超短脉冲 第六章
- 格式:ppt
- 大小:763.50 KB
- 文档页数:40
超短脉冲激光器的实验及理论研究【摘要】:本文主要针对超短脉冲激光器系统,分别从实验上和理论上对超短脉冲的产生及演变做了较为详细的研究。
根据ABCD矩阵规律,对激光器的稳定工作区域及克尔透镜锁模强度进行数值计算,并完成对激光器最佳像散补偿角的确定和有利于锁模产生的最佳腔参数的选择。
实验上,我们采用Cr~(4+):YAG晶体作为激光增益介质,对连续可调谐及克尔透镜锁模Cr~(4+):YAG激光器的工作特性做了较为细致深入的研究,并给出了一些有价值的结果。
另外在理论方面,采用修正的高阶复系数Ginzburg-Landau方程作为超短脉冲激光器系统的理论研究模型,对激光器中超短脉冲的演变及稳定性进行数值模拟,并给出了稳定解以及它们存在的参数限制条件。
最后,针对五次复系数Ginzburg-Landau方程几种特殊孤波解,简要地研究了三阶色散对这些孤波传输的影响以及它们的相邻相互作用及其抑制。
本文主要内容及结果如下:1)利用ABCD矩阵法对Cr~(4+):YAG激光器的谐振腔进行了数值计算,从而得到谐振腔的最佳像散补偿角和最佳模式匹配参数;并从理论上讨论了谐振腔参数的选择对激光器稳定区域的影响。
实验上,当泵浦功率为8w时,得到了高达580mw的连续光输出;采用棱镜作为调谐元件,实现了连续可调谐范围达160nm的连续可调谐运转,这样的结果在国内尚属首例。
2)利用克尔介质的非线性ABCD传输矩阵公式,分析克尔透镜锁模灵敏度δ在KLM激光器中的重要作用及其与谐振腔参数之间的关系,并结合我们实验中所用的四镜像散补偿腔,得到了有利于锁模产生的参数范围。
采用棱镜对进行色散补偿,同时采用半导体可饱和吸收镜作为克尔透镜锁模的启动元件,实现了Cr~(4+):YAG激光器的锁模运转,并得到了谱线展宽约为37nm,中心波长位于1520nm的锁模脉冲。
这样的克尔透镜锁模Cr~(4+):YAG激光器在国内还是首例。
3)首次给出了描述超短脉冲激光器系统中脉冲演化,且同时包含了三阶色散、非线性色散、自陡峭以及拉曼自频移等高阶效应和快、【关键词】:超短脉冲克尔透镜锁模Cr~(4+):YAG激光器理论模型【学位授予单位】:山西大学【学位级别】:博士【学位授予年份】:2005【分类号】:TN248【目录】:摘要9-11ABSTRACT11-13第一章引言13-28§1.1超短脉冲激光器的发展历史14-15§1.2自锁模激光技术的发展概述15-19§1.3超短脉冲激光器的理论研究进展19-21§1.4Cr~(4+):YAG激光器的研究进展21-22§1.5本文主要内容22-24参考文献24-28第二章连续可调谐的Cr~(4+):Y AG激光器28-40§2.1Cr~(4+):YAG晶体特性28-30§2.2谐振腔结构及其稳定性分析30-35§2.3连续可调谐的Cr~(4+):YAG激光器35-38§2.4本章小结38-39参考文献39-40第三章克尔透镜锁模Cr~(4+):YAG激光器40-65§3.1克尔透镜锁模脉冲的形成机理40-52§3.2Cr~(4+):YAG激光器的色散补偿特性52-57§3.3半导体可饱和吸收镜(SESAM)简介57-60§3.4实验结果60-62§3.5本章小节62-63参考文献63-65第四章超短脉冲激光器的理论研究65-85§4.1理论模型的建立背景65-67§4.2修正的复系数Ginzburg-Landau方程67-69§4.3高阶复系数Ginzburg-Landau方程69-82§4.4本章小结82-83参考文献83-85第五章三阶色散对新型孤波传输的影响85-98§5.1三种新型孤波介绍85-87§5.2三阶色散对平脉动孤波的影响87-88§5.3三阶色散对爆发孤波的影响88-90§5.4