2.最大静摩擦力与滑动摩擦力相等,g=10 m/s2,sin 37°=0.6,cos 37°=0.8. 求:(1)拉力F大小满足的条件;(2)撤去拉力F时,物块P的加速度大小.解析:(1)对物块Q,由平衡条件F T=mg sin 53°对物块P,当摩擦力沿斜面向上时F最大,由平衡条件F max+mg sin 37°=F T+μmg cos 37°解得:F max=0.36 N当摩擦力沿斜面向下时F最小,由平衡条件F min+mg sin 37°+μmg cos 37°=F T解得:F min=0.04 N即:0.04 N≤F≤0.36 N.(2)撤去拉力F后对物块Q:mg sin 53°-F T=ma对物块P:F T-mg sin 37°-μmg cos 37°=ma解得:a=0.2 m/s2.答案:(1)0.04 N≤F≤0.36 N(2)0.2 m/s211.(2018·江西重点中学六校联考)如图所示,一个竖直固定在地面上的透气圆筒,筒中有一劲度系数为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块,圆筒内壁涂有一层新型智能材料——ER 流体,它对滑块的阻力可调.滑块静止时,ER 流体对其阻力为零,此时弹簧的长度为L .现有一质量也为m (可视为质点)的物体在圆筒正上方距地面2L 处自由下落,与滑块碰撞(碰撞时间极短)后粘在一起,并以物体碰前瞬间速度的一半向下运动.ER 流体对滑块的阻力随滑块下移而变化,使滑块做匀减速运动,当下移距离为d 时,速度减小为物体与滑块碰撞前瞬间速度的四分之一.取重力加速度为g ,忽略空气阻力,试求:(1)物体与滑块碰撞前瞬间的速度大小;(2)滑块向下运动过程中的加速度大小;(3)当下移距离为d 时,ER 流体对滑块的阻力大小.解析:(1)设物体与滑块碰撞前瞬间的速度大小为v 0,由自由落体运动规律有v 20=2gL ,解得v 0=2gL .(2)设滑块做匀减速运动的加速度大小为a ,取竖直向下为正方向,则有-2ax =v 22-v 21,x =d ,v 1=v 02,v 2=v 04,解得a =3gL 16d. (3)设下移距离d 时弹簧弹力为F ,ER 流体对滑块的阻力为FER ,对物体与滑块组成的整体,受力分析如图所示,由牛顿第二定律得F +F ER -2mg =2maF =k (d +x 0)mg =kx 0联立解得F ER =mg +3mgL 8d-kd . 答案:(1)2gL (2)3gL 16d (3)mg +3mgL 8d-kd。
人教版(2019)高三物理一轮复习《匀变速直线运动的研究》练习题(含答案)第I 卷(选择题)一、单选题1.质量为m 的物体从高为h 处自由下落,开始的3h 用时为t ,则( )A .物体落地所用的时间为3tB .物体落地所用的时间为3tC .物体落地时的速度为6gtD .物体落地时的速度为3gt2.高速公路的ETC 电子收费系统如图所示,ETC 通道的长度是从识别区起点到自动栏杆的水平距离.某人驾驶汽车以5m/s 的速度匀速进入ETC 通道,ETC 天线用了0.4s 的时间识别车载电子标签,识别完成后发出“滴”的一声,司机发现自动栏杆没有抬起,于是立即刹车,汽车刚好紧贴栏杆停下。
已知司机的反应时间为0.3s ,刹车时汽车的加速度大小为3m/s 2,则该ETC 通道的长度约为( )A .3.5mB .4.2mC .6.5mD .7.7m 3.某人估测一竖直枯井深度,从井口静止释放一石头并开始计时,经2s 听到石头落地声,由此可知井深约为(不计声音传播时间,重力加速度g 取10m/s 2)A .10mB .20mC .30mD .40m4.小球以某一初速度由地面竖直向上运动。
当其落回地面时会与地面发生碰撞并反弹。
如此上升、下落及反弹数次。
若规定竖直向下为正方向,不计碰撞时间和空气阻力,下列v —t 图像中能正确描述小球运动的是( )A .B .C .D .5.一质点做直线运动的v t 图像如图所示,下列说法正确的是( )A .在2~4s 内,质点处于静止状态B .质点在0~2s 内的加速度比4~6s 内的加速度大C .在0~6s 内,质点的平均速度为3m /sD .在第5s 末,质点离出发点最远6.为了研究汽车的启动和制动性能,现用甲、乙两辆完全相同的汽车在平直公路上分别进行实验。
