等价转化思想方法
- 格式:doc
- 大小:338.00 KB
- 文档页数:6
我们时常会遇到这样一些问题,若要直接解决会较为困难,若通过问题的转化、归类,就会使问题变得简单,这类问题的解决方法就是转化与化归思想,它在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归.转化与化归思想,指的是在研究和解决有关数学问题时,通过某种转化过程,归结到一类已经解决或比较容易解决的问题,最终使问题得到解决的一种思想。
利用化归与转化的思想可以实现问题的规范化、模式化,以便应用已知的理论、方法和技巧来解决问题.数学解题过程,就是不断转化的过程,不断把问题由陌生转化成熟悉的来解决,几乎所有问题的解决都离不开转化与化归。
在其他的数学思想中明显体现了转化与化归的思想,比如,数形结合思想体现了数与形的相互转化,函数与方程思想体现了函数、方程、不等式等问题之间的相互转化,分类讨论思想体现了局部与整体的相互转化.一、常见的转化与化归的形式常见的有:陌生问题向熟悉问题的转化,复杂问题向简单问题的转化,不同数学问题之间的互相转化,实际问题向数学问题转化等。
二、常见的转化策略常见的有:正与反的转化、数与形的转化、整体与局部的转化、常量与变量的转化、相等与不等的转化、空间与平面的转化、数学语言之间的转化等。
三、常见的实现转化与化归的方法:1.直接转化法:把原问题直接转化为学过的基本定理、基本公式或基本图形问题.2.换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。
3。
数形结合法,即数与形的转化。
将比较抽象的问题化为比较直观的问题来解决.例如在函数与图象的联系中可以体现出,把繁琐的代数问题转化为直观的几何图形来解决4。
特殊化方法:即特殊与一般的转化,把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题。
5。
补集法,即正与反的相互转化.当问题正面讨论遇到困难时,可考虑问题的反面,正难则反,设法从问题的反面去探讨,使问题获解.6.等价转化法:把原问题转化为一个易于解决的等价命题,即原问题的充要条件,达到化归的目的.7。
等价转化思想在充要条件中的应用在四种命题的关系、充要条件、简单的逻辑联结词、全称量词与存在量词中,时时刻刻渗透着等价转化思想。
例如互为逆否命题的两个命题(原命题与逆否命题或逆命题与否命题)一定同真或同假,它们都是等价的。
但原命题与逆命题不等价,即原命题为真,其逆命题不一定为真。
【规律总结】命题的充要关系的判断方法①定义法:即判断原命题与其逆命题的真假性。
②等价法:p是q的什么条件等价于⌝q是⌝p的什么条件。
③利用集合间的包含关系判断:建立命题p、q的相应集合:p:A={x|p(x)成立},q:B={x|q(x)成立},转化为判定A与B间的关系。
练习:已知p:x+y≠2,q:x,y不都是1,则p是q的________条件。
思路分析:p和q中都含有否定词语,直接判断较为困难,可采用间接判断。
答案:∵p:x+y≠2,q:x≠1或y≠1,∴⌝p:x+y=2,⌝q:x=1且y=1。
∵⌝p⌝q,但⌝q⇒⌝p,∴⌝q是⌝p的充分不必要条件,即p是q的充分不必要条件。
技巧点拨:由于互为逆否命题的两个命题同真同假,所以当由p⇒q较困难时,可利用等价转化,先判断由⌝q⇒⌝p,从而得到p⇒q。
例题已知p:2x2-9x+a<0,q:22430680x xx x⎧-+<⎪⎨-+<⎪⎩,且⌝p是⌝q的充分条件,求实数a的取值范围。
思路分析:先解p和q中的不等式,把条件间的关系转化为集合间的关系。
答案:由22430680x xx x⎧-+<⎪⎨-+<⎪⎩,得1324xx<<⎧⎨<<⎩,即2<x<3。
∴q:2<x<3。
设A={x|2x2-9x+a<0},B={x|2<x<3},∵⌝p⇒⌝q,∴q⇒p,∴B⊆A。
∴2<x<3满足不等式2x2-9x+a<0。
设f(x)=2x2-9x+a,要使2<x<3满足不等式2x2-9x+a<0,须使(2)0(3)0ff≤⎧⎨≤⎩,即818018270aa-+≤⎧⎨-+≤⎩,∴a≤9。
转化与化归思想等价转化思想方法的特点是具有灵活性和多样性.在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行.它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形.消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化.可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变.由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型.►探究点一高维与低维的转化事物的空间形成,总是表现为不同维数且遵循由低维向高维的发展规律,如从点研究线,由线到面,由面再到空间.通过降维可以把问题从一个领域带到另一个领域研究,从而使问题简单化.如立体几何中三维问题转化为平面几何的二维问题,多元问题转化为一元问题进行研究等.例(1)如图30-1,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段BB1上的一动点,则当AM+MC最小时,△AMC的面积为________.30-1(2)若不等式x2108+y24≥xy3k对于任意正实数x,y总成立的必要不充分条件是k∈[m,+∞),则正整数m只能取________.►探究点二特殊与一般的转化所谓特殊化的策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考查包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究,拓宽解题的思路,从而发现解答原题的方向或途径,即“由一般退回特殊,再由特殊推广至一般”.例2已知椭圆x24+y22=1,A、B是其左、右顶点,动点M满足MB⊥AB,连结AM交椭圆于点P,在x轴上有异于点A、B的定点Q,以MP为直径的圆经过直线BP,MQ的交点,则点Q的坐标为________.