第三章 超短脉冲技术.
- 格式:ppt
- 大小:3.02 MB
- 文档页数:63
超短脉冲激光技术在材料研究中的应用超短脉冲激光技术是一种先进的材料加工技术,它的出现极大地推动了材料研究的发展。
超短脉冲激光通过短时间内高能量的脉冲作用于材料表面,使得材料表面瞬间蒸发或者产生等离子体,从而实现材料表面微米级别的加工和改性。
下面将从材料加工、表面改性和生物医学三个方面介绍超短脉冲激光技术在材料研究中的应用。
一、超短脉冲激光在材料加工中的应用超短脉冲激光技术可以实现大尺寸、高精度、良好表面质量的材料微加工。
比如在制备微型元器件、工艺模具、精密机械等方面都有广泛应用。
此外,超短脉冲激光还能够实现“一正一反”微米级别的加工,对于金属、无机物甚至生物材料表面都有很好的加工效果。
二、超短脉冲激光在表面改性中的应用超短脉冲激光技术可实现微米级尺度的表面改性,如增强材料强度、提高材料的电学和光学性能。
对于复合材料、高强度陶瓷等高性能材料的制备过程中,超短脉冲激光技术能够使得材料的表面产生过渡层,从而增加材料的粘结强度和性能。
此外,超短脉冲激光也是改善金属表面抗腐蚀性能和耐磨性能的重要手段。
三、超短脉冲激光在生物医学中的应用超短脉冲激光技术还可以在生物医学领域中应用。
通过超短脉冲激光,细胞可以被定向破坏而不影响周围组织,这为细胞和组织的研究奠定了基础。
此外,还可以将超短脉冲激光用于眼科手术,如在眼科激光屈光(LASIK)手术中使用。
总之,超短脉冲激光技术的应用范围非常广泛,越来越多的行业开始使用这种先进的材料加工技术。
然而,这种技术也有一些问题需要解决。
例如,超短脉冲激光的使用需要十分精密的设备和实验条件,成本较高;此外,过度依赖超短脉冲激光技术也容易导致技术陈旧,需要不断更新和改进。
相信在科学家们的不断努力下,这些问题也将得到解决,超短脉冲激光技术也会在未来得到更广泛的应用。
5.6 (3)一.概述 (3)1.飞秒激光脉冲的特性 (3)2.飞秒脉冲的传输 (5)3.光束空间传输 (6)4.脉冲传输的数值模拟 (6)5.时空效应 (9)5.1自相位调制 (10)5.2相位调制对有限光束的影响——自聚焦 (11)二.飞秒光学 (13)1.简介 (13)2.色散元件 (13)2.1 膜层色散 (13)2.2 材料体色散 (13)2.3 角色散元件 (14)3.群速度色散的补偿及控制 (14)4.聚焦元件 (16)4.1 透镜的色差 (16)4.2 脉冲畸变与PTD效应 (16)三.飞秒激光器 (18)1.锁模简介 (18)2.克尔透镜锁模 (18)3.飞秒激光振荡器 (20)4.光纤孤子激光器 (21)四.飞秒脉冲的放大与压缩 (23)1.简介 (23)2.飞秒脉冲放大的困难 (25)3.啁啾脉冲放大技术 (26)4.CP A放大器的设计 (27)4.1 CP A激光系统的工作脉宽 (27)4.2 高增益的前置放大器 (27)4.3 装置的色散控制 (28)4.4 设计多程CP A放大器的理论模型 (31)五.脉冲整形 (34)1.脉冲整形 (34)2.飞秒光脉冲整形的物理基础 (34)(1)线性滤波 (34)(2)脉冲整形装置 (35)(3)脉冲整形的控制 (38)3.几种典型的空间光调制器 (39)(1)可编程液晶空间光调制器(LC SLM) (39)A.电寻址方式 (39)B.光寻址方式 (40)(2)声光调制器 (41)(3)变形镜 (41)4.脉冲压缩 (42)2.1 波导介质中的SPM (42)2.2 级联非线性压缩脉冲 (43)六.脉冲时间诊断技术 (45)1.强度相关 (45)(1) 多次平均测量 (45)(2) 单次工作方式 (47)(3) 三次相关法 (48)2.干涉相关 (49)3.脉冲振幅与位相的重建 (50)七.大口径高功率激光装置 (53)1.高能量的PW钛宝石/钕玻璃混合系统 (55)2.关键技术问题 (56)2.1 高阶色散 (57)2.2 光谱窄化和漂移引起的光谱畸变 (57)2.3 非线性自位相调制SPM (58)2.4 自发辐射放大ASE (58)3.光参量啁啾脉冲放大(OPCPA) (58)3.1 大口径高能钕玻璃泵浦的OPCPA 系统 (62)3.2 小口径低能量高重复率OPCPA 系统 (63)4.展望 (64)4.1 峰值功率的理论极限 (64)4.2 光学元件的限制 (65)4.3 非线性B积分的限制 (65)5.6一. 概述1. 飞秒激光脉冲的特性飞秒(15110fs s −=)激光最早出现于70年代初。