三阶色散对蠕变孤波的影响90-93§5.5三阶色散对呼吸子解传输特性的影响93-95§5.6本章小结95-96参考文献96-98第六章QCGLE特殊孤波解的相互作用研究98-108§6.1呼吸子解的相互作用及其抑制98-100§6.2平脉动孤波的相互作用及其抑制100-102§6.3爆发孤波的相互作用及其抑制102-103§6.4蠕变孤波的相互作用及其抑制103-105§6.5本章小结105-107参考文献107-108第七章结束语108-109攻读博士期间发表和待发表的论文109-110致谢110-111承诺书111-112 本论文购买请联系页眉网站。
超短脉冲激光及其相关应用的一些基本知识一、本文概述超短脉冲激光,作为现代光学领域的璀璨明珠,以其独特的性质和应用价值,正逐渐引起人们的广泛关注和深入研究。
本文旨在全面介绍超短脉冲激光的基本概念、产生机制、特性以及其在各个领域中的应用,帮助读者更好地理解和应用这一前沿技术。
我们将首先概述超短脉冲激光的定义和特点,包括其脉冲宽度、峰值功率、光谱特性等基本属性。
接着,我们将探讨超短脉冲激光的产生方法,包括调Q技术、锁模技术、光参量放大等,并简要介绍各种方法的原理和应用场景。
在了解了超短脉冲激光的基本特性后,我们将重点介绍其在各个领域中的应用。
这些应用包括但不限于:光学精密测量、超快现象研究、材料加工、生物医学等。
我们将结合具体案例,详细阐述超短脉冲激光在这些领域中的独特优势和实际应用效果。
我们将对超短脉冲激光的发展前景进行展望,分析其在未来科学研究和技术应用中的潜在价值和挑战。
通过本文的阅读,读者将能够全面而深入地了解超短脉冲激光及其相关应用的基本知识,为其在未来的科研和工作中提供有益的参考和启示。
二、超短脉冲激光的基本原理超短脉冲激光,也被称为超快激光,其脉冲宽度通常在纳秒(ns)甚至更短的皮秒(ps)、飞秒(fs)量级。
这种激光技术的基本原理主要涉及到激光产生和控制的物理过程。
我们需要理解激光是如何产生的。
激光产生的关键在于实现粒子数反转,即高能级粒子数大于低能级粒子数。
当高能级粒子数足够多时,受激辐射将占据主导地位,从而产生激光。
超短脉冲激光的产生则需要在此基础上,进一步控制激光的振荡过程,以实现脉冲宽度的缩短。
超短脉冲激光的产生通常利用调Q技术或锁模技术。
调Q技术通过改变谐振腔的Q值(品质因数),使得激光能量在短时间内迅速积累并释放,从而得到高能量的超短脉冲。
而锁模技术则是通过特定的光学元件和控制系统,使得谐振腔内的多个振荡模式同步,形成单一的高强度超短脉冲。
超短脉冲激光的特性使其在许多领域具有广泛的应用。
超短脉冲激光器的研究与应用超短脉冲激光器是一种能够产生拥有极高强度和超短持续时间的激光束的设备。
它被广泛应用于科学研究、工业领域以及医疗领域。
本文将介绍超短脉冲激光器的原理、制造和应用。
一、超短脉冲激光器的原理超短脉冲激光器可以产生纳秒或皮秒级别的超短脉冲。
这种激光器的原理是使用长脉冲激光与非线性光学晶体相互作用,通过非线性效应将长脉冲激光转化为超短脉冲激光。
超短脉冲激光的产生是通过自发参量下转换的方式实现的。
当长脉冲激光通过非线性晶体时,晶体内的光学非线性效应会产生额外的频率组合。
这些频率组合将产生新的光波,并被反射回晶体中,与原来的激光束相互作用,最终产生超短脉冲。
二、超短脉冲激光器的制造超短脉冲激光器的制造需要使用光学晶体和半导体材料。
此外,还需要使用先进的光学器件和控制电路来实现激光器的操作和控制。
制造超短脉冲激光器的主要步骤包括选择光学晶体和半导体材料、设计和制造激光器的光学组件、控制电路的设计和安装、以及激光器的测试和校准。
超短脉冲激光器的性能受到多种因素的影响,包括激光器的波长、脉宽、能量和模式。
这些因素的选择和优化可以根据应用的需要进行调整。