► 探究点三 陌生与熟悉的转化化陌生为熟悉,即当我们面临一个没有接触过的问题时,要设法把它转化为曾经解过的或比较熟悉的题目,以便充分利用已有知识、经验或解题模式解出原题.一般来说对题目的熟悉程度取决于对题目自身结构的认识和理解.常用转化途径有:(1)充分联想、回忆基本知识和题型;(2)全方位、多角度地分析题意;(3)恰当构造辅助元素.例3 若关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,求实数a 的取值范围.变式 设x ,y 为正实数,a =x 2+xy +y 2,b =p xy ,c =x +y .(1)如果p =1,则是否存在以a ,b ,c 为三边长的三角形?请说明理由;(2)对任意的正实数x ,y ,试探索当存在以a ,b ,c 为三边长的三角形时p 的取值范围.例 [2011·江苏卷] 在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.例设实数x ,y 满足⎩⎪⎨⎪⎧ x -y -2≤0,x +2y -5≥0,y -2≤0,则u =y x -x y 的取值范围是________.例设A 1、A 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,若在椭圆上存在异于A 1、A 2的点P ,使得PO →·PA 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是________.► 探究点四 函数中的分类讨论问题函数的基本概念和基本性质中本身涉及分类讨论的问题并不多,但是有一类带有参数的函数即动态函数问题中,其单调性的求解、值域的研究、零点问题等往往都需要对参数的取值进行划分后,分成不同情况进行研究.例1已知函数f (x )=x 2-a ln x (a ∈R).(1)若a =2,求证:f (x )在(1,+∞)上是增函数;(2)求f (x )在[1,e]上的最小值.。
数学思想方法——等价转化解决数学问题时,我们常会遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过对新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”.转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化的过程. 转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆是,如函数与方程的转化,未知向已知转化,数与形的转化,空间向平面的转化,正面与反面的转化等,都是转化思想的体现.我就平时遇到的一些题目进行归类、剖析.题型一函数与方程的转化例1、已知函数在定义域内是增函数,则实数m的取值范围为_______.解析:f(x)在定义域内为增函数即等价于,对恒成立.解题回顾:(1)f(x)在区间(a,b)上为增函数(减函数)常转化为对恒成立(注意验证) .(2)“恒成立”问题常可转化为最值问题,本题中采用分离参数法,问题就明朗化了.解析:建立如图所示的平面直角坐标系解题回顾:(1)解决向量的问题我们有三种方法:一线性运算、二向量数量积的定义、三向量的坐标运算.本题采用第三种方法将向量的问题转化为函数的最值问题.(2)本题也体现了数与形的转化.例3、中,角A的对边长等于2,向量向量(1)求取得最大值时的角A的大小;(2)在(1)的条件下求面积的最大值.解析:故取得最大值时的角. .(2)设角A、B、C所对的边长分别为a、b、c,由余弦定理,得即,当且仅当b=c=2时取等号,又,当且仅当a=b=c=2时,的面积最大为.解题回顾:(1)本题中求的最大值转化为求关于的二次函数的最大值.在解题时应注意的取值范围即角A的范围.(2)为了求bc的取值范围只要将由余弦定理得到的等式转化为不等式即可.即运用不等式.例4、若关于x的方程cos2x+4asinx+a-2=0在区间[0,π]上有两个不同的解,求实数a的取值范围.可知:解得:解题回顾:本题涉及多种转化,一是三角函数的异名化同名,三角函数转化为代数问题,二是方程的问题转化为函数的问题.题型二未知与已知的转化例1、已知则解析:由已知可得所以把变形成点评:在三角求值中,我们一定要注意已知角与未知角的关系,实现未知与已知的转化.当然本题中也涉及三角函数名的转化.例2、在R上定义运算:若不等对任意实数x都成立,则实数a的取值范围解析:由定义可知即恒成立点评:定义信息型创新题是近年高考出现频率较高的试题之一,对定义信息的提取和转化是求解的关键,也是一个难点.例3、已知是定义在上的函数,且对任意实数,恒有且的最大值为1,则满足的解集为_______.解析:解决本题的关键是对的理解.从代数的角度看:当时,,当时,所以此函数在定义域内为增函数,从几何的角度看:此函数上任意两点连线的斜率均大于0,所以此函数为增函数.解题回顾:未知与已知的转化,方法二也体现了数与形的转化.例4、已知o为原点,向量(2)求的最大值及相应x的值.(2),所以的最大值为相应的解题回顾:本题涉及三角函数名的转化、未知角向已知角的转化、数与形的结合、利用不等式求函数的最值等问题.题型三变量与常量的转化例、若不等式对一切均成立,则实数x的取值范围____.解析∵∴,令g(p)=,则要使它对0≤p≤4均有g(p)>0,只要有∴x>3或x<-1点评:在有几个变量的问题中,常常有一个变元处于主要地位,我们称之为主元,由于思维定势的影响,在解决这类问题时,我们总是紧紧抓住主元不放,这在很多情况下是正确的.但在某些特定条件下,此路往往不通,这时若能变更主元,转移变元在问题中的地位,就能使问题迎刃而解.本题中,若视x为主元来处理,既繁且易出错,实行主元的转化,使问题变成关于p的一次不等式,使问题实现了从高维向低维转化,解题简单易行.题型四正面与反面的转化例、已知命题:使为真命题,则a的取值范围是_____.解析:原命题等价于若从反面考虑:原命题的否定为使解题回顾:正难则反原则:当问题正面讨论遇到困难时,可转化考虑问题的反面,设法从问题的反面去探求,使问题获解.题型五空间与平面的转化例、如图所示,在单位正方体的面对角线上存在一点P使得最短,则的最小值_______.解析:将面A1AB绕轴A1A旋转到与面A1BCD1共面,如右图所示,D1A 为所求最小值,最小值为.解题回顾:立体图形中最短路径的问题常通过图形的翻折转化到平面来解决.等价转化思想方法的特点具有灵活性和多样性,在应用等价转化的思想方法去解决数学问题时,没有一个固定统一的模式去进行,它可以在数与数、形与形、数与形之间进行转换;也可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;也可以在符号系统内部实施转换,即所说的恒等变形。
