微分方程模型-清华大学数学模型电子教案
- 格式:ppt
- 大小:1013.00 KB
- 文档页数:63
《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
第2章 微分方程模型2(2课时)教学目的懂得如何根据实际情况建立微分方程。
教学内容介绍应用微分方程方法建模。
模型Ⅱ 人口模型1. 引言在研究某些实际问题时,经常无法直接得到各变量之间的联系,问题的特性往往会给出关于变化率的一些关系。
利用这些关系,我们可以建立相应的微分方程模型。
在自然界以及工程技术领域中,微分方程模型是大量存在的。
它甚至可以渗透到人口问题以及商业预测等领域中去,其影响是广泛的。
问题:人口问题是当今世界上最令人关注的问题之一,一些发展中国家的人口出生率过高,越来越威胁着人类的正常生活,有些发达国家的自然增长率趋于零,甚至变为负数,造成劳动力紧缺,也是不容忽视的问题。
另外,在科学技术和生产力飞速发展的推动下,世界人口以空前的规模增长,统计数据显示:年 1625 1830 1930 1960 1974 1987 1999人口(亿) 5 10 20 30 40 50 60可以看出,人口每增长十亿的时间,由一百年缩短为十二三年。
我们赖以生存的地球,已经带着它的60亿子民踏入了21世纪。
长期以来,人类的繁衍一直在自发地进行着。
只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系,人口数量的变化规律,以及如何进行人口控制等问题。
我国是世界第一人口大国,地球上每九个人中就有一个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表:年 1908 1933 1953 1964 1982 1990 2000人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.95 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。
认识人口数量的变化规律,建立人口模型,作出较准确的预报,是有效控制人口增长的前提,下面介绍两个最基本的人口模型。
2. 模型1 (Malthus 模型)18世纪末,英国人Malthus 在研究了百余年的人口统计资料后认为,在人口自然增长的过程中,净相对增长率(出生率减去死亡率为净增长率)是常数。