三、超短脉冲激光器的应用超短脉冲激光器的应用范围非常广泛。
在科学研究方面,它被用于制备纳米结构和超快速动态过程的研究。
此外,超短脉冲激光还被用于制备微电子元件和纳米生物芯片等高精密度器件。
在工业领域,超短脉冲激光器被用于加工材料,例如改善表面质量和切割薄片。
另外,它还被用于制作光学元件和光学相干断层扫描等领域。
在医疗领域,超短脉冲激光器被用于进行激光手术、皮肤去除和其他美容技术。
此外,它还被用于制备人工晶体和医用器械等高精度器件。
四、超短脉冲激光器的发展趋势随着科学技术的不断进步,超短脉冲激光技术在不同领域中的应用越来越广泛。
未来,随着激光器材料和器件等技术不断成熟,超短脉冲激光器的性能和应用将会得到进一步的提升。
总之,超短脉冲激光器是一种极其重要的光学设备,应用范围广泛。
超短脉冲的获取方法及应用超短脉冲是指时间长度非常短暂的电磁脉冲信号。
由于脉冲时间非常短,通常在皮秒(10^-12秒)甚至飞秒(10^-15秒)级别,超短脉冲具有极高的峰值功率和宽带频率特性,因此在科学研究和许多实际应用中得到了广泛关注。
要获取超短脉冲,一般采用以下几种方法:1. 模式锁定激光:最常见的方法是通过模式锁定技术获得超短脉冲激光。
模式锁定激光通过通过控制放大器和光纤等元件的特性,使光传播过程中不同模式的相位相互耦合,最终实现了超短脉冲的产生。
2. 非线性光学效应:通过利用非线性光学效应,如自相位调制(Self-Phase Modulation,SPM)、调制不稳定和双光子吸收等,可以将连续波光信号转化为超短脉冲。
这种方法适用于光纤而非气体激光介质。
3. 光学斯托克斯过程:通过非共线非相位匹配的非线性光学斯托克斯过程,将几个光子能量合并为一个光子,并使合并后的光子频率减小,从而得到超短脉冲。
这种方法常用于基于光学斯托克斯过程的光学放大器中。
超短脉冲在许多领域中具有广泛的应用,包括:1. 激光科学研究:超短脉冲激光可以提供极高的峰值功率和高能量密度,已广泛应用于激光物理、激光生物学、激光化学等领域的研究。
如超高时间分辨率的飞秒光谱学、非线性光学研究、光子晶体等。
2. 生命科学研究:超短脉冲激光在生物领域的应用主要包括生物成像、细胞操作和基因组研究等。
例如,基于多光子吸收现象的超短脉冲激光显微术成像技术可以实现高分辨率和深度成像,对生物、医学研究具有重要意义。
3. 材料加工与纳米制造:超短脉冲激光由于其极高的峰值功率和精细加工特性,已广泛应用于材料微加工、曲面精细加工、表面改性、激光蚀刻等领域。
还可以通过调控超短脉冲激光的参数,如能量密度、重复频率等,实现纳米材料制造、光子晶体制造等。
4. 高速通信技术:超短脉冲激光在光通信领域的应用主要是基于其游戏理论特性,提供了高速、高频宽的数据传输能力,如飞秒激光自由空间通信和光纤通信等。
超短脉冲技术是一种在光谱学和光物理研究领域中被广泛应用的技术。
它具有瞬时光源、高时分辨率等优点,因此被广泛应用于超快动力学、非线性光学等领域。
超短脉冲的频谱是研究超短脉冲特性的重要课题,很多研究者和工程师需要对超短脉冲的频谱进行仿真和分析,从而更深入地了解超短脉冲的性质和特点。
Matlab作为一种功能强大的科学计算软件,在超短脉冲频谱的仿真和分析中具有独特的优势。
1. 超短脉冲的特点超短脉冲是指时间极短的光脉冲,一般持续时间在飞秒(fs)甚至阿秒(as)量级。
由于其时间极短,因此其频谱分布非常宽,包含了多种频率成分。
超短脉冲还具有相干性强、频率固有关联等特点,这使得其在光学成像、光子学、信息技术等领域具有重要应用价值。
2. 超短脉冲的频谱分析超短脉冲的频谱分析是对其频谱特性进行研究和分析,通过频谱分析可以了解超短脉冲的频率成分、频率分布、频谱宽度等重要信息。
超短脉冲的频谱分析在光谱学、超快光谱学、非线性光学等领域具有重要意义。