初中数学解题技巧:常见的转化方法
初中数学解题技巧:常见的转化方法
( 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题 .
( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 .
( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 .
( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的 .
( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题 .
( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题 .
( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径
转化与化归的指导思想
( 1 )把什么问题进行转化,即化归对象 .
( 2 )化归到何处去,即化归目标 . 0
( 3 )如何进行化归,即化归方法 .
化归与转化思想是一切数学思想方法的核心 .。
数学二轮复习—数学思想方法选讲4.等价转化思想班级 姓名 学号 学习目标:体会什么是等价转化思想,会利用等价转化的思想解决常见问题。
学习重点、难点: 运用等价转化思想。
教学过程:一、典型例题分析: 例1、阅读材料:如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x 轴于点A(3,0),交y 轴于点B.(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB=89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.〖点评〗(1)是大家熟悉的待定系数法求解析式问题;(2)转化为阅读材料提供的方法来解图2xC Oy ABD1 1BC铅垂高水平宽 ha 图1决;(3)将面积的等量关系转化为方程。
(本题的面积也可用割补法求)熟悉化原则:把生疏的转化为熟悉的,把未知的转化为已知的,把非典型的转化为典型的以充分利用已知的知识及解题经验。
例2、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.〖点评〗(1)是大家熟悉的待定系数法求解析式问题;(2)转化为在对称轴上求点Q使QC+QA的值最小;(3)将面积转化为二次函数,利用二次函数的定点确定最大值。
数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。
通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。
转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。
下面将从这几个方面对转化与化归进行总结。
首先,等价转化是一种常见的数学思想之一。
它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。
等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。
一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。
在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。
其次,代数化简是转化与化归的另一个重要方面。
代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。
代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。
代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。
几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。
几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。
几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。
最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。
枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。
枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。
然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。
综上所述,转化与化归是数学中一种重要的思想方法。
高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。
更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。
一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。
A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。
A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。
A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。
