7第七章相变对流传热
- 格式:ppt
- 大小:429.07 KB
- 文档页数:32
第三章 非稳态热传导一、名词解释非稳态导热:物体的温度随时间而变化的导热过程称为非稳态导热。
数Bi :Bi 数是物体内部导热热阻λδ与表面上换热热阻h 1之比的相对值,即:λδh Bi =o F 数:傅里叶准则数2τl a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。
二、解答题和分析题1、数Bi 、o F 数、时间常数c τ的公式及物理意义。
答:数Bi :λδh Bi =,表示固体内部导热热阻与界面上换热热阻之比。
2τl a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。
hA cVc ρτ=, c τ数值上等于过余温度为初始过余温度的36.8%时所经历的时间。
2、0→Bi 和∞→Bi 各代表什么样的换热条件?有人认为0→Bi 代表了绝热工况,是否正确,为什么?答:1)0→Bi 时,物体表面的换热热阻远大于物体内部导热热阻。
说明换热热阻主要在边界,物 体内部导热热阻几乎可以忽略,因而任一时刻物体内部的温度分布趋于均匀,并随时间的推移整体地下降。
可以用集总参数法进行分析求解。
2)∞→Bi 时,物体表面的换热热阻远小于物体内部导热热阻。
在这种情况下,非稳态导热过程刚开始进行的一瞬间,物体的表面温度就等于周围介质的温度。
但是,因为物体内部导热热阻较大,所以物体内部各处的温度相差较大,随着时间的推移,物体内部各点的温度逐渐下降。
在这种情况下,物体的冷却或加热过程的强度只决定于物体的性质和几何尺寸。
3)认为0→Bi 代表绝热工况是不正确的,0→Bi 的工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。
3、厚度为δ2,导热系数为λ,初始温度均匀并为0t 的无限大平板,两侧突然暴露在温度为∞t ,表面换热系数为h 的流体中。
试从热阻的角度分析0→Bi 、∞→Bi 平板内部温度如何变化,并定性画出此时平板内部的温度随时间的变化示意曲线。
答:1)0→Bi 时,平板表面的换热热阻远大于其内部导热热阻。
第7章相变对流传热一、填空题1.沸腾危机是指______。
[浙江大学2010研]【答案】在大容器饱和沸腾中,核态沸腾与过渡沸腾中间对应的热流密度的峰值q,max即临界热流密度2.凝结换热的主要热阻是______。
[浙江大学2010研]【答案】凝结液的热阻【解析】无论是膜状凝结还是珠状凝结,凝结液体都是构成蒸气与壁面交换热量的热阻载体。
3.核态沸腾能够发生的两个主要基本条件是______、______。
[浙江大学2012研]【答案】存在汽化核心;有过热度【解析】加热表面上形成汽化核心引起的扰动使沸腾增强,传热强度增大;沸腾液的过热度是气泡存在和长大的动力。
4.临界热流密度是指______,对于通过控制热流密度来改变工况的加热设备,一旦超过临界热流密度将导致设备______,对于壁温可控的加热设备,一旦超过临界热流密度可能导致______。
[浙江大学2012研]【答案】在大容器饱和沸腾中,核态沸腾向过渡沸腾转变的热流密度的最大值;烧毁;传热量减少【解析】在高温下恒热流密度加热时,当热流密度超过临界热流密度,壁温会突然剧烈上升,使设备烧毁;对于恒壁温加热,超过临界热流密度时,进入过度沸腾阶段,热流密度和表面传热量都会下降。
5.沸腾的临界热流密度是从______沸腾过渡到______沸腾的转折点。
[重庆大学2014研]【答案】核态;过渡6.大容器核态沸腾的主要传热特点是______;强化沸腾传热的基本原则是______。
[重庆大学2014研;浙江大学2005研]【答案】温压小,换热强度大;增加加热表面的汽化核心数【解析】在核态沸腾区,汽化核心增加,气泡扰动剧烈,传热系数和热流密度都急剧增大。
高的传热强度主要是由于气泡的形成、成长、以及脱离加热壁面所引起的各种扰动所造成的。
7.凝结换热的两种形式是_______和_________。
[浙江大学2006研]【答案】珠状凝结;膜状凝结二、判断题1.蒸汽在低于饱和温度的壁面接触时所可能出现的膜状凝结形式或珠状凝结形式主要取决于接触壁面表面的湿润能力。
7 对流换热7.0 本章主要内容导读本章讨论对流换热问题,首先介绍对流换热的相关基本概念——对流换热的机理、数学描述方法和主要研究方法,然后介绍两类无相变的对流换热——强制对流换热和自然对流换热,主要内容如图7-1所示。
图7-1 第七章主要内容导读7.1 对流换热基本概念7.1.1对流换热机理如前所述,实际工程中经常遇到的对流问题是对流换热问题,它是导热与热对流共同作用的结果。
由于流体的热运动强化了传热,通过对流流体的传热速率比通过静止流体导热的传热速率高得多。
并且,流体速度越快,传热速率越高。
理论上,对流换热可以通过牛顿冷却公式求解,即=αQ∆Ft与导热中的导热系数λ不同,对流换热系数α不是物性参数,因此对流换热过程和相应的对流换热系数受到许多因素的影响,这些影响因素可以分为如下五类。
(1)流体流动产生的原因。
根据流动产生的原因,对流换热可以分为强制对流换热与自然对流换热两大类。
前者由泵、风机或其它外部动力源的作用引起,后者通常由流体各个部分温度不同产生的密度差引起。
两种流动产生的原因不同,流体中的速度场、对流换热规律和换热强度均不一样。
通常强制对流换热的流速高、换热系数α大;(2)流体有无相变。
在流体没有相变时对流换热中的热量传输由流体显热的变化实现,在有相变的换热过程中(如沸腾或凝结),流体相变热(潜热)的释放或吸收常常起主要作用,流体的物性、流动特性和换热规律均与无相变时不同。
一般同一种流体在有相变时的换热强度远大于无相变时的强度;(3)流体的流动状态。
根据动量传输知识,粘性流体存在着两种不同的流态——层流和湍流。
层流时流体微团沿着主流方向作有规则的分层流动,湍流时流体各部分之间发生剧烈的混合。
因此,在其它条件相同时湍流换热的强度明显强于层流换热的强度;(4)换热表面的几何因素。
这里的几何因素指换热表面的形状、大小、换热表面与流体运动方向的相对位置以及换热表面的状态(光滑或粗糙)。
这些几何因素都将影响流体在壁面上的流动状况,从而影响到对流换热。