3. Matlab在超短脉冲频谱分析中的应用Matlab作为一种功能强大的科学计算软件,在光电子、光学等领域有着广泛的应用。
在超短脉冲频谱分析中,Matlab提供了丰富的工具包和函数库,可以进行超短脉冲的频谱仿真、频谱分析、频谱图像绘制等工作。
通过Matlab的强大功能,研究者和工程师可以方便、快捷地对超短脉冲的频谱进行深入研究,从而促进超短脉冲技术在相关领域的应用和发展。
4. 结语超短脉冲的频谱分析是超短脉冲技术研究的重要内容,Matlab作为一种功能强大的科学计算软件,在超短脉冲频谱分析中具有独特的优势和应用前景。
通过对超短脉冲频谱的研究和分析,可以深入了解超短脉冲的特性和性能,促进超短脉冲技术的应用和发展。
希望越来越多的研究者和工程师能够利用Matlab进行超短脉冲频谱分析,推动超短脉冲技术的不断发展和完善。
对于超短脉冲的频谱分析,传统的方法包括傅里叶变换、自相关技术、光谱仪测量等。
超短脉冲激光技术研究进展超短脉冲激光技术是一种最近几十年来取得重大突破的前沿光学技术。
它以其极短的脉冲宽度和高功率密度而被广泛应用于科学研究、医学领域、工业制造等众多领域。
本文将对超短脉冲激光技术的研究进展进行探讨。
首先,我们来了解一下超短脉冲激光技术的原理和特点。
超短脉冲激光的核心就是其极短的脉冲宽度。
一般来说,脉冲宽度在飞秒(一秒的十亿分之一)甚至皮秒(一秒的万亿分之一)级别。
这种极短的脉冲宽度使得超短脉冲激光具有很高的峰值功率密度,可以在非常短的时间内释放出大量的能量。
与之相对应的是,超短脉冲激光的脉冲能量相对较小,这使其在材料加工和医学诊疗等领域应用更加安全可靠。
超短脉冲激光技术的研究进展主要体现在以下几个方面。
首先是超快激光脉冲的产生技术。
传统的激光器产生的激光脉冲往往在纳秒级别,而要实现飞秒级或者皮秒级的脉冲宽度,需要借助一些先进的技术手段。
例如,利用光纤拉伸和压缩技术可以实现飞秒激光的产生。
此外,还有一些改进的技术,如锁模激光和倍频技术等,也大大促进了超短脉冲激光的发展。
其次,超短脉冲激光技术在材料加工领域的应用研究也取得了显著进展。
传统的激光加工技术由于其较长的脉冲宽度和较低的功率密度往往无法处理高硬度和高熔点材料,而超短脉冲激光则改变了这一现状。
超短脉冲激光能够在很短的时间内将能量集中到一个非常小的区域,实现对材料的精细加工。
例如,在激光切割领域,超短脉冲激光能够实现非常精细的切割线,避免了因传统激光加工产生的热影响区,从而提高了切割质量。
此外,超短脉冲激光技术在医学诊疗领域也有广泛应用。
由于其高能量密度和极短的作用时间,在眼科激光手术、皮肤修复和癌症治疗等方面都取得了重要的突破。
例如,通过激光诱导击穿现象,超短脉冲激光可以用于瞬时使角膜组织通过局部脱水而形成的“孔洞”来改变角膜的形状,从而实现近视手术治疗。
此外,超短脉冲激光还可以用于皮肤镭射剥脱、红血丝治疗和色素沉着疾病等诊疗手段。
基于单模光纤的超短光脉冲产生方法(ⅰ)──脉冲压缩方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着科学技术的不断发展,超短光脉冲技术已经成为了许多领域的重要研究方向,例如激光技术、光通信和生物医学等。
超短脉冲技术的原理与应用引言超短脉冲技术是一种在相对时间尺度上产生非常短脉冲的技术。
它具有很高的时间分辨率和能量浓度,被广泛应用于多个领域。
本文将介绍超短脉冲技术的原理及其在不同领域中的应用。
超短脉冲技术的原理超短脉冲技术的原理基于光的时间调制性质。
通过优化光学元件和脉冲发生器的设计,可以产生非常短的脉冲。
以下是超短脉冲技术的主要原理:1.【原理1】光的色散补偿:在光经过不同材料或器件时,会因为折射率的不同而引起色散。
超短脉冲技术利用特殊的光学元件来补偿色散,使得在光经过时不会引起时间延迟。