超短脉冲技术的原理与应用引言超短脉冲技术是一种在相对时间尺度上产生非常短脉冲的技术。
它具有很高的时间分辨率和能量浓度,被广泛应用于多个领域。
本文将介绍超短脉冲技术的原理及其在不同领域中的应用。
超短脉冲技术的原理超短脉冲技术的原理基于光的时间调制性质。
通过优化光学元件和脉冲发生器的设计,可以产生非常短的脉冲。
以下是超短脉冲技术的主要原理:1.【原理1】光的色散补偿:在光经过不同材料或器件时,会因为折射率的不同而引起色散。
超短脉冲技术利用特殊的光学元件来补偿色散,使得在光经过时不会引起时间延迟。
2.【原理2】光纤拉伸:光纤拉伸技术可以将宽频带的光脉冲缩短。
通过拉伸光纤,光的不同频率被拉宽,从而实现宽频带的短脉冲。
3.【原理3】自发放射:自发放射是一个自然现象,它是由于原子或分子在受到外界激发后发射出光。
通过利用自发放射现象,可以产生非常短的脉冲。
超短脉冲技术在激光领域的应用超短脉冲技术在激光领域有广泛的应用。
以下是几个主要的应用领域:•材料加工:超短脉冲激光在材料加工中具有优越性能。
由于脉冲时间非常短,光的能量集中在一个非常小的空间范围内,可以实现精确的加工。
超短脉冲激光已经在微细加工、孔加工、锡焊接等领域得到广泛应用。
•光谱学研究:超短脉冲激光可以产生宽频谱的光,适用于光谱学研究。
通过测量光的频谱,可以获得物质的吸收、发射等信息。
超短脉冲激光在分子光谱学、固态物理等领域的研究中发挥着重要作用。
•生物医学影像:超短脉冲激光可用于生物医学影像的研究。
超短脉冲激光的短脉冲宽度和高峰值功率可以提供高分辨率的成像。
它被广泛应用于皮肤病学、眼科学和神经科学等领域。
超短脉冲技术在通信领域的应用超短脉冲技术在通信领域也具有重要的应用价值。
以下是几个主要的应用领域:•光纤通信:超短脉冲技术可以实现光纤通信中的高速数据传输。
由于脉冲时间短,可以将信号传输速率提高到数十Gbps甚至更高。
超短脉冲光纤通信已经成为现代通信系统的重要组成部分。
天津大学博士学位论文光通信波段超短光脉冲产生技术的理论及实验研究姓名:***申请学位级别:博士专业:物理电子学指导教师:***20030501摘要摘要开发光纤传输信息容量的潜力,提高光纤的利用率,一直是光通信技术研究的主题。
40Gb/s系统的实验成功,使提高单信道速率成为目前研究的热点之一,加以P.Z码传输技术的潜在优势和实用化趋势,对系统发送与接收模块提出了新的挑战。
本文主要围绕光纤通信系统中的光源技术,对主被动锁模光纤激光器、电吸收调制技术、光脉冲压缩、超连续光谱产生技术进行了理论及实验研究,具体的研究工作成果如下:一、主被动锁模光纤激光器1.分析了色散非平衡光纤环形镜(DI-NOLM)的非线性开关特性及入射脉冲功率、脉宽对透射率和透射脉冲形状的影响;2.对DI.NOLM用于光纤锁模激光器的工作状态进行了分析,首次对采用DI.NOLM的锁模光纤激光器进行了实验,实现了主被动锁模运转。
发现,当DI-NOLM偏置在加成脉冲锁模(APM)状态时,主被动锁模输出脉冲明显窄化,得到了10GHz、5.45ps的脉冲序列,但不易稳定:而当DI-NOLM偏置在加成脉冲限制锁模(APL)状态时,DI-NOLM的非线性损耗特性能够有效的降低锁模脉冲的幅值起伏。
二、皮秒脉冲电吸收调制激光器(EML)1.从电吸收调制器的数学模型出发,分析了反向偏置电压和调制指数对于脉冲的脉宽和消光比的影响,分析了EML产生啁啾的原因及驱动条件影响,综合脉冲时域及频域两个方面因素,对驱动参数进行了优化。
2.对电吸收调制激光器产生光脉冲进行了实验研究及分析,得到了21.4ps的光脉冲;并与铌酸锂调制器产生的光脉冲进行了比较。
3.研制了一台电吸收调制激光器驱动电源,工作安全、稳定,温控精度达到了±0.03℃。
三、光脉冲压缩1.通过数值计算非线性薛定谔方程,模拟了光脉冲在DSF+SMF全光纤啁啾一色教脉冲压缩器中的演变过程,分析了光纤长度、输入脉冲功率、损耗及三阶色散等因素对压缩质量的影响,为优化设计DSF+SMF啁啾一色散脉冲压缩器提供了理论指导。