让甲车以最大加速度1a 加速到最大速度后匀速运动一段时间再以最大加速度2a 制动,直到停止;乙车以最大加速度1a 加速到最大速度后立即以加速度22a 制动,直到停止。
专题七动量守恒定律五年高考考点过关练考点一动量、冲量和动量定理1.(2022海南,1,3分)在冰上接力比赛时,甲推乙的作用力是F1,乙对甲的作用力是F2,则这两个力( )A.大小相等,方向相反B.大小相等,方向相同C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量答案 A2.(2021湖南,2,4分)物体的运动状态可用位置x和动量p描述,称为相,对应p-x图像中的一个点。
物体运动状态的变化可用p-x图像中的一条曲线来描述,称为相轨迹。
假如一质点沿x轴正方向做初速度为零的匀加速直线运动,则对应的相轨迹可能是( )A BC D答案 D3.(2022重庆,4,4分)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,某小组得到了假人头部所受安全气囊的作用力随时间变化的曲线(如图)。
从碰撞开始到碰撞结束过程中,若假人头部只受到安全气囊的作用,则由曲线可知,假人头部( )A.速度的变化量等于曲线与横轴围成的面积B.动量大小先增大后减小C.动能变化正比于曲线与横轴围成的面积D.加速度大小先增大后减小答案 D4.(2019课标Ⅰ,16,6分)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。
若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为( ) A.1.6×102 kg B.1.6×103 kgC.1.6×105 kgD.1.6×106 kg答案 B5.(2021北京,10,3分)如图所示,圆盘在水平面内以角速度ω绕中心轴匀速转动,圆盘上距轴r处的P点有一质量为m的小物体随圆盘一起转动。
某时刻圆盘突然停止转动,小物体由P点滑至圆盘上的某点停止。
下列说法正确的是( )A.圆盘停止转动前,小物体所受摩擦力的方向沿运动轨迹切线方向B.圆盘停止转动前,小物体运动一圈所受摩擦力的冲量大小为2mωrC.圆盘停止转动后,小物体沿圆盘半径方向运动D.圆盘停止转动后,小物体整个滑动过程所受摩擦力的冲量大小为mωr答案 D6.(2023天津,5,5分)质量为m的列车以速度v匀速行驶,突然以大小为F的力制动刹车直到列车停止,整个过程中列车还受到大小恒为f的阻力,下列说法正确的是( ) A.减速运动过程的加速度大小a=FmB.力F的冲量大小为mvC.刹车距离为mv 22(F+f)D.匀速行驶时功率为(f+F)v 答案 C7.(2023重庆,8,5分)(多选)某实验小组测得在竖直方向飞行的无人机飞行高度y随时间t的变化曲线如图所示,E、F、M、N为曲线上的点,EF、MN段可视为两段直线,其方程分别为y=4t-26和y=-2t+140。
人教物理2019高考一轮训练学题(7)李仕才1、一个物体做末速度为零的匀减速直线运动,比较该物体在减速运动的倒数第 3 m、倒数第2 m、最后1 m内的运动,下列说法中正确的是( )A.经历的时间之比是1∶2∶3B.平均速度之比是3∶2∶1C.平均速度之比是1∶(2-1)∶(3-2)D.平均速度之比是(3+2)∶(2+1)∶1【答案】D【解析】将末速度为零的匀减速直线运动看成是反方向初速度为0的匀加速直线运动(逆向思维),从静止开始通过连续相等的三段位移所用时间之比为t1∶t2∶t3=1∶(2-1)∶(3-2),则倒数第3 m、倒数第2 m、最后1 m内经历的时间之比为(3-2)∶(2-1)∶1,平均速度之比为13-2∶12-1∶1=(3+2)∶(2+1)∶1,故只有选项D正确.2、如图14所示,质量为1 kg的物体与地面间的动摩擦因数μ=0.2,从t=0开始以初速度v0沿水平地面向右滑行,同时受到一个水平向左的恒力F=1 N的作用,取g=10 m/s2,向右为正方向,该物体受到的摩擦力F f随时间t变化的图象是(最大静摩擦力等于滑动摩擦力)()图14【答案】 A【解析】静止后就变成静摩擦力了3、两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量。
两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关。