A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。
二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
解决问题的策略思想——等价与非等价转化是目前在解决实际问题中被广泛应用的一种思维策略,它是将解决问题中的现有条件或者程序,转化成另外一种可以帮助解决问题的条件或程序,从而达到解决问题的目的。
等价转化是指在解决复杂问题时,将当前的问题转化成与原问题具有同一解的另一种形式,以便更容易的解决。
通过等价转化,可以将复杂的问题转化成更简单的形式,使其更容易理解和解决。
例如,当在求解方程时,如果原方程中存在复杂的符号,则可以将其进行等价转化,使其变得简单易懂,从而使解决方程变得简单,可以在较短时间内得到解决。
非等价转化是指在解决复杂问题时,将当前的问题转化成与原问题不具有同一解的另一种形式,以便更容易的解决。
这种转化的方式比等价转化更加的复杂,但是它可以帮助我们更好的理解问题,从而更容易的解决问题。
例如,当求解一个复杂的方程时,如果原方程中存在复杂的符号,可以通过对方程进行非等价转化,将其转化为两个或多个更加简单的方程,从而使解决方程变得更加容易,从而达到解决问题的目的。
总之,等价与非等价转化都是解决复杂问题的有效策略,它们可以有效的将复杂的问题,转化成更简单的形式,使其更容易理解,从而达到解决问题的目的。
因此,在解决实际问题时,应该灵活的利用等价与非等价转化的思想,从而更有效的解决问题。
等价转化思想方法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。
转化有等价转化与非等价转化。
等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。
我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。
著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。
数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。
等价转化思想方法的特点是具有灵活性和多样性。
在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。
它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。
消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。
可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。
由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。
在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。
等价转化思想方法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。
转化有等价转化与非等价转化。
等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。
我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。
著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。
数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。
等价转化思想方法的特点是具有灵活性和多样性。
在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。
它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。
消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。
可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。
由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。
在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。
按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。
Ⅰ、再现性题组:1. f(x)是R上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于_____。
A. 0.5B. -0.5C. 1.5D. -1.52.设f(x)=3x-2,则f-1[f(x)]等于______。
A. x+89B. 9x-8C. xD.132x-3. 若m、n、p、q∈R且m2+n2=a,p2+q2=b,ab≠0,则mp+nq的最大值是______。
A. a b+2B. abC.a b222+D.aba b+4. 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值为______。
A. 1B. 2C. 2D. 55. 设椭圆ya22+xb22=1 (a>b>0)的半焦距为c,直线l过(0,a)和(b,0),已知原点到l的距离等于2217c,则椭圆的离心率为_____。
A. 14B.12C.33D.226. 已知三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB的中点,E 为AC的中点,则四棱锥S-BCED的体积为_____。
A. 152B. 10C.252D.352【简解】1小题:由已知转化为周期为2,所以f(7.5)=f(-0.5)=-f(0.5),选B;2小题:设f(x)=y,由互为反函数的值域与定义域的关系,选C;3小题:由mp+nq≤m p222++n q222+容易求解,选A;4小题:由复数模几何意义利用数形结合法求解,选A;5小题:ab=2217c×a b22+,变形为12e4-31e2+7=0,再解出e,选B;6小题:由S∆ADE =14S∆ABC和三棱椎的等体积转化容易求,选A。