2.【原理2】光纤拉伸:光纤拉伸技术可以将宽频带的光脉冲缩短。
通过拉伸光纤,光的不同频率被拉宽,从而实现宽频带的短脉冲。
3.【原理3】自发放射:自发放射是一个自然现象,它是由于原子或分子在受到外界激发后发射出光。
通过利用自发放射现象,可以产生非常短的脉冲。
超短脉冲技术在激光领域的应用超短脉冲技术在激光领域有广泛的应用。
以下是几个主要的应用领域:•材料加工:超短脉冲激光在材料加工中具有优越性能。
由于脉冲时间非常短,光的能量集中在一个非常小的空间范围内,可以实现精确的加工。
超短脉冲激光已经在微细加工、孔加工、锡焊接等领域得到广泛应用。
•光谱学研究:超短脉冲激光可以产生宽频谱的光,适用于光谱学研究。
通过测量光的频谱,可以获得物质的吸收、发射等信息。
超短脉冲激光在分子光谱学、固态物理等领域的研究中发挥着重要作用。
•生物医学影像:超短脉冲激光可用于生物医学影像的研究。
超短脉冲激光的短脉冲宽度和高峰值功率可以提供高分辨率的成像。
它被广泛应用于皮肤病学、眼科学和神经科学等领域。
超短脉冲技术在通信领域的应用超短脉冲技术在通信领域也具有重要的应用价值。
以下是几个主要的应用领域:•光纤通信:超短脉冲技术可以实现光纤通信中的高速数据传输。
由于脉冲时间短,可以将信号传输速率提高到数十Gbps甚至更高。
超短脉冲光纤通信已经成为现代通信系统的重要组成部分。
超短脉冲激光技术超短脉冲激光技术(Ultrafast Laser Technology)是一种目前最具有前瞻性的新型激光技术,它主要应用于精密加工、光学通信、生物医学、能源科学等各个领域。
相较于传统的激光技术,超短脉冲激光技术具有更高的功率密度、更快的时间分辨率和更高的频率程度。
超短脉冲激光技术的产生主要是通过提供高峰值功率并将其压缩至几十或几百飞秒的时间尺度。
这种激光可以产生高达1激光焦耳(J)的脉冲能量和约500万瓦特(MW)的功率密度,之后只有十几个飞行透镜分离。
这种激光通常会产生光谱波长在750纳米至1550纳米之间的光脉冲。
由于超短脉冲激光技术的独特性质,它的应用领域十分广泛。
在材料科学方面,超短脉冲激光可以用于加工某些高强度和高温度材料。
例如,使用这种激光可以制造出更坚硬、更耐磨的表面,并可以制造出具有微米和亚微米级别的结构的高精度零部件。
另外,在化学研究领域中,超短脉冲激光技术可以帮助实现一些反应的速率控制和选择性,从而有助于新材料的开发和绿色化合物的制备。
超短脉冲激光技术在生物医学领域中的应用也十分广泛。
例如,在眼科行业中,使用这种激光可以进行准确的激光手术,帮助人们恢复视力。
而在生物科学方面,超短脉冲激光可以用于快速扫描对细胞内部分子进行成像,并帮助生物学家研究生物体如何发挥其生理作用。
总的来说,超短脉冲激光技术的发展,为我们的日常生活、工业生产、科学研究等各个领域都带来了巨大的贡献和影响。
在未来,超短脉冲激光技术的应用将更加广泛,同时也将为世界带来更多的科学和技术突破。
超短脉冲激光技术在精密加工领域应用超短脉冲激光技术在精密加工领域中的应用最为广泛和成熟。
精密加工的主要应用领域包括半导体、微电子、微机械、微流控芯片、纳米加工等领域。
超短脉冲激光技术在这些领域中的应用,主要表现在以下几个方面:1. 纳米级加工超短脉冲激光技术能够实现纳米级加工,尤其在光刻领域被广泛应用。
传统的光刻工艺主要通过紫外线光束照射在光刻胶上,进行光刻图形的制作。
超短脉冲激光及其生命科学应用超短脉冲激光是一种异于常规光学的强激光,其脉冲时间对于纳秒甚至皮秒数量级。
由于超短脉冲激光的输出功率非常高,可以在极短时间内将能量输送到最小的空间尺度,因此被广泛应用于各种科学领域,特别是生命科学。
本文将详细介绍超短脉冲激光的原理、技术及其在生命科学方面的应用。