若它们下落相同的距离,则( )A.甲球用的时间比乙球长B.甲球末速度的大小大于乙球末速度的大小C.甲球加速度的大小小于乙球加速度的大小D.甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD4、如图2所示,汽车向右沿直线运动,原来的速度是v1,经过一小段时间之后,速度变为v2,Δv表示速度的变化量.由图中所示信息可知( )图2A.汽车在做加速直线运动B.汽车的加速度方向与v1的方向相同C.汽车的加速度方向与v1的方向相反D.汽车的加速度方向与Δv的方向相反【答案】C5、某物体自斜面顶端从静止开始匀加速下滑,经过)1秒到达斜面中点,从斜面中点到达斜面底端的时间是()A. 1秒B. )1秒C. )1秒秒【答案】A6、(多选)关于弹力,下列说法正确的是( )A.弹力的方向总是与施力物体形变的方向相反B.轻绳中的弹力方向一定沿着绳并指向绳收缩的方向C.轻杆中的弹力方向一定沿着轻杆D.在弹性限度内,弹簧的弹力大小与弹簧的形变量成正比【答案】ABD【解析】发生弹性形变的物体由于要恢复原状,会对阻碍其恢复原状的物体产生弹力作用,故弹力的方向一定与施力物体形变的方向相反;故A正确;轻绳中的弹力方向一定沿绳并指向绳收缩的方向;故B正确;轻杆的形变可以沿各个方向;故其弹力不一定沿杆的方向;故C不正确;由胡克定律可知,在弹性限度内,弹力大小与弹簧的形变量成正比;故D正确;7、如图4所示是轿车常用的千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时,汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°.下列判断正确的是()图4A.此时千斤顶每臂受到的压力大小均为5.0×104 NB.此时千斤顶对汽车的支持力为1.0×104 NC.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将增大D.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将减小【答案】D8、(多选)下列关于作用力和反作用力的说法正确的是()A.物体先对地面产生压力,然后地面才对物体产生支持力B.物体对地面的压力和地面对物体的支持力是一对作用力与反作用力C.人推车前进,人对车的作用力大于车对人的作用力D.物体在地面上滑行,不论物体的速度多大,物体对地面的摩擦力与地面对物体的摩擦力始终大小相等【答案】BD【解析】作用力与反作用力同时产生,同时变化,同时消失,物体对地面产生压力的同时地面对物体产生支持力,选项A错误;物体对地面的压力和地面对物体的支持力是一对作用力与反作用力,选项B正确;人推车前进,人对车的作用力与车对人的作用力是作用力与反作用力,大小相等,方向相反,选项C错误;物体在地面上滑行,不论物体的速度多大,物体对地面的摩擦力与地面对物体的摩擦力始终大小相等,选项D正确.9、如图5所示,质量为m的小球用一水平轻弹簧系住,并用倾角为60°的光滑木板AB 托住,小球恰好处于静止状态,在木板AB突然向下撤离的瞬间,小球的加速度为()图5A.0B.大小为g,方向竖直向下C.大小为g,方向垂直木板向下D.大小为2g,方向垂直木板向下【答案】D【解析】撤离木板AB瞬间,木板对小球的支持力消失,而小球所受重力和弹力不变,且二力的合力与原支持力等大反向.10、(多选)如图2所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上.A、B间的动摩擦因数为μ,B与地面间的动摩擦因数为μ.最大静摩擦力等于滑动摩擦力,重力加速度为g.现对A施加一水平拉力F,则()图2A.当F<2μmg时,A、B都相对地面静止B.当F=μmg时,A的加速度为μgC.当F>3μmg时,A相对B滑动D.无论F为何值,B的加速度不会超过μg【答案】 BCD【解析】当0<F≤μmg时,A、B皆静止;当μmg<F≤3μmg时,A、B相对静止,但两者相对地面一起向右做匀加速直线运动;当F>3μmg时,A相对B向右做加速运动,B相对地面也向右加速,选项A错误,选项C正确.当F=μmg时,A与B共同的加速度a==μg,选项B正确.F较大时,取物块B为研究对象,物块B的加速度最大为a2==μg,选项D正确.11、一只玻璃瓶,在下列情况下是否受到摩擦力?