Ⅱ、示范性题组:例1. 若x、y、z∈R+且x+y+z=1,求(1x-1)(1y-1)(1z-1)的最小值。
【分析】由已知x+y+z=1而联想到,只有将所求式变形为含代数式x+y+z,或者运用均值不等式后含xyz的形式。
所以,关键是将所求式进行合理的变形,即等价转化。
【解】(1x-1)(1y-1)(1z-1)=1xyz(1-x)(1-y)(1-z)=1xyz(1-x-y-z+xy+yz+zx-xyz)=1xyz(xy+yz+zx-xyz)=1x+1y+1z-1≥313xyz-1=33xyz-1≥33x y z++-1=9【注】对所求式进行等价变换:先通分,再整理分子,最后拆分。
将问题转化为求1x+1 y +1z的最小值,则不难由平均值不等式而进行解决。
此题属于代数恒等变形题型,即代数式在形变中保持值不变。
例2. 设x、y∈R且3x2+2y2=6x,求x2+y2的范围。
【分析】设k=x2+y2,再代入消去y,转化为关于x的方程有实数解时求参数k范围的问题。
其中要注意隐含条件,即x的范围。
【解】由6x-3x2=2y2≥0得0≤x≤2。
设k=x2+y2,则y2=k-x2,代入已知等式得:x2-6x+2k=0 ,即k=-12x2+3x,其对称轴为x=3。
由0≤x≤2得k∈[0,4]。
所以x2+y2的范围是:0≤x2+y2≤4。
【另解】数形结合法(转化为解析几何问题):由3x2+2y2=6x得(x-1)2+y232=1,即表示如图所示椭圆,其一个顶点在坐标原点。
x2+y2的范围就是椭圆上的点到坐标原点的距离的平方。
由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点。
设圆方程为x2+y2=k,代入椭圆中消y得x2-6x+2k=0。
由判别式△=36-8k=0得k=4,所以x2+y2的范围是:0≤x2+y2≤4。
【再解】三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题):由3x2+2y2=6x得(x-1)2+y232=1,设xy-==⎧⎨⎪⎩⎪162cossinαα,则x2+y2=1+2cosα+cos2α+32sin2α=1+32+2cosα-12cos2α=-12cos2α+2cosα+52∈[0,4]所以x2+y2的范围是:0≤x2+y2≤4。
【注】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力。
此题还可以利用均值换元法进行解答。
各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型。
例3. 求值:ctg10°-4cos10°【分析】分析所求值的式子,估计两条途径:一是将函数名化为相同,二是将非特殊角化为特殊角。
【解一】ctg10°-4cos10°=cossin1010°°-4cos10°=cos sin cossin104101010°°°°-=sin sinsin8022010°°°-=sin sin sinsin80202010°°°°--=250302010cos sin sinsin°°°°-=sin sinsin402010°°°-=2301010cos sinsin°°°=3(基本过程:切化弦→通分→化同名→拆项→差化积→化同名→差化积)【解二】ctg10°-4cos10°=cossin1010°°-4cos10°=cos sin cossin104101010°°°°-=sin sinsin8022010°°°-=2128022010·°°°sin sinsin-=2608022010cos sin sinsin°°°°-=sin sin()sinsin1402022010°°°°---=sin sinsin1402010°°°-=2806010cos sinsin°°°=3(基本过程:切化弦→通分→化同名→特值代入→积化和→差化积)【解三】ctg10°-4cos10°=cossin1010°°-4cos10°=cos sin cossin104101010°°°°-=sin sinsin8022010°°°-=sin()sinsin602022010︒+︒-°°=3220122022010cos sin sinsin︒+︒-°°=31220322010(cos sin)sin︒-︒°=3602010cos()sin︒+︒°=3(基本过程:切化弦→通分→化同名→拆角80°→和差角公式)【注】无条件三角求值问题,是高考中常见题型,其变换过程是等价转化思想的体现。
此种题型属于三角变换型。
一般对,对于三角恒等变换,需要灵活运用的是同角三角函数的关系式、诱导公式、和差角公式、倍半角公式、和积互化公式以及万能公式,常用的手段是:切割化弦、拆角、将次与升次、和积互化、异名化同名、异角化同角、化特殊角等等。
对此,我们要掌握变换的通法,活用2公式,攻克三角恒等变形的每一道难关。
例4. 已知f(x)=tgx ,x ∈(0, π2),若x 1、x 2∈(0, π2)且x 1≠x 2, 求证:12[f(x 1)+f(x 2)]>f(x x 122+) (94年全国高考) 【分析】从问题着手进行思考,运用分析法,一步步探求问题成立的充分条件。
【证明】12[f(x 1)+f(x 2)]>f(x x 122+) ⇔ 12[tgx 1+tgx 2]>tg x x 122+ ⇔12(sin cos x x 11+sin cos x x 22)>sin()cos()x x x x 12121+++ ⇔ 12sin()cos cos x x x x 1212+>sin()cos()x x x x 12121+++ ⇔ 1+cos(x 1+x 2)>2cosx 1cosx 2 ⇔ 1+cosx 1cosx 2+sinx 1sinx 2>2cosx 1cosx 2 ⇔ cosx 1cosx 2+sinx 1sinx 2<1 ⇔ cos(x 1-x 2)<1由已知显然cos(x 1-x 2)<1成立,所以12[f(x 1)+f(x 2)]>f(x x 122+) 【注】 本题在用分析法证明数学问题的过程中,每一步实施的都是等价转化。