一、超短脉冲激光的原理和技术超短脉冲激光的基本原理是:利用激光器产生强、短脉冲的光束,该光束的时间尺度只有皮秒至纳秒级别,将其聚焦到微观物体上,利用光子的 Photoelectric Effect 和 Comptown Scattering 强度效应产生极高的能量密度,对物体进行加工处理或研究。
通常这种激光采用躯体非线性光学效应来形成及放大,最终通过光学混频技术得到皮秒脉冲出射。
同时,为了增加脉冲能量,将脉冲进行非线性增强,并采用 Afocal 技术来控制脉冲聚焦的光学系统,使得其聚焦到最小的尺度上。
此外,配合一些超水平前处理器和后处理器等器件,为此类激光创新性地提供了后向再注入供激光针对性标记和加工等应用方向。
二、超短脉冲激光在生命科学方面的应用由于超短脉冲激光具有极高的激光功率和空间分辨率,常用于生命科学的诸如光学成像、分子成像、组织切片和细胞操作等领域,其特色在于分子的精细加工和对个体的准确处理等方向。
此外,超短脉冲激光在神经科学方面的应用也非常广泛,通过操纵神经元功能和神经成像的技术,为研究基础和疾病相关的神经生理机制提供了有力的支持和帮助。
1. 光学成像超短脉冲激光可以提供高分辨率的光学成像技术。
对于生物体内部的显微组织学成像,超短脉冲激光可以使成像分辨率进一步提高,同时电子倍增器与 CCD 探测器联用也大大提高了光敏度和数据采集速度,为细胞与组织学成像提供了前所未有的精度。
2. 分子成像超短脉冲激光能够通过分子的振动和转变等特性,形成对分子的成像。
基于受激 Raman 散射、非线性光学倍频和荧光信号探测的原理,超短脉冲激光可以成像蛋白质、核苷酸和其他分子。
5.6用于快点火的超短强脉冲激光技术一.概述1. 飞秒激光脉冲的特性15110fs s −=飞秒()激光最早出现于70年代初。
同传统的激光技术相类似,飞秒激光的发展也是和光学材料紧密相关的。
宽带的掺钛宝石激光晶体的出现,促进了飞秒激光在90-年代的飞速发展。
至今飞秒激光在宽带上可以小于4fs ,非常接近单个光波振荡周期。
另一方面,激光脉冲的峰值功率已经超过拍瓦(),相应的光波聚焦光强超过,相当于将所有覆盖于地球表面的太阳能辐射集中到3015110PW W =m μ21210/W cm 的小孔内所获得的强度。
因此,脉冲极短和强度极高的飞秒激光将显示独特的光波特性,并且将创造研究重大科学问题的新途径。
由于飞秒激光的脉冲宽度和光波振荡周期相近,其振幅和位相在相当的时间尺度上发生变化。
飞秒激光将显示出不同于其它较长脉冲的传输特性,光波的谱域相位()φω会显著的影响时域振幅分布或激光脉冲。
例如,50fs 脉宽的飞秒激光经过1cm 的光学玻璃线性传输,将展宽至约100fs 。
这种特性被称为群速度色散效应。
对于大多数光学透明介质,群速度色散仅在飞秒时间尺度上是重要的。
为清晰地说明群速度的概念,可以讨论光波由二列频率稍有不同的平面波组成的情况: 11220012[()][()]00[(())]0()()()2cos ())i k z t i k z t i k z t E t E t E t E e E e E k z t e k ωωωωωωω−−−=+=+Δ=Δ−Δ (1)其中211[()()]2k k k ωωΔ=−211()2ωωωΔ=− 021()21ωωω=+ 上式表明具有多个频率成分的光波的传输和单色平面波相比较,有很大的不同。
它是以中心频率0ω为载频的载波,而其振幅则成为随时间变化的振幅(Fig 1)。
载波表征整个光波的相位信息,其传递速度被定义为相速度。
振幅包洛体现了光波能量的信息,表征了多个频率成分的整体(群)行为,其随 时间变化的速度被定义为群速度p V g V :g V k ω∂=∂ (2(a )) p V k ω=(2(b ))图1. 脉冲光波的振幅包洛与载波群速度仅对于脉冲光波才是有意义的。