如果受到摩擦力,摩擦力朝什么方向?(1)瓶子静止在粗糙水平桌面上.(2)瓶子静止在倾斜的桌面上.(3)瓶子被握在手中,瓶口朝上.(4)瓶子压着一张纸条,扶住瓶子把纸条抽出.【答案】(1)中不受摩擦力 (2)中受到沿斜面向上的静摩擦力 (3)中受竖直向上的静摩擦力(4)中瓶子受到与纸条运动方向一致的滑动摩擦力12、如图10所示,质量M=1 kg的木板A静止在水平地面上,在木板的左端放置一个质量m=1 kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木板长L=1 m,用F=5 N的水平恒力作用在铁块上,g取10 m/s2.图10(1)若水平地面光滑,计算说明铁块与木板间是否会发生相对滑动;(2)若木板与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木板右端所用的时间. 【答案】见解析(2)A、B之间发生相对滑动,则对B:F-μ1mg=ma B对A:μ1mg-μ2(M+m)g=Ma A据题意:x B-x A=L;x A=a A t2;x B=a B t2解得:t= s.。
2019年高考物理(人教版)一轮选练习题(7)
李仕才
1、(2018·四川成都调研)如图1所示,一小球在光滑的V 形槽中由A 点释放,经B 点(与
B 点碰撞所用时间不计)到达与A 点等高的
C 点,设A 点的高度为1 m ,则全过程中小球通过
的路程和位移大小分别为( )
图1
A.23 3 m ,2
3 3 m B.23 3 m ,4
3 3 m C.
43 3 m ,2
3
3 m D.
4
3
3 m ,1 m 【答案】C
2、一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1 s 内和第2 s 内位移大小依次为9 m 和7 m.则刹车后6 s 内的位移是( )
A.20 m
B.24 m
C.25 m
D.75 m 【答案】C
【解析】由Δx =9 m -7 m =2 m 可知,汽车在第3 s 、第4 s 、第5 s 内的位移分别为5 m 、3 m 、1 m ,汽车在第5 s 末的速度为零,故刹车后6 s 内的位移等于前5 s 内的位移,大小为9 m +7 m +5 m +3 m +1 m =25 m ,故C 正确.
3.(2018·河南信阳调研)在一平直路段检测某品牌汽车的运动性能时,以路段的起点作为x 轴的原点,通过传感器发现汽车刹车后的坐标x 与时间t 的关系满足x =30t -5t 2
(m),下列说法正确的是( )
A.汽车刹车过程的初速度大小为30 m/s ,加速度大小为10 m/s 2
B.汽车刹车过程的初速度大小为30 m/s ,加速度大小为5 m/s 2
C.汽车刹车过程的初速度大小为60 m/s ,加速度大小为5 m/s 2
D.汽车刹车过程的初速度大小为60 m/s ,加速度大小为2.5 m/s 2 【答案】A
【解析】根据汽车刹车后的坐标x 与时间t 的关系x =30t -5t 2
(m),对比匀变速直线运动的规律x =v 0t +12at 2,可知汽车刹车过程的初速度大小为30 m/s ,加速度大小为10 m/s 2
,故
选A.
4、如图5所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力( )
图5
A.方向向左,大小不变
B.方向向左,逐渐减小
C.方向向右,大小不变
D.方向向右,逐渐减小 【答案】A
【解析】A 、B 两物块一起向右做匀减速直线运动时,加速度方向水平向左,大小恒定,由牛顿第二定律可得:F f B =m B a ,故B 所受的摩擦力方向水平向左,大小为m B a ,恒定不变,A 正确.
5、(2018·河南新乡质检)如图2所示,一根不可伸长的轻绳穿过轻滑轮,两端系在高度相等的A 、B 两点,滑轮下挂一物体,不计绳和滑轮之间的摩擦.现让B 缓慢向右移动,则下列说法正确的是( )
图2
A.随着B 向右缓慢移动,绳子的张力减小
B.随着B 向右缓慢移动,绳子的张力不变
C.随着B 向右缓慢移动,滑轮受绳AB 的合力变小
D.随着B 向右缓慢移动,滑轮受绳AB 的合力不变 【答案】D
6、用三根轻绳将质量为m 的物块悬挂在空中,如图3所示.已知ac 和bc 与竖直方向的夹角分别为30°和60°,则ac 绳和bc 绳中的拉力大小